
HAL Id: hal-01348736
https://hal.science/hal-01348736v1

Submitted on 25 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Automatic Adaptation of SOA Systems Supported by
Machine Learning

Kornel Skalkowski, Krzysztof Zieliński

To cite this version:
Kornel Skalkowski, Krzysztof Zieliński. Automatic Adaptation of SOA Systems Supported by Machine
Learning. 4th Doctoral Conference on Computing, Electrical and Industrial Systems (DoCEIS), Apr
2013, Costa de Caparica, Portugal. pp.61-68, �10.1007/978-3-642-37291-9_7�. �hal-01348736�

https://hal.science/hal-01348736v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Automatic Adaptation of SOA Systems Supported by

Machine Learning

Kornel Skałkowski
1
, Krzysztof Zieliński

1

1 AGH University of Science and Technology, Faculty of Computer Science, Electronics and

Telecommunication, Department of Computer Science, al. Mickiewicza 30,

30-059 Kraków, Poland

{skalkow, kz}@agh.edu.pl

Abstract. Recent advances in the development of information systems have led

to increased complexity and cost in terms of the required maintenance and

management. On the other hand, systems built in accordance with modern

architectural paradigms, such as Service Oriented Architecture (SOA), posses

features enabling extensive adaptation, not present in traditional systems.

Automatic adaptation mechanisms can be used to facilitate system

management. The goal of this work is to show that automatic adaptation can be

effectively implemented in SOA systems using machine learning algorithms.

The presented concept relies on a combination of clustering and reinforcement

learning algorithms. The paper discusses assumptions which are necessary to

apply machine learning algorithms to automatic adaptation of SOA systems,

and presents a machine learning-based management framework prototype.

Possible benefits and disadvantages of the presented approach are discussed and

the approach itself is validated with a representative case study.

Keywords: SOA, adaptive manager, machine learning

1 Introduction

The growing complexity of modern IT systems hinders effective administration,

resulting in increased maintenance costs. Geographical distribution of services,

dynamic workflow enactment and on-demand service selection improve the systems’

scalability and flexibility but do not foster their overall manageability. It should be

noted, however, that contemporary architectural paradigms such as Service Oriented

Architecture (SOA) [1] or Internet of Things (IoT) [2], provide sophisticated

adaptation features [3,4]. Flexibility in terms of service/sensor coupling, instant

binding or semantic message routing can be used to modify information flow between

system components during runtime, affecting processing speed. Such extensive

adaptation opportunities are characteristic of modern design approaches and can be

leveraged to solve problems associated with system management and administration

through automatic or semi-automatic adaptation.

Issues involved in the adaptation process of enterprise systems are addressed by the

well-known MAPE adaptation pattern [5], which introduces four elements

62 K. Skałkowski and K. Zieliński

(Monitoring, Analysis, Processing, Execution) necessary in every adaptation

framework. This paper presents a new approach to implementation of the Analysis

and Processing elements of the MAPE pattern based on a combination of two types of

machine learning methods. A clustering algorithm is used to provide automatic

recognition of similar system states and grouping them into subsets (called clusters),

based on information provided by the Monitoring element interface (e.g. regarding a

system load or observed bottlenecks). The goal of further processing is then to find a

mapping between the clusters and adaptation actions provided by the Execution

element interface (e.g. a service replication, routing changes or resources allocation).

These actions should be assigned to clusters in such a way that execution of actions

attributed to a cluster to which a current system state has been assigned increases the

overall system QoS (Quality of Service). In order to find a mapping which satisfies

this condition, a reinforcement learning algorithm has been devised. The paper

explains how such a combination of machine learning methods can effectively and

flexibly implement the MAPE pattern in service-based systems and discusses

assumptions which have to be met by an adaptable system in order to be applicable to

our solution. The proposed approach to MAPE is evaluated on the basis of a proof-of-

concept implementation.

The paper is organized as follows: in Section 2 the relationship between the

proposed approach and IoT architectures is discussed. Section 3 briefly presents

related approaches to MAPE implementation. In Section 4 a machine learning-based

approach to implementation of the MAPE pattern is elucidated. Section 5 shows how

the concept has been implemented in a prototype framework and which algorithms

have been chosen. Section 6 discusses evaluation results while Section 7 concludes

the paper and discusses future work.

2 Relationship to Internet of Things

Adaptation issues are widely present in various aspects of IoT systems. The vast

quantities of objects involved in such systems, huge amounts of information

produced, chaotic working environments and the need for autonomous control make

efficient and flexible adaptation a crucial part of many IoT solutions. Implementation

of the MAPE pattern in IoT architectures requires dedicated monitoring and execution

layers which can cope with such issues. Since the approach presented in this paper

does not impose any specific monitoring and management framework, it can be

applied to IoT infrastructures as well as to other manageable systems.

3 Related Work

Existing approaches to implementation of the MAPE pattern are based on rule/policy

engines, decision theory or fuzzy logic. The use of machine learning techniques for

SOA system adaptation is only partially covered in existing papers. An approach to

context-based adaptation in production systems based on data mining techniques has

been proposed in the Self-Learning project [6], which bases in part on learning and

Automatic Adaptation of SOA Systems Supported by Machine Learning 63

adapter modules. Nevertheless, recent publications released by this project do not

clearly point to any particular data mining algorithms and do not present any

evaluation results. Other existing papers focus on machine learning-based selection of

web services [7,8] and reliability assessment in SOA systems [9]. Although these

approaches can partially solve the issue of automatic management of service-based

systems, they do not constitute a complete implementation of the MAPE pattern.

4 Machine Learning-based Approach to MAPE Pattern

Implementation

Most existing machine learning algorithms operate on sets of n-dimensional real

valued vectors x є R
n
. Unsupervised learning methods, i.e. clustering algorithms,

operate directly on such sets, whereas in the case of supervised learning methods or

reinforcement learning algorithms an additional value, y, is assigned to every vector

and interpreted as the “correct answer” to it. The goal of the analysis and processing

elements of the MAPE pattern is to find out which action offered by the execution

layer should be invoked in a specific system state. To achieve this goal using machine

learning methods we have to represent system state as an n-dimensional vector, while

the action suitable for a given system state is equivalent to the “correct answer” value.

Based on these observations, the system state at point t is represented as x
(t)

 є R
n
,

whereas the set of all observed system states at various points in time (x
(t1)

, x
(t2)

, ...,

x
(tm)

) will be called the system state space X. It is important to stress that vectors x
(t)

should contain all available information about the system which should be taken into

account during management, including the working context and current configuration.

Representing the state of a system in the form of a vector of real values may seem

somewhat constraining, yet even those parameters which are expressed in non-

numeric form (e.g. strings or enumerations) can usually be converted to numeric

values by applying appropriate mappings. Since the main goal of our approach is to

manage a complex system in a way which increases its overall QoS level, the system

state vectors are assumed to reflect the QoS experienced by users in some way.

Certain system parameters directly reflect QoS (e.g. processing time), whereas in

more sophisticated cases the QoS level can be calculated with evaluation function

e(x).

The management interface which constitutes the execution element of the MAPE

pattern, is assumed to be represented as set of values: A={a0, a1, .., ak}, consisting of

the available adaptation actions. In order to avoid contradictions and discrepancies

during learning we have to assume the action set A meets several conditions. First of

all, there are no duplicate actions in the set, since most learning algorithms use

injective functions to produce the “answer value” ai. Furthermore, we assume that

every action ai can be repeated any number of times and the actions are stateless (i.e.

no action has a different effect when invoked several times in the same system state).

Finally, it is necessary for the actions to be independent of each other, meaning that

no action should require prior execution of any other action. If some actions have to

be invoked in a specific sequence, they should be represented as a single action.

These assumptions are not challenging and every well designed management

64 K. Skałkowski and K. Zieliński

framework usually satisfies them all. In order to make actions comparable to “correct

answer” values returned by learning algorithms, the actions should be bijectively

mapped to numbers, e.g. simply enumerated. In order to facilitate implementation,

both sets (X and A) are assumed to be fixed for each given adaptable system.

Given the system state and management interface we can precisely define the

overall framework goal. Roughly speaking, the framework should perform actions

from the space A (e.g. service launch or migration) so that the adaptable system

provides the best possible QoS level for end users. From a mathematical view point,

this problem can be divided into two subproblems. The first subproblem is clustering

the system state space X into a set of non-empty sets {C1, ..., Cl} which should be

characterized by the maximum possible homogeneity of elements within each set (e.g.

lowest sum of distances between the elements of Ci) and the maximum possible

diversity between sets (e.g. greatest sum of distances between the {Ci} sets’

centroids). The Ci sets can evolve during system runtime, reflecting changes in the

system and its working environment. The second subproblem is mapping the

clustered system state space {Ci} onto actions: the framework has to find a mapping

∀i=1, ..., l F: Ci→(aj: j=0, ..., k(Ci)) such that the execution of actions returned by the

mapping F when the system state belongs to the cluster Ci causes ∑i e(x
(ti)

) to assume

its lowest possible value. The function e(x
(t)

) is the overall system QoS evaluation

metric calculated using state vectors x
(t)

 whose values are inversely proportional to the

condition of the system. Applying F yields a sequence of actions with length k(Ci),

sorted from the most appropriate to the least appropriate one (for a given system state)

– thus we can say that mapping F reflects the adaptable system model. The first

subproblem may seem unnecessary as one might claim that actions could be assigned

directly to system states x
(t)

. In reality, however, this assumption is only satisfied by

very small systems, where X can be modeled e.g. as a small finite state machine. In

most real systems – especially complex enterprise SOA solutions – this assumption is

no longer valid. In such cases the space X is usually infinite and multidimensional, so

that both elements are essential in order to accomplish the framework objectives.

The first task is a well-known clustering problem, the only major issue being that

the clustered space X is not known a priori, but is instead constructed during runtime

by aggregating x
(t)

 vectors. This issue can be solved using online clustering methods

which are designed to cluster data streams. In turn, the second task leads us to the area

of reinforcement learning algorithms which are used to teach computer systems how

to act in different situations in order to achieve a given goal. The learning mechanism

in such algorithms is based on rewards, usually represented as a single real number. In

our case the situations are represented as state vectors x
(ti)

 at different points in time ti,

whereas the reward constitutes the system evaluation metric e(x). The reinforcement

learning algorithm returns a function, hθ(x), called the hypothesis, which provides

“correct answer” values for different vectors x. In our approach this function is

equivalent to mapping F – the returned sequence of actions comprises set A, which is

calculated on the basis of differences between actions from A and the hθ(x) function

results. The final necessary element is normalization of state vectors x
(t)

. Since most

machine learning algorithms require input vectors to have all elements normalized to

a common range of values, a normalization function has to be applied to all state

vectors prior to clustering. The approach is depicted in Fig. 1.

Automatic Adaptation of SOA Systems Supported by Machine Learning 65

Fig. 1. The machine learning-based approach to the MAPE pattern.

The bottom part of Fig. 1 presents an SOA system subjected to adaptation. Above,

four elements of the MAPE pattern are shown. The monitoring and management

interfaces are assumed to be provided by external frameworks which can be tuned to a

specific adaptable system (provided that they meet the assumptions previously stated).

The monitoring interface returns vectors x
(t)

 composed of real values representing

system states. The management interface exposes A – the set of management actions

available in the system. The analysis layer consists of two services: the normalizer

service, responsible for mapping state vectors to an n-dimensional [0,1] hypercube,

and the clustering service which, based on normalized |x|
(t)

 vectors, extracts clusters

{Ci} representing groups of similar system states. Each cluster represents a pool of

system states which significantly diverge from all other states. By assigning vector

|x|
(t)

 to an appropriate cluster, the framework can check whether the adaptable system

currently belongs to the best possible cluster. This information, along with the current

QoS evaluation metric derivative ∂e(x)/∂t calculated as a differential approximation

from several successive observations of e(x), is used by the processing layer to select

actions. When sgn(∂e(x)/∂t) < 0 no management action is performed because even if

the system state is not in the best possible cluster, it is improving and this trend should

be maintained. If, however, sgn(∂e(x)/∂t) ≥ 0 and the system state does not belong to

the best cluster, execution of a management action is necessary. In order to do so, a

sequence should be returned by the reinforcement learning algorithm. A third case

should be distinguished, with sgn(∂e(x)/∂t) ≥ 0 and the system already assigned to the

best cluster. In this case we may not know why the system condition is deteriorating –

whether due to brief fluctuations (e.g. caused by a slightly higher load) or more

permanent reasons. Thus, a prediction algorithm could be applied to estimate the

likely evolution of the system state. Every executed action is evaluated, and, based on

the evaluation result, the reinforcement learning algorithm’s hypothesis function hθ(x)

is up- or downregulated in order to improve future decisions. Evaluation bases on

observation of system state changes reflected in the QoS evaluation metric derivative

∂e(x)/∂t over a period of time. If the system state remains poor and shows no signs of

improvement (sgn(∂e(x)/∂t) < 0), another action from the list returned by the

66 K. Skałkowski and K. Zieliński

algorithm is executed and evaluated. This process repeats until the system state begins

to improve.

The key advantage of the proposed approach is its independence of any specific

system model. In contrast to other approaches, e.g. based on policy or rule engines, it

does not require any initial configuration or specifications of the adaptable system’s

model. Moreover, online clustering and reinforcement learning algorithms can

dynamically adapt to changes in the model without reconfigurations or restarts. On

the other hand, lack of initial knowledge about the managed system means that many

incorrect actions can be taken during the startup phase, before the framework learns

how to appropriately manage a given system.

5 Approach Implementation and Applied Algorithms

A prototype implementation of the approach described in the previous section is

currently being developed. Its most recent version has been implemented as a set of

OSGi [10] services providing the above mentioned features. The implementation

consists of four services: the normalization service (responsible for state vector

normalization), the clustering service (responsible for clustering), the strategy service

(responsible for action selection and evaluation) and the evaluation service (providing

the e(x) function values).

Since the aim of the implementation is to validate the proposed concept rather than

provide sophisticated functionality, the prototype relies on simple machine learning

algorithms. Specifically, the clustering service implements a standard k-means

algorithm to cluster state vectors collected over a period of time. In the future this

algorithm will be swapped for an online clustering algorithm based on the PCA

method [11]. As the reinforcement learning algorithm, a simple adaptive gradient

descent implementation with a polynomial hypothesis function has been used. The

main disadvantage of this algorithm is slow convergence – in the future we intend to

apply a more efficient reinforcement learning algorithm.

6 Prototype Evaluation Results – Preliminary Study

The objective of evaluation of the prototype framework was to check whether it

properly accomplishes its goals, i.e. invokes appropriate management actions when

the overall system QoS level decreases, and to verify if the learning method is

appropriate, i.e. whether the hypothesis function properly converges regardless of its

initial coefficients. Both goals were evaluated on a load balancing case study in an

SOA system. The simulated system consisted of three services. The first service had

to invoke either the second or the third service in order to accomplish its functionality.

By default, the first service used only the second service – thus the third service

remained idle. The response time of the second service was highly dependent on the

number of simultaneous invocations. As the number of concurrent requests grew, the

service’s response time increased noticeably, affecting the overall system QoS. In

such cases, the first service was expected to begin using the third service in order to

Automatic Adaptation of SOA Systems Supported by Machine Learning 67

balance load and avoid a decrease in the overall QoS. The simulated services have

been implemented using the OSGi technology and deployed in an OSGi monitoring

and management framework provided by the AS3 Studio [12] toolkit. The monitoring

interface was configured to monitor two parameters of the system: average processing

time (APT) and invocation rate (IR). These two parameters were passed to the

framework prototype as a single vector x
(t)

 = [APT, IR]. The evaluation function was

calculated as e(x) = APT + IR/2. The management interface exposed two actions:

“do-nothing”, whose invocation did not affect the simulated system in any way, and

“balance-load”, which activated load balancing in the first service for a period of

time. As a result of the second action, the first service would begin dispatching its

requests to both the second and the third service. The evaluation was performed on a

computer with an Intel Core 2 Duo 2.80 Ghz CPU and 4 gigabytes of RAM. The

hypothesis function was a simple linear polynomial of two variables hθ(x
(t)

) = θ0+

θ1x1+ θ2x2, where x1 = APT and x2 = IR. Tab. 1 presents evaluation results from three

test runs.

Table 1. Evaluation results of the prototype framework.

Processing

time speedup

Initial hθ(x) Final hθ(x) Convergence

time

Invalid

actions

24% 0.64+0.69x1+0.57x2 0.68+0.71x1+0.59x2 0:20 [h] 2

21% 0.23-0.44x1+0.01x2 1.06+0.07x1-0.21x2 2:00 [h] 7

19% -0.55-0.23x1-0.03x2 1.12+0.13x1-0.53x2 2:30 [h] 21

Evaluation results confirm that the proposed approach to the MAPE pattern

implementation is viable and properly accomplishes the stated goals. Processing time

speedup was in the 19% - 25% range, depending on initial coefficients of the

hypothesis function. The greatest speedup was observed for near-optimal initial

hypothesis coefficients, because in this case the framework almost always executed

the “balance-load” action when necessary. In other cases the framework executed a

greater number of “do-nothing” actions, before it learned that this action was

inappropriate for a high system load state. Convergence time was directly dependent

on initial hypothesis coefficients. Better coefficients improved the algorithm’s

convergence; however in all cases convergence was eventually attained (although

with differing final hypothesis coefficients).

7 Conclusions and Further Work

The proof-of-concept evaluation of the approach proposed in the paper shows that

machine learning methods can be applied to implementation of the MAPE pattern.

Our combination of clustering and reinforcement learning algorithms properly

identifies disruptions in system QoS and invokes appropriate management actions.

The main advantage of the proposed approach is its independence of any specific

system – the framework does not require any a priori knowledge about the adaptable

system. Flexibility offered by online clustering and reinforcement learning methods

means that the approach can be applied to SOA system adaptation as well as to IoT

68 K. Skałkowski and K. Zieliński

system management. The only evident disadvantage is its potentially long

convergence time.

Further development will focus on more advanced algorithms for online data

clustering and selection of management actions. The framework effectiveness and

scalability will also be evaluated on much more complex case studies and real-world

systems, e.g. a telemedicine platform, where maintaining a certain level of QoS is

crucial. We also intend to improve the efficiency of our approach by implementing a

system state prediction algorithm which could invoke management actions in order to

prevent QoS disruptions.

Acknowledgments. The research presented in this paper was partially supported by

the European Regional Development Fund programs no. POIG.01.03.01-00-008/08

and UDA-POKL.04.01.01-00-367/08-00.

References

1. Arsanjani, A., Liang-Jie Zhang, Ellis, M., Allam, A., Channabasavaiah, K.: S3: A

Service-Oriented Reference Architecture, IT Professional, vol.9, no.3, pp.10-17, May-

June 2007

2. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: A survey, The International

Journal of Computer and Telecommunications Networking, vol.54, no.15, pp.2787-2805,

October 2010

3. Zieliński, K., Szydło, T., Szymacha, R., Kosiński, J., Kosińska, J., Jarząb, M.: Adaptive

SOA Solution Stack, IEEE Transactions on Services Computing, vol.5, no.2, pp.149-163,

April-June 2012

4. André, F., Daubert, E., Gauvrit, G.: Towards a Generic Context-Aware Framework for

Self-Adaptation of Service-Oriented Architectures, iciw, pp.309-314, 2010 Fifth

International Conference on Internet and Web Applications and Services, 2010

5. Kephart, J. O. and Chess, D. M.: The vision of autonomic computing, Computer, vol.36,

no.1, pp.41-50, 2003

6. Stokic, D., Scholze, S., Barata, J.: Self-learning embedded services for integration of

complex, flexible production systems, IECON 2011 - 37th Annual Conference on IEEE

Industrial Electronics Society , ISSN: 1553-572X, pp.415-420, 7-10 Nov. 2011

7. Al-Masri, E., Mahmoud, Q.H.: Discovering the best web service: A neural network-based

solution, SMC 2009. IEEE International Conference on Systems, Man and Cybernetics,

pp.4250-4255, 11-14 Oct. 2009

8. Ramakanta Mohanty, V. Ravi, M.R. Patra: Web-services classification using intelligent

techniques, Expert Sys-tems with Applications, vol. 37, no. 7, July 2010, pp.5484-5490,

ISSN 0957-4174

9. Challagulla, V.U.B.: A Machine Learning-Based Reliability Assessment Model for

Critical Software Systems, Computer Software and Applications Conference, 2007.

COMPSAC 2007. 31st Annual International, vol.1, pp.79-86, 24-27 July 2007

10. The OSGi Alliance: OSGi Service Platform Core Specification, Release 4.1,

http://www.osgi.org/Specifications, 2007

11. McWilliams, B., Montana, G.: Predictive Subspace Clustering, Machine Learning and

Applications, Fourth In-ternational Conference on Machine Learning and Applications,

pp.247-252, 2011 10th International Conference on Machine Learning and Applications

and Workshops, 2011

12. Żmuda, D., Psiuk, M., Zieliński, K.: Dynamic monitoring framework for the SOA

execution environment, Procedia CS, vol.1, no.1, pp.125-133, 2010.

