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Abstract. Recent advances in the development of information systems have led 

to increased complexity and cost in terms of the required maintenance and 

management. On the other hand, systems built in accordance with modern 

architectural paradigms, such as Service Oriented Architecture (SOA), posses 

features enabling extensive adaptation, not present in traditional systems. 

Automatic adaptation mechanisms can be used to facilitate system 

management. The goal of this work is to show that automatic adaptation can be 

effectively implemented in SOA systems using machine learning algorithms. 

The presented concept relies on a combination of clustering and reinforcement 

learning algorithms. The paper discusses assumptions which are necessary to 

apply machine learning algorithms to automatic adaptation of SOA systems, 

and presents a machine learning-based management framework prototype. 

Possible benefits and disadvantages of the presented approach are discussed and 

the approach itself is validated with a representative case study. 
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1   Introduction 

The growing complexity of modern IT systems hinders effective administration, 

resulting in increased maintenance costs. Geographical distribution of services, 

dynamic workflow enactment and on-demand service selection improve the systems’ 

scalability and flexibility but do not foster their overall manageability. It should be 

noted, however, that contemporary architectural paradigms such as Service Oriented 

Architecture (SOA) [1] or Internet of Things (IoT) [2], provide sophisticated 

adaptation features [3,4]. Flexibility in terms of service/sensor coupling, instant 

binding or semantic message routing can be used to modify information flow between 

system components during runtime, affecting processing speed. Such extensive 

adaptation opportunities are characteristic of modern design approaches and can be 

leveraged to solve problems associated with system management and administration 

through automatic or semi-automatic adaptation. 

Issues involved in the adaptation process of enterprise systems are addressed by the 

well-known MAPE adaptation pattern [5], which introduces four elements 
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(Monitoring, Analysis, Processing, Execution) necessary in every adaptation 

framework. This paper presents a new approach to implementation of the Analysis 

and Processing elements of the MAPE pattern based on a combination of two types of 

machine learning methods. A clustering algorithm is used to provide automatic 

recognition of similar system states and grouping them into subsets (called clusters), 

based on information provided by the Monitoring element interface (e.g. regarding a 

system load or observed bottlenecks). The goal of further processing is then to find a 

mapping between the clusters and adaptation actions provided by the Execution 

element interface (e.g. a service replication, routing changes or resources allocation). 

These actions should be assigned to clusters in such a way that execution of actions 

attributed to a cluster to which a current system state has been assigned increases the 

overall system QoS (Quality of Service). In order to find a mapping which satisfies 

this condition, a reinforcement learning algorithm has been devised. The paper 

explains how such a combination of machine learning methods can effectively and 

flexibly implement the MAPE pattern in service-based systems and discusses 

assumptions which have to be met by an adaptable system in order to be applicable to 

our solution. The proposed approach to MAPE is evaluated on the basis of a proof-of-

concept implementation. 

The paper is organized as follows: in Section 2 the relationship between the 

proposed approach and IoT architectures is discussed. Section 3 briefly presents 

related approaches to MAPE implementation. In Section 4 a machine learning-based 

approach to implementation of the MAPE pattern is elucidated. Section 5 shows how 

the concept has been implemented in a prototype framework and which algorithms 

have been chosen. Section 6 discusses evaluation results while Section 7 concludes 

the paper and discusses future work. 

2   Relationship to Internet of Things 

Adaptation issues are widely present in various aspects of IoT systems. The vast 

quantities of objects involved in such systems, huge amounts of information 

produced, chaotic working environments and the need for autonomous control make 

efficient and flexible adaptation a crucial part of many IoT solutions. Implementation 

of the MAPE pattern in IoT architectures requires dedicated monitoring and execution 

layers which can cope with such issues. Since the approach presented in this paper 

does not impose any specific monitoring and management framework, it can be 

applied to IoT infrastructures as well as to other manageable systems. 

3   Related Work 

Existing approaches to implementation of the MAPE pattern are based on rule/policy 

engines, decision theory or fuzzy logic. The use of machine learning techniques for 

SOA system adaptation is only partially covered in existing papers. An approach to 

context-based adaptation in production systems based on data mining techniques has 

been proposed in the Self-Learning project [6], which bases in part on learning and 
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adapter modules. Nevertheless, recent publications released by this project do not 

clearly point to any particular data mining algorithms and do not present any 

evaluation results. Other existing papers focus on machine learning-based selection of 

web services [7,8] and reliability assessment in SOA systems [9]. Although these 

approaches can partially solve the issue of automatic management of service-based 

systems, they do not constitute a complete implementation of the MAPE pattern. 

 

4 Machine Learning-based Approach to MAPE Pattern 

Implementation 

Most existing machine learning algorithms operate on sets of n-dimensional real 

valued vectors x є R
n
. Unsupervised learning methods, i.e. clustering algorithms, 

operate directly on such sets, whereas in the case of supervised learning methods or 

reinforcement learning algorithms an additional value, y, is assigned to every vector 

and interpreted as the “correct answer” to it. The goal of the analysis and processing 

elements of the MAPE pattern is to find out which action offered by the execution 

layer should be invoked in a specific system state. To achieve this goal using machine 

learning methods we have to represent system state as an n-dimensional vector, while 

the action suitable for a given system state is equivalent to the “correct answer” value. 

Based on these observations, the system state at point t is represented as x
(t)

 є R
n
, 

whereas the set of all observed system states at various points in time (x
(t1)

, x
(t2)

, ..., 

x
(tm)

) will be called the system state space X. It is important to stress that vectors x
(t)

 

should contain all available information about the system which should be taken into 

account during management, including the working context and current configuration. 

Representing the state of a system in the form of a vector of real values may seem 

somewhat constraining, yet even those parameters which are expressed in non-

numeric form (e.g. strings or enumerations) can usually be converted to numeric 

values by applying appropriate mappings. Since the main goal of our approach is to 

manage a complex system in a way which increases its overall QoS level, the system 

state vectors are assumed to reflect the QoS experienced by users in some way. 

Certain system parameters directly reflect QoS (e.g. processing time), whereas in 

more sophisticated cases the QoS level can be calculated with evaluation function 

e(x). 

The management interface which constitutes the execution element of the MAPE 

pattern, is assumed to be represented as set of values: A={a0, a1, .., ak}, consisting of 

the available adaptation actions. In order to avoid contradictions and discrepancies 

during learning we have to assume the action set A meets several conditions. First of 

all, there are no duplicate actions in the set, since most learning algorithms use 

injective functions to produce the “answer value” ai. Furthermore, we assume that 

every action ai can be repeated any number of times and the actions are stateless (i.e. 

no action has a different effect when invoked several times in the same system state). 

Finally, it is necessary for the actions to be independent of each other, meaning that 

no action should require prior execution of any other action. If some actions have to 

be invoked in a specific sequence, they should be represented as a single action. 

These assumptions are not challenging and every well designed management 
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framework usually satisfies them all. In order to make actions comparable to “correct 

answer” values returned by learning algorithms, the actions should be bijectively 

mapped to numbers, e.g. simply enumerated. In order to facilitate implementation, 

both sets (X and A) are assumed to be fixed for each given adaptable system. 

Given the system state and management interface we can precisely define the 

overall framework goal. Roughly speaking, the framework should perform actions 

from the space A (e.g. service launch or migration) so that the adaptable system 

provides the best possible QoS level for end users. From a mathematical view point, 

this problem can be divided into two subproblems. The first subproblem is clustering 

the system state space X into a set of non-empty sets {C1, ..., Cl} which should be 

characterized by the maximum possible homogeneity of elements within each set (e.g. 

lowest sum of distances between the elements of Ci) and the maximum possible 

diversity between sets (e.g. greatest sum of distances between the {Ci} sets’ 

centroids). The Ci sets can evolve during system runtime, reflecting changes in the 

system and its working environment. The second subproblem is mapping the 

clustered system state space {Ci} onto actions: the framework has to find a mapping 

∀i=1, ..., l F: Ci→(aj: j=0, ..., k(Ci)) such that the execution of actions returned by the 

mapping F when the system state belongs to the cluster Ci causes ∑i e(x
(ti)

) to assume 

its lowest possible value. The function e(x
(t)

) is the overall system QoS evaluation 

metric calculated using state vectors x
(t)

 whose values are inversely proportional to the 

condition of the system. Applying F yields a sequence of actions with length k(Ci), 

sorted from the most appropriate to the least appropriate one (for a given system state) 

– thus we can say that mapping F reflects the adaptable system model. The first 

subproblem may seem unnecessary as one might claim that actions could be assigned 

directly to system states x
(t)

. In reality, however, this assumption is only satisfied by 

very small systems, where X can be modeled e.g. as a small finite state machine. In 

most real systems – especially complex enterprise SOA solutions – this assumption is 

no longer valid. In such cases the space X is usually infinite and multidimensional, so 

that both elements are essential in order to accomplish the framework objectives. 

The first task is a well-known clustering problem, the only major issue being that 

the clustered space X is not known a priori, but is instead constructed during runtime 

by aggregating x
(t)

 vectors. This issue can be solved using online clustering methods 

which are designed to cluster data streams. In turn, the second task leads us to the area 

of reinforcement learning algorithms which are used to teach computer systems how 

to act in different situations in order to achieve a given goal. The learning mechanism 

in such algorithms is based on rewards, usually represented as a single real number. In 

our case the situations are represented as state vectors x
(ti)

 at different points in time ti, 

whereas the reward constitutes the system evaluation metric e(x). The reinforcement 

learning algorithm returns a function, hθ(x), called the hypothesis, which provides 

“correct answer” values for different vectors x. In our approach this function is 

equivalent to mapping F – the returned sequence of actions comprises set A, which is 

calculated on the basis of differences between actions from A and the hθ(x) function 

results. The final necessary element is normalization of state vectors x
(t)

. Since most 

machine learning algorithms require input vectors to have all elements normalized to 

a common range of values, a normalization function has to be applied to all state 

vectors prior to clustering. The approach is depicted in Fig. 1. 
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Fig. 1. The machine learning-based approach to the MAPE pattern. 

The bottom part of Fig. 1 presents an SOA system subjected to adaptation. Above, 

four elements of the MAPE pattern are shown. The monitoring and management 

interfaces are assumed to be provided by external frameworks which can be tuned to a 

specific adaptable system (provided that they meet the assumptions previously stated). 

The monitoring interface returns vectors x
(t)

 composed of real values representing 

system states. The management interface exposes A – the set of management actions 

available in the system. The analysis layer consists of two services: the normalizer 

service, responsible for mapping state vectors to an n-dimensional [0,1] hypercube, 

and the clustering service which, based on normalized |x|
(t)

 vectors, extracts clusters 

{Ci} representing groups of similar system states. Each cluster represents a pool of 

system states which significantly diverge from all other states. By assigning vector 

|x|
(t)

 to an appropriate cluster, the framework can check whether the adaptable system 

currently belongs to the best possible cluster. This information, along with the current 

QoS evaluation metric derivative ∂e(x)/∂t calculated as a differential approximation 

from several successive observations of e(x), is used by the processing layer to select 

actions. When sgn(∂e(x)/∂t) < 0 no management action is performed because even if 

the system state is not in the best possible cluster, it is improving and this trend should 

be maintained. If, however, sgn(∂e(x)/∂t) ≥ 0 and the system state does not belong to 

the best cluster, execution of a management action is necessary. In order to do so, a 

sequence should be returned by the reinforcement learning algorithm. A third case 

should be distinguished, with sgn(∂e(x)/∂t) ≥ 0  and the system already assigned to the 

best cluster. In this case we may not know why the system condition is deteriorating – 

whether due to brief fluctuations (e.g. caused by a slightly higher load) or more 

permanent reasons. Thus, a prediction algorithm could be applied to estimate the 

likely evolution of the system state. Every executed action is evaluated, and, based on 

the evaluation result, the reinforcement learning algorithm’s hypothesis function hθ(x) 

is up- or downregulated in order to improve future decisions. Evaluation bases on 

observation of system state changes reflected in the QoS evaluation metric derivative 

∂e(x)/∂t over a period of time. If the system state remains poor and shows no signs of 

improvement (sgn(∂e(x)/∂t) < 0), another action from the list returned by the 
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algorithm is executed and evaluated. This process repeats until the system state begins 

to improve. 

The key advantage of the proposed approach is its independence of any specific 

system model. In contrast to other approaches, e.g. based on policy or rule engines, it 

does not require any initial configuration or specifications of the adaptable system’s 

model. Moreover, online clustering and reinforcement learning algorithms can 

dynamically adapt to changes in the model without reconfigurations or restarts. On 

the other hand, lack of initial knowledge about the managed system means that many 

incorrect actions can be taken during the startup phase, before the framework learns 

how to appropriately manage a given system. 

5   Approach Implementation and Applied Algorithms 

A prototype implementation of the approach described in the previous section is 

currently being developed. Its most recent version has been implemented as a set of 

OSGi [10] services providing the above mentioned features. The implementation 

consists of four services: the normalization service (responsible for state vector 

normalization), the clustering service (responsible for clustering), the strategy service 

(responsible for action selection and evaluation) and the evaluation service (providing 

the e(x) function values). 

Since the aim of the implementation is to validate the proposed concept rather than 

provide sophisticated functionality, the prototype relies on simple machine learning 

algorithms. Specifically, the clustering service implements a standard k-means 

algorithm to cluster state vectors collected over a period of time. In the future this 

algorithm will be swapped for an online clustering algorithm based on the PCA 

method [11]. As the reinforcement learning algorithm, a simple adaptive gradient 

descent implementation with a polynomial hypothesis function has been used. The 

main disadvantage of this algorithm is slow convergence – in the future we intend to 

apply a more efficient reinforcement learning algorithm. 

6   Prototype Evaluation Results – Preliminary Study 

The objective of evaluation of the prototype framework was to check whether it 

properly accomplishes its goals, i.e. invokes appropriate management actions when 

the overall system QoS level decreases, and to verify if the learning method is 

appropriate, i.e. whether the hypothesis function properly converges regardless of its 

initial coefficients. Both goals were evaluated on a load balancing case study in an 

SOA system. The simulated system consisted of three services. The first service had 

to invoke either the second or the third service in order to accomplish its functionality. 

By default, the first service used only the second service – thus the third service 

remained idle. The response time of the second service was highly dependent on the 

number of simultaneous invocations. As the number of concurrent requests grew, the 

service’s response time increased noticeably, affecting the overall system QoS. In 

such cases, the first service was expected to begin using the third service in order to 
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balance load and avoid a decrease in the overall QoS. The simulated services have 

been implemented using the OSGi technology and deployed in an OSGi monitoring 

and management framework provided by the AS3 Studio [12] toolkit. The monitoring 

interface was configured to monitor two parameters of the system: average processing 

time (APT) and invocation rate (IR). These two parameters were passed to the 

framework prototype as a single vector x
(t)

 = [APT, IR]. The evaluation function was 

calculated as e(x) = APT + IR/2. The management interface exposed two actions: 

“do-nothing”, whose invocation did not affect the simulated system in any way, and 

“balance-load”, which activated load balancing in the first service for a period of 

time. As a result of the second action, the first service would begin dispatching its 

requests to both the second and the third service. The evaluation was performed on a 

computer with an Intel Core 2 Duo 2.80 Ghz CPU and 4 gigabytes of RAM. The 

hypothesis function was a simple linear polynomial of two variables hθ(x
(t)

) = θ0+ 

θ1x1+ θ2x2, where x1 = APT and x2 = IR. Tab. 1 presents evaluation results from three 

test runs. 
 

Table 1.  Evaluation results of the prototype framework. 

Processing 

time speedup 

Initial hθ(x) Final hθ(x) Convergence 

time 

Invalid 

actions 

24% 0.64+0.69x1+0.57x2 0.68+0.71x1+0.59x2 0:20 [h] 2 

21% 0.23-0.44x1+0.01x2 1.06+0.07x1-0.21x2 2:00 [h] 7 

19% -0.55-0.23x1-0.03x2 1.12+0.13x1-0.53x2 2:30 [h] 21 
 

Evaluation results confirm that the proposed approach to the MAPE pattern 

implementation is viable and properly accomplishes the stated goals. Processing time 

speedup was in the 19% - 25% range, depending on initial coefficients of the 

hypothesis function. The greatest speedup was observed for near-optimal initial 

hypothesis coefficients, because in this case the framework almost always executed 

the “balance-load” action when necessary. In other cases the framework executed a 

greater number of “do-nothing” actions, before it learned that this action was 

inappropriate for a high system load state. Convergence time was directly dependent 

on initial hypothesis coefficients. Better coefficients improved the algorithm’s 

convergence; however in all cases convergence was eventually attained (although 

with differing final hypothesis coefficients). 

7   Conclusions and Further Work 

The proof-of-concept evaluation of the approach proposed in the paper shows that 

machine learning methods can be applied to implementation of the MAPE pattern. 

Our combination of clustering and reinforcement learning algorithms properly 

identifies disruptions in system QoS and invokes appropriate management actions. 

The main advantage of the proposed approach is its independence of any specific 

system – the framework does not require any a priori knowledge about the adaptable 

system. Flexibility offered by online clustering and reinforcement learning methods 

means that the approach can be applied to SOA system adaptation as well as to IoT 
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system management. The only evident disadvantage is its potentially long 

convergence time. 

Further development will focus on more advanced algorithms for online data 

clustering and selection of management actions. The framework effectiveness and 

scalability will also be evaluated on much more complex case studies and real-world 

systems, e.g. a telemedicine platform, where maintaining a certain level of QoS is 

crucial. We also intend to improve the efficiency of our approach by implementing a 

system state prediction algorithm which could invoke management actions in order to 

prevent QoS disruptions. 
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