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Abstract. The need to secure software application in today’s hostile computer 

environment cannot be overlooked. The increase in attacks aimed at software 

directly in the last decade and  the demand for  more secure software 

applications has drawn the attention of the software industry into looking for 

better  ways  in  which  software  can  be  developed  more securely. To achieve 

this, it has been suggested that security needs   to   be   integrated   into   every   

phase   of   software development lifecycle (SDLC). In line with this view, 

security tools are now used during SDLC to integrate security into software 

applications. Here, we propose a neural network based security tool for 

analyzing software design for security flaws. Our findings show that the trained 

neural network was able to match possible attack patterns to design scenarios 

presented to it. With the information on the attack pattern identified, developers 

can make informed decision in mitigating risks in their designs. 

Keywords: Threat Modeling, Neural Network, Attack Patterns, Security Tools, 

Secure software design 

1   Introduction 

 The dependence of our society today on software systems demand that they are 

robust, reliable and secured when they are deployed. Therefore, it is very important 

that the design of software must be that which makes it to function properly in a 

hostile computer environment, protecting the information and systems on which it 

runs with minimal risks. However, as software attacks become more sophisticated 

especially with  the increase  of  attack  tools  available, today’s security solutions are 

no longer adequate in providing security[5][18] because many of these attacks  

circumvent  the  traditional  defenses  and  target  the software directly [2].   By 

retrofitting security into software after development exacerbate the issue as these may 

lead to significant change in the architectural design and code of  the  software  which  

often  introduces  more  flaws  and increases the cost of production [4]. 

Reportedly, 50% of security problems in software products today have been found 

to be design flaws [8]. In this view, many authors argue that it is much better to find 

and fix flaws during the early phase of software development because it is more 

costly to fix the problem at a late stage of development and much more costly when 

the software has been deployed [4][11][18]. To achieve this, a neural network based 
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tool that would enable software engineers to evaluate their software design for 

security flaws by matching attack patterns to software design scenarios presented to it 

is proposed in this paper. Each attack pattern matched to the design helps the software 

designer to see areas of vulnerability in the design that needs to be secured. Based on 

this information, software designers can integrate security capabilities that will 

mitigate the identified risks in their design before the software is coded. 

2   Internet of Things (IoT) 

One of the core issues in IoT is the connectivity between social, cloud, mobile and 

everyday objects. While IoT has lots of benefits, it also increases the attack surface of 

applications running on the connected devices. Many devices that were never 

intended to be connected to the internet become exposed to software-based attacks 

while connected to other devices. Furthermore, as devices connected in IoT will be 

generating a huge amount of data, the risk of data breach also increases. Therefore, 

the security of software running these devices connected in IoT cannot be overlooked, 

This paper contributes in this area by proposing a tool based on neural network that 

can be used to analyze the software design for security flaws. 

 

3   Current Security Tools for Analyzing Software Design 

 In recent years, various security tools have been developed to enable software 

developers who are not security experts to scrutinize their software design and 

identify security flaws in a similar way as a security expert. Microsoft developed two 

of these security tools [10] [11]. The first was Threat Analysis and Modeling (TAM) 

tool. This was developed with the aim of enabling non-security expert software 

developers to use already known data and specific line of business application 

requirement and architecture to carry out threat modeling in an asset-centric approach. 

With this tool software developers can focus on protecting the assets within their 

application by identifying associated threats and counter-measures when it’s being 

designed. The second is SDL Threat Modeling Tool. This is a core element in the 

design phase of Microsoft Security Development Lifecycle which helps software 

developers to analyze their software designs prior to its implementation. Also, this 

tool was not developed for security experts but for software developers to aid the 

creation and analysis of threat models [10].  In  contrast  to  TAM  tool,  SDL Threat 

Modeling tool builds on well-known development activities  such  as the use  of  data  

flow diagram  (DFD)  for drawing the architecture of the software being designed. 

Thus, following a software-centric approach, threat modeling with this tool focuses on 

the software and the analysis of its design [17]. 

While these tools have lots of useful features that enable software developers to do 

threat modeling easily, they have a few draw backs. Firstly, the quality of report 

generated by the tools is still limited by the knowledge of the software developer 

creating the threat model.  Secondly, software developers require the understanding 
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and interpretation of the extensive list of threats identified by the tools. This may 

become a daunting task especially when the threats are not prioritized as the case is 

with the use of SDL Threat Modeling Tool. Thirdly the process of threat modeling 

can increasingly become complex while using the tools due to factors such as number 

of developers involved in the threat modeling process, the nature of DFD created and 

potential stakeholders [1][11]. 

There is now a range of security tools from open source with similar threat 

modeling approach like that of Microsoft threat modeling tools such as SeaMonster, 

TRIKE and  Coras, which use techniques that software developers are familiar with 

for the identification and mitigation of threats. There are other threat modeling 

approaches based on standards such as the Risk  Analysis  Toolkit ( based  on  ISO 

1799 ) which  generates security  polices  from  question  and  answers [15] and other 

open security tools like the Common Vulnerability Scoring System (CVSS) that is 

designed to for rating IT vulnerabilities [3]. 

4   The Neural Network Tool 

Previous researches show various ways through which neural network have been used 

in the area of security. Neural network based applications has been used successfully 

in the area of network security as intrusion detection systems, misuse detection 

systems and firewalls [19] [21] [22]. Also in the field of application security, neural 

network has been proposed to be used as virus detection system [20].  It would be 

noticed however, that these neural network based applications can only provide a 

form security after software deployment. 

Our proposed Neural Network tool is based on the abstract and match technique 

through which software flaws in a software design can be identified when an attack 

pattern is matched to the design. Using well known approaches such as DFD and 

sequence diagrams, software developers are able to abstract information about their 

software designs needed by the Neural Network tool for matching possible attack 

patterns. When potential attack patterns are matched against the design, the software 

developers are able to take the necessary steps in mitigating   the   security   flaw   

identified. Thus   software developers are able to integrate security into their software 

design during the design phase of SDLC when it is easy and cost effective to resolve 

security problems. 

One of the limitations with some of the current approaches is the difficulty of 

getting software developers to think like attackers during the threat modeling process 

as this mindset is not native to them [17]. It has been suggested that software 

developers can instead look at the attack surface of their software design and think of 

how to build defenses into their application [17]. Our proposed technique achieve this 

by associating components in the design with attacks that can be performed on them 

when possible attack patterns are matched to the software design thereby addressing 

security defenses needed to be put in place. 
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4.1   The Neural Network Architecture 

A three-layered feed-forward back-propagation neural network is used to evaluate 

scenarios from software designs and identify possible attacks in the design. The back- 

propagation neural network is a well-known type of neural network commonly used 

in pattern recognition problems [16]. A back-propagation network has been used in 

this research because of its simplicity and reasonable speed. The architecture of the 

back-propagation network is shown in the figure below. This consists of the input 

layer, the hidden layer and the output layer. Each of the hidden nodes and output 

nodes apply a tan-sigmoid transfer function (2/(1+exp(-2*n))-1) to the various 

connection weights. The weights and parameters are computed by calculating the 

error between the actual and expected output data of the neural network when the 

training data is presented to it. The error is then used to modify the weights and 

parameters to enable the neural network to a have better chance of giving a correct 

output when it is next presented with same input 

4.2   Data Collection 

Data of attack scenarios from online vulnerability databases such as CVE Details, 

Security Tracker, Secunia, Security Focus and The Open Source Vulnerability 

Database were used in this research. From the online vulnerability databases a total of 

715 attack scenarios relating to 51 regularly expressed attack patterns by Williams 

and Gegick [4] were analyzed. This consisted of 260 attack scenarios which were 

unique in terms of their impact, mode of attack, software component and actors 

involved in the attack and 455 attack scenarios which are repetition of the same type 

of exploit in different applications they have been reported in the vulnerability 

databases. The attacks were analyzed to identify the actors, goals and resources under 

attack. Once these were identified the attack attributes in Table 1 were used to 

abstract the data capturing the attack scenario for training the neural network. 

4.3   Data Encoding 

The training data samples each consist of 12 input units for the neural network. This 

corresponds to the values of the attributes abstracted from the attack scenarios.  The 

training data was generated from the attack scenarios using the attributes. For instance 

training data for the attack on webmail (CVE 2003-1192) was generated by looking at 

the online vulnerability databases to get its details on the attributes we are interested 

in. This attack corresponds to regularly expressed attack pattern 3.  Williams and 

Gegick [4] describe the attack scenario in this attack pattern as a user submitting an 

excessively long HTTP GET request to a web server, thereby causing a buffer. This 

attack pattern is represented as: 

 

 
(User)(HTTPServer)(GetMethod)(GetMethodBufferWrite)(Buffer) 

 

 



A Neural Network Based Security Tool for Analyzing Software 85 

Table 1. Sample of pre-processed training data from attack scenario 

S\N Attribute Observed data Value 
1 Attacker No Access 0 
2 Source External 1 
3 Target Buffer 9 
4 Attack Vector Long Get Request 39 
5 Attack Type Availability 5 
6 Input Validation Partial Validation 2 
7 Dependencies Authentication & Input 

Validation 
6 

8 Output 
Encoding 

None 0 
 
 

Authentication None 0 
10 Access Control URL Access 2 
11 HTTP Security Input Validation 3 
12 Error None 0 

In this example, the data generated from the attack scenario using the attribute list 

is shown in Table 1. Using the corresponding values for the attributes; the data is then 

encoded as shown in the Table 1.  The second stage of the data processing involves 

converting the value of the attributes in Table II into ASCII comma delimited format 

before it is used in training the neural network. For the expected output from the 

neural network, the data used in training network is derived from the attack pattern 

which has been identified in each of the attack scenarios. Each attack pattern is given 

a unique ID which the neural network is expected to produce as an output for each of 

the input data samples. The output data sample consists of output units corresponding 

to the attack pattern IDs. For instance, the above sample data on Webmail attack 

which corresponds to regularly expressed attack pattern 3, the neural network is 

trained to identify the expected attack pattern as 3. 

4.4   The Neural Network Training 

To train the neural network the training data set is divided into two sets. The first set 

of data is the training data sets (260 samples) that were presented to the neural 

network during training. The second set (51 Samples) is the data that were used to test 

the performance of the neural network after it had been trained. At the initial stage of 

the training, it was discovered that the neural network had too many categories to 

classify the input data into (i.e. 51 categories) because the neural network was not 

able to converge.  To overcome the problem, the training data was further divided into 

two sets. The first set contained 143 samples and the second set contained 117 

samples.  These were then used for training two neural networks. Mat lab Neural 

Network tool box is used to perform the training. The training performance is 

measured by Mean Squared Error (MSE) and the training stops when the 

generalization stops improving or when the 1000th iteration is reached. 
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4.5   Result and Discussion 

It took the system about one minute to complete the training for each the back-

propagation neural network. For the first neural network, the training stopped when 

the MSE of 0.0016138 was reached at the 26th iteration. The training of the second 

neural network stopped when the MSE of 0.00012841 was reached at the 435th 

iteration.  

To test the performance of the network, the second data sets were used to test the 

neural network. It was observed that the trained neural network gave an output as 

close as possible   to   the   anticipated   output.   The   actual   and anticipated outputs 

are compared in the Table 4. The  test samples in which the neural network gave a 

different output from   the  predicted   output   when   testing  the  network includes 

tests for attack patterns 10, 35, 39, 40 and 52. While looking into the reason 

behind this, it was seen that the data observed for these attack patterns were not much. 

With more information on these attack patterns for training the neural network, it is 

predicted that the network will give a better performance. During the study of the 

results from the neural networks, it was found that the first neural network had 96.51% 

correct results while the second neural network had 92% accuracy. The accuracy for 

both neural networks had an average of 94.1%.  Given the accuracy of the neural 

networks, it shows that neural networks can be used to assess the security in software 

designs 

 

 

Fig 2. Actual vs. Expected Output of the Neural Network 

5   Conclusion 

It cannot be overstated that the cost of fixing security flaws in software applications is 

very costly after they are deployed. The cost could be 30 times more than the cost of 

finding and fixing the problem early in the SDLC. Therefore, integrating security into 

a software design will help tremendously in saving time and money during software 

development and when the software is deployed. For instance, it is less expensive and 
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less disruptive to discover design-level vulnerabilities during the design, than during 

implementation or testing, forcing a costly redesign of pieces of the application. 

Therefore, the use of the proposed neural networks tool for analyzing software design 

for security flaws will consolidate the  efforts  of  software  developers  in  identifying  

areas  of security weakness  in  their  software  design. By fixing the security flaws in 

design before coding begins will subsequently lead to the development of more 

secured software applications. Thus, neural networks given the right information for 

its training will also contribute in equipping software developers to develop software 

more securely especially in the area of software design. 

6   Future Work 

The regularly expressed attack pattern used in training the neural network is a generic 

classification of attack patterns. Therefore,  any  unknown  attack  introduced  to  the  

neural network  will  be classified  to the closet regularly expressed attack pattern. 

However, the success of the neural network in analyzing software design for security 

flaws largely depends on the input data capturing the attributes of the software design 

introduced to it. As this requires a human endeavor, further work is required in this 

area to ensure that correct input data is retrieved for evaluation. In addition, the neural 

network needs to be thoroughly tested before it can gain acceptance as a tool for 

evaluating software design for security flaws. To further improve the performance of 

the neural network system  as  a  tool  for  evaluating  software  design,  we  are 

currently looking into the possibility of the system suggesting solutions  that  can  

help  to  prevent  the  identified  attacks. Current research on solutions to software 

design security flaws gives a good insight in this area.  Suggested solutions such as 

the use security patterns [6] and introduction of security capabilities into design in the 

SAT [12] 
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