
HAL Id: hal-01348687
https://hal.science/hal-01348687v1

Submitted on 13 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cost Function based Event Triggered Model Predictive
Controllers - Application to Big Data Cloud Services
Sophie Cerf, Mihaly Berekmeri, Bogdan Robu, Nicolas Marchand, Sara

Bouchenak

To cite this version:
Sophie Cerf, Mihaly Berekmeri, Bogdan Robu, Nicolas Marchand, Sara Bouchenak. Cost Function
based Event Triggered Model Predictive Controllers - Application to Big Data Cloud Services. CDC
2016 - 55th IEEE Conference on Decision and Control, Dec 2016, Las Vegas, NV, United States.
�hal-01348687�

https://hal.science/hal-01348687v1
https://hal.archives-ouvertes.fr

Cost Function based Event Triggered Model Predictive Controllers
Application to Big Data Cloud Services

Sophie Cerf1, Mihaly Berekmeri1, Bogdan Robu1, Nicolas Marchand1 and Sara Bouchenak2

Abstract— High rate cluster reconfigurations is a costly issue
in Big Data Cloud services. Current control solutions manage
to scale the cluster according to the workload, however they
do not try to minimize the number of system reconfigura-
tions. Event-based control is known to reduce the number
of control updates typically by waiting for the system states
to degrade below a given threshold before reacting. However,
computer science systems often have exogenous inputs (such
as clients connections) with delayed impacts that can enable
to anticipate states degradation. In this paper, a novel event-
triggered approach is proposed. This triggering mechanism
relies on a Model Predictive Controller and is defined upon
the value of the optimal cost function instead of the state or
output error. This controller reduces the number of control
changes, in the normal operation mode, through constraints in
the MPC formulation but also assures a very reactive behavior
to changes of exogenous inputs. This novel control approach
is evaluated using a model validated on a real Big Data
system. The controller efficiently scales the cluster according
to specifications, meanwhile reducing its reconfigurations.

I. INTRODUCTION
The dynamic management of the size of Big Data Cloud

services clusters is a primary issue. Clusters that are too large
have high monetary and energetic costs while too small ones
bring poor performance, often resulting in financial and com-
mercial penalties [15]. Moreover, a high frequency of cluster
reconfigurations requires intensive usage of communication
channels, implies additional costs and degrades performances
in case of bottlenecks. From the point of view of the low-scale
user, the example of Amazon EC2 [4] public Cloud where one
can rent resources by the hour is a relevant example where
scaling up and down the cluster too often is not beneficial.

Solutions have been proposed to automatically scale the
cluster, most of them are heuristic ones based threshold crossing
by a relevant metric (request rate, CPU utilization, response
time) [2], [26]. Amazon Auto Scaler [4] is perhaps the most
popular implementation of such an approach for public Clouds,
it provides the basic mechanism for reactive controllers but its
configuration is based on best-effort policies. More advanced
reactive techniques have also emerged which use queuing the-
ory to decide capacity requirements [16]. Predictive methods,

1Sophie Cerf, Mihaly Berekmeri, Bogdan Robu and Nicolas
Marchand are with Univ. Grenoble-Alpes, CNRS, Gipsa-lab, 11 rue
des Mathématiques, BP46, 38402 Saint Martin d’Hères Cedex, France
(sophie.cerf,mihaly.berekmeri,bogdan.robu,nicolas.marchand)
@gipsa-lab.fr

2 Sara Bouchenak is with LIRIS, UMR 5205, INSA de Lyon, France
sara.bouchenak@insa-lyon.fr

This work has been partially supported by the LabEx PERSYVAL-Lab
(ANR-11-LABX-0025-01) funded by the French program Investissement
d’Avenir.

This work has been supported, in part, by the European FP7 research
project AMADEOS Grant Agreement 610535 on Systems of Systems.

that foretell future disturbance behavior and adapt the scaling
of the cluster accordingly, have also been considered. They
are based on machine learning [24], Markov and Fast Fourier
Transforms [17] or use wavelets to provide predictions [27].
Solutions which combine reactive and predictive actions using
control theory have also been developed, see [3] or [8] where a
PI controller and a feedforward action are used. However, none
of the previous solutions consider the cluster reconfiguration
rate. This case is an emblematic example of the control problem
of systems with costly reconfigurations that one can find for
instance in computer science or robotics.

In this paper we propose event-based control techniques to
reduce the number of reconfigurations. All the above mentioned
control solutions are time-based, hence based on a periodic
computation of the control law regardless if it is useful or not.
The use of event mechanisms makes us hope for a reduction in
the use of resources [6], [13] without degrading performances
[21] and with stability and robustness guarantees [23].

However, all the now numerous event-based control strate-
gies in the literature are focused on stability and performance
guaranties. Those researches are motivated by the communica-
tion or computation reduction in networked controlled systems,
which is a different objective from reducing the number of
reconfigurations while guaranteeing acceptable performance
levels.

Today’s triggering strategies are based on level-crossing by
the measurement error (see for instance [5], [13]) or more
generally by some Lyapunov function (see for instance [30])
or on the vanishing of an event-function related to a Control
Lyapunov Function (see for instance [23]). In all cases, the
decision to update or not the control law usually does not use a
prediction of what will happen in the future.

Predictive methods that consider explicitly the future evolu-
tion of the current state are very encouraging, but until now few
methods of this type have been developed. [14] is an example
of this type where the prediction is based on thresholds crossing
around the desired states. However, deciding the triggering
based on thresholds might not be the best solution in all cases.
For instance, an acceptable state at present time but which leads
to an undesirable behavior in the future can be detected and
then handled by the predictive controller straight away, thus
improving performance. Conversely, an undesired behavior in
the present time but which leads to a stable situation in the
future does not need to be taken care of, thus leading to less
events and reconfigurations.

Furthermore, when dealing with multi-input and multi-
output (MIMO) systems, the measurement errors alone are not
sufficient to decide whether the system is in a critical state and
needs a control actuation. Indeed, the multiple signals impact

one another and the same value of the error for an output does
not necessary reflect a critical situation for the system unless it
is correlated to other signals values. For instance, a CPU usage
of 90% reflect a normal behavior if memory usage is high, while
it is alarming if memory usage is low.

In this paper we suggest an event mechanism based on the
optimal cost function for Model Predictive Controllers (MPC)
which tackles the issues presented above: the calculation of
the cost function which by definition deals with the different
interactions of the signals and also the prevision, using the
model, of the future behavior of the system over the time
horizon. Furthermore, constraints on the command shape (for
instance the command should be constant on a time window
of n sampling time) supervised by an event mechanism ensure
that changes in the command signal are reduced while other
specifications still hold.

The remainder of this paper is organized as follows: after
the description of a motivating example in Section II, prelim-
inaries on MPC are settled in Section III and the proposed
event switching mechanism is detailed in Section IV. After a
brief presentation of the MapReduce framework we used for
validation in Section V, the validation of the approach is given
in Section VI. Conclusion and future work complete the paper
in Section VII.

II. MOTIVATING EXAMPLE: BIG DATA CLOUD
SYSTEMS

Big Data Cloud services aim to process requests upon huge
unstructured databases and use new programming paradigms
that run distributed processes on different cluster resources.
Consequently, on a simplified view, the more resources that are
available for processing your requests the faster your will han-
dle them. However, automatically assigning the right number of
resources is a tricky issue. Moreover, as Cloud resources have
high energetic and financial cost [19], the resource usage should
be reduced in order to minimize the utilization cost.

In contrast to classical systems, controlling Big-Data services
that run on the Cloud bring novel specific and contradictory
constraints. First, the control value (which is the number of
available resources) can only be a positive integer. As we better
analyze the behavior of such systems, other specific constraints
appear. It is worth noticing that any change in the number
of resources implies a novel reconfiguration of the system
which takes considerable time and costs money due to system
unavailability and/or poor performance [20]. Moreover, quick
changes in the control value (thus a high rate reconfiguration of
the cluster) can overload the communication channels and lead
to an accumulation of delays, which in return increases the time
needed for processing the requests [22]. Large delays along
with overloaded communication channels, besides being a se-
curity threat, can increase the probability of hardware/software
faults and lead to performance deterioration and skyrocket
the financial costs [15]. This explains why the biggest public
Clouds such as Google App Engine [18] or Amazon EC2 [4]
have a pay as you use billing policy which comes with an
indivisible minimum renting time unit. Therefore changes in
the control signal should be monitored.

Hours of a day

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N
u

m
b

e
r

o
f

ru
n

n
in

g
 j
o

b
s

0

100

200

300

400

500

600

700

Fig. 1. Shopping website MapReduce workload (2,000-node cluster) [28]

Cloud services also face multiple disturbances of unusual
nature. The workload, which is the amount of requests that are
received by a computing system, is an input signal that, usually,
we cannot control. For the considered application, workload
variations can be categorized as:
• Small predictable variations: In this case the disturbance

can be statistically modeled using a long tailed distribu-
tion, for example using a log-normal distribution [11].
Fig. 1 is an example of a Big data workload over a day
period. We can see for instance from 5am-7am that the
distribution has a stable mean and low variance.

• Large instantaneous variations: In Cloud services large and
unpredictable events also occur quite often. This sudden
event changes the mean number of requests and affect the
variance, as can been seen at 1am in Fig. 1.

As we would like to minimize the total utilization cost, our
objective in this paper is twofold: 1) reduce the amount of
utilized resources as well as the number of cluster reconfigu-
rations (that is to say the number of changes in the input signals
but also their absolute values); 2) react very quickly to large
disturbances but also be robust enough not to react to the small
normal ones. Predictive control coupled with an event-based
triggering strategy offers the needed solution as it will be shown
in Sections III and IV.

III. PRELIMINARIES ON MPC

We consider a general nonlinear discrete time system de-
scribed by the equations{

xk+1 = f (xk,uk)
yk = g(xk)

(1)

where x ∈ Rnx is the state, y ∈ Rny is the measured outputs
and u ∈ Rnu the control variables. We assume that f (0,0) =
0 and g(0) = 0. For sake of simplicity, only stabilization at
the origin is considered here. The subscript k of a variable
stands for its value at time kT , T being the sampling period.
We define a time horizon of N ∈ N instants, N > 0. In this
section, we assume the system has no delay neither constraint
on the control or state values. Extending the proposed results
to delayed or constrained systems can however be done as
classically in model predictive control. The example given in
Section V typically has delays, saturation constraints on the
control and positivity constraints on the states values.

Let U ∈Rnu×N be a control profile over the horizon N defined
by:

U :=
(
u0 u1 · · · uN−1

)
(2)

For any initial condition xi, and any control profile U ∈ Rnu×N ,
we define the corresponding state trajectory X ∈ Rnx×(N+1) by:

X(xi,U) :=
(
x0 x1 . . . xN

)
with

{
x0 := xi
xk+1 = f (xk,uk) ∀k ∈ {0, . . . ,N−1}

and we associate to this state trajectory, the output trajectory
Y ∈ Rny×(N+1) defined by Y (X) :=

(
y0 y1 . . . yN

)
with

∀k ∈ {0, . . . ,N}, yk = g(xk). Let J : Rnx×Rnu×N→R+ be some
cost function depending on an initial condition xi and a control
profile U . A very common definition of the cost function for a
stabilization objective is the quadratic cost of the form:

J(xi,U) =
N

∑
k=1

X |Tk+1(xi,U)QxX |k+1(xi,U)+U |Tk RU |k (3)

where X |k(xi,U) (resp. U |k) denotes the kth column of X(xi,U)
(resp. U), Qx and R are positive, definite matrices of appropri-
ate sizes. Note that U |k = uk−1 and X |k = xk−1.

J(xi,U) =
N−1

∑
k=0

Ỹ |Tk+1QYỸ |k+1 +U |Tk RU |k (4)

with QY and R positive, definite matrices of appropriate sizes,
Ỹ |k := Y |k(X(xi,U))−Y re f |k where Y re f ∈ Rny×(N+1) is the
reference trajectory on the time horizon N. Finally, let us define
the set U of controls as:

U (xi) :=
{

U ∈ Rnu×N s.t. X |N+1(xi,U) = 0
}

U is the set of control profiles that satisfy a terminal constraint
at the end of the horizon on the state variable. The final
constraint is very common for stability purposes [25].

Assumption 1: We assume that for all x ∈ Rnx , U (x) is not
an empty set.
Under Assumption 1, the model predictive optimal control
problem is formulated as follows:

Û : Rnx → Rnu×N

x → Argmin
U∈U (x)

J(x,U) (5)

and the control law for system (1) expressed in a state feedback
form is classically:

u(xk) := Û |1(xk) (6)

Stability of the control law (5) has been studied in the literature
[1]. If one defines the following operator Π : Rnu×N → Rnu×N

that associates to U given by (2) the control profile Π(U)
defined by:

Π(U) :=
(
u1 u2 . . . uN−1 0nu×1

)
the stability relies on the fact that at time (k + 1)T , the
translation of one time step of the solution control profile
Û(xk) at time kT , namely Π(Û(xk)), belongs to the set of
admissible control U (xk+1). This sort of invariance property
guarantees that the cost associated to the control at time
(k+ 1)T is necessarily strictly smaller than the one at time kT

and therefore the stability is guaranteed as soon as the optimal
cost function Ĵ(x) := J(x,Û(x)) is a Lyapunov function for
system (1).

In our particular case, changing the control value too often
may be financially expensive and needs to be avoided. For this,
we propose to remove some degrees of freedom by adding
linear constraints on the control variable. Therefore, we extend
the set U as follows:

V (xi) :=
{

U ∈ Rnu×N s.t. X |N+1(xi,U) = 0 and AU = B
}

(7)

with A and B matrices of appropriate forms and sizes. For
instance, in the application of section V such constraints limit
the changes in the control signal. We assume that it is not empty:

Assumption 2: We assume that for all x ∈ Rnx , V (x) is not
an empty set.
In order to keep the invariance property on which the stability
relies, we define for the first iteration

Λ̂0 : Rnx → Rnu×N

x → Argmin
V∈V (x)

J(x,V)

and for the following ones

Λ̂ : Rnx ×Rnu×N → Rnu×N

(x,U) → Argmin
V∈V (x)∪{Π(U)}

J(x,V)

The control profile for system (1) is then dynamically defined
for any xk at time kT by:

V̂k := Λ̂(xk,V̂k−1)

where V̂k−1 is the control profile at time (k−1)T . To initialize
the process, we take at k = 0, V̂0 := Λ̂0(x0). The control law for
system (1) expressed in a state feedback form is then:

uk := V̂k|1 (8)

The corresponding optimal cost is then Ĵk := J(xk,V̂k).
Theorem 1: Under Assumption 2, and if J is a Lyapunov

function, the control law defined by (8) asymptotically stabi-
lizes system (1).
The proof is trivial since by construction the cost function is
strictly decreasing. In particular, if one takes a cost function of
the form (3), one can prove that:

Ĵk+1− Ĵk ≤ J(xk+1,Π(V̂k))− Ĵk =−xT
k+1Qxxk+1−uT

k Ruk

IV. TRIGGERING ON THE COST FUNCTION

The aim of this section is to propose a triggering algorithm
for MPC control laws (6) and (8) presented in the previous
section. This strategy will decide when the control profile needs
to be recalculated. For sake of simplicity, we assume in the
following that the cost function J is of the form (3).

A. Triggering strategy

To any state xk of the system at time kT and any control
profile Wk−1 at time (k− 1)T , we associate two corresponding
costs, namely Ĵk defined as previously by Ĵk := J(xk, Λ̂0(xk))
and J̃k := J(xk,Π(Wk−1)). The first cost Ĵk corresponds to the
cost if one updates the control with its optimal value whereas,

J̃k is the cost obtained keeping the previous control profile. Note
that by construction, one has the following inequality: J̃k ≥ Ĵk.
We can now define the event function e : Rnx×R+→{0,1} by:

ek =

{
1 if J̃k− Ĵk ≥ εJ Ĵk or if k = 0
0 otherwise

(9)

The proposed MPC event-triggered control profile Wk at time
kT is then:

Wk =

{
Λ̂0(xk) if ek = 1

Π(Wk−1) otherwise

The control law to apply is as previously the first element of the
control profile, that is:

wk =Wk|1 (10)

Note that if e = 0 the control profile of the last time period is
applied and then wk =Wk|1 =Wk−1|2 . Hence, contrary to usual
event-based control, the input control value is not kept constant
in the proposed scheme. The control profile is updated when the
cost can be reduced by a factor of 1+εJ with respect to the cost
when keeping the same control profile.

B. Stability of the proposed scheme
The proposed scheme asymptotically stabilizes the system at

the origin since it ensures the strict decrease of the cost function
until the origin is reached:

Theorem 2: Under Assumption 2, and if J is a Lyapunov
function, the control law defined by (10) asymptotically stabi-
lizes system (1).

Proof: Assume at time kT , the control profile is Wk with a
cost J(xk,Wk) defined by (3). At time (k+ 1)T , the state value
is given by xk+1 = f (xk,Wk|1). Assume first that ek+1 = 0, then
Wk+1 = Π(Wk) and

J(xk+1,Wk+1) = J(xk+1,Π(Wk))

= J(xk,Wk)− xT
k+1Qxxk+1−Wk|T1 RWk|1

J is therefore strictly decreasing in this case. Assume now that
ek+1 = 1, the control profile needs therefore to be updated. In
that case, Wk+1 = Λ̂0(xk+1) and therefore one has:

(1+ εJ)J(xk+1,Wk+1)≤ J(xk+1,Π(Wk))

≤ J(xk,Wk)− xT
k+1Qxxk+1−Wk|T1 RWk|1

In that case again, J is strictly decreasing as long as xk+1 6= 0
which ends the proof of stability of the scheme.

Choice of εJ: The threshold εJ from equation (9) should
be chosen carefully. If it is too small, the controller will unnec-
essarily react to noise, model uncertainties or observer error (if
one), while if εJ is too large we may not react fast enough to
disturbances. The tuning of εJ can be done in a training phase
using data from an open-loop experiment with disturbances.

V. APPLICATION TO MAPREDUCE FRAMEWORK
As a motivating example for our work we choose to use

the MapReduce framework. MapReduce is a parallel and dis-
tributed paradigm running on the Cloud, it aims at treating
requests of many types upon large databases. It has been de-
veloped in 2008 by Google to automatically handle most of the
complexity of parallel computing and nowdays it is backed by
Big Data industry leaders such as Google, Facebook, Yahoo,
LinkedIn (see [12], [29] among others).

A. MapReduce Modeling
Modeling MapReduce systems is a very tedious task as we

need to decide what are the pertinent input signals and then
make a detailed analysis concerning their impact on the outputs.
Mathematical models resulting from the above mentioned anal-
ysis have been developed and experimentally validated in [8]
with real data form a Big Data MapReduce framework executed
on Grid5000, a large-scale versatile grid [10]. These models,
largely detailed in [9], are SISO first order transfer functions
with input/output delays and saturation. [7] further extended
them to a MIMO model (see Fig. 2) with integral action and
saturation.

availability

MapReduce Model

CONTROL

INPUTS
OUTPUTS

clients C

cluster size R

max clients MC

service time

DISTURBANCE

Fig. 2. MapReduce model schema from [9]

Let us briefly comment on the model behavior without in-
sisting on technical details. On one hand, when the number of
resources executing the job (noted R) is low, the service time
(the time to process a request) will be long whereas if there are
many resources allocated to the job the execution time will be
short. On the other hand, if many requests are sent in parallel
to a fixed-size cluster, due to concurrency issues, the service
time will be longer than if there were just a few. In terms of
control theory, we identified the cluster size R as an tunable
input, and the workload (the number of concurrent clients C
that sent requests to our system) is considered as an uncon-
trollable but measurable disturbance. The output of our model
is the service time which is a measure of the performance of
MapReduce systems. Considering that we can also reject some
client requests, when resources are not available for example,
we have another input variable for our control which is the
maximum number of accepted clients MC and another output
metric: the availability rate (which is the number of accepted
jobs from the overall number of jobs).

B. Model predictive controller
The MPC we use has the following constraints:
• availability is a more critical output than the service time,

both should be at their reference values at the end of the
horizon N (N is 100 times the sampling time here);

• the cluster size should be minimized;
• for the constrained scenario defined by equation (7), clus-

ter size can only change at regular time intervals. This
value is tuned to correspond to the indivisible minimum
renting time of resources in a Cloud.

• we consider a limited resource configuration where
0 < R≤ RMAX = 60 nodes.

The controlled system is simulated using Matlab Simulink.

VI. VALIDATION USING MAPREDUCE
The validation scenario we consider is the following: the

system is launched with 20 nodes (R = 20), 9 clients including

-10 0 10 20 30 40 50 60

#C
lie

nt
s

0

10

20

-10 0 10 20 30 40 50 60

Av
ai

la
bi

lit
y

(%
)

90

91

92

93

94

95

96

Time (min)
-10 0 10 20 30 40 50 60

Se
rv

ic
e

Ti
m

e
(s

)

75

80

85

90

95

100

Time (min)
-10 0 10 20 30 40 50 60

C
lu

st
er

 s
iz

e

10

20

30

40

50

60

Time based
Error based
Cost based
constrained Cost based

Time (min)
-10 0 10 20 30 40 50 60

M
ax

 C
lie

nt
s

5

10

15

Event instants
-10 0 10 20 30 40 50 60
0

0.5
1

Fig. 3. Comparison of time based, error based and cost based controllers
performances without constraints on the inputs (see equation (6))

one rejected (C = 9, MC = 8). Once the system reaches a
stable operating point (at t = 0 min) we start the control with
the strong constraint that the outputs of the system should
remain at theses steady state values. The disturbance is initially
considered as a step to facilitate the analysis of the results, then
we validate the method using a 1-day MapReduce workload
from an on-line shopping website (Section VI-B).

A. Step response analysis
In the first battery of tests we compare our method referred to

as cost based event solution with an error based one and with
an MPC time based controller. All these solutions are calculated
without specific constraints on the input signals, as described
by equation (6); we also compare the cost based event triggered
controller to its constrained version, where the input signal R is
forced to have constant values on large time internals. By error
based triggering mechanism we mean that events are triggered
when the control law has been applied over the whole prediction
horizon or when one of the outputs cross a certain threshold.
For the cost based approach we use the cost-function defined
by equation (3), and we choose the threshold form equation
(9) based on training data (not shown here because of space
restriction) in order to ensure no false alarms, thus εJ = 100%.
We chose the thresholds for the error based method so that
the error based and the cost based solutions ensure the same
performances.

Results are shown in Fig. 3. For comparable performances
in term of reference tracking and inputs variations, we observe
that the cost based controller generates only 1 event over a
60-minute period, which represents 99.2% less events than the
time triggered solution (120 events in total), and 91% less than

Time (min)
0 50 100 150

C
os

t f
un

tio
ns

×10 4

0

1

2

3

4

5

6

7

8

9
J̃

Ĵ
threshold

Fig. 4. Cost-based event function

the error based controller (11 events). Moreover, due to the
dynamics of the system, once the error thresholds are crossed
it takes some time to stabilize the output signals inside the
threshold-defined bounds which leads to several consecutive
events generated by the error based method after each dis-
turbance occurs. However, the cost based method takes into
account this dynamic through state prediction and removes
the redundant events. Hence, with significantly less events our
proposed event mechanism can guarantee comparable perfor-
mances.

If we take a look to the impact of the constraints, we clearly
see that with comparable performances in reference tracking
for both outputs and the exact same number of events, the con-
strained controller imposes 93.4% less changes in the cluster
size than its unconstrained version.

Threshold choice: When looking at the cost functions
(Fig. 4), we see that the condition for triggering an event
gives no false alarm and reacts each time workload conditions
change. Moreover, every event is caused by a clear threshold
crossing and it is an indicator of the robustness of our method
regardless the value of εJ . Furthermore, we see in Fig. 4 the
importance of the threshold expressed as a percentage. Shortly
after an event, the cost J̃ is way higher than before as it
takes time and resources for the system to reach again the
specifications, however this high value of J̃ does not necessary
reflect the arrival of another disturbance.

B. Evaluation using a real MapReduce workload

In a second time, we validate our proposed solution using
a real 1-day MapReduce workload trace that was recorded on
a 2,000-node cluster of Taobao (see Fig. 1), an e-commerce
website. Table I compares prices of running the workload using
the different controllers based on Amazon EC2 pricing (0.1$
per instance-hour).

The constrained cost based solution enables to realize major
savings (from 5 to 63%) as it prevents the brief cluster over-
sizing just after a disturbance occurred, as can be noticed in Fig.
3. Other drawbacks of the time based and other unconstrained
methods should also be considered; mainly overloading com-
munication channel, large delays in starting nodes and numer-
ous system reconfigurations.

Method Fees Extra costs compared to
constrained cost based

No control 5000$ 3136$ 62.7%
Time based (unconstrained) 1970$ 107$ 5.4%
Error based (unconstrained) 2020$ 157$ 7.8%
Cost based (unconstrained) 1867$ 103$ 5.3%
Constrained cost based 1863$ - -

TABLE I
COST COMPARISON OF CONTROLLERS RUNNING A REAL WORKLOAD

VII. CONCLUSIONS AND FUTURE WORKS

In this paper we propose a new event mechanism for model
predictive controllers which has two aims:
• reduce the number of events without degrading perfor-

mances
• reduce the changes in the control inputs thus reacting to

large disturbances and being robust to smaller ones
This latter constraint is particularly relevant in the context of
big-data Cloud services where high frequency of cluster recon-
figurations has major financial and energetic costs and leads to
performances degradation. The proposed event mechanism is a
function of the cost function defined in the optimal problem,
and is not based on measurement error as has been often done
until now. This enables to take into account the prediction of
the system trajectory over a time horizon. For handling the
reduction of input changes we add constraints to the MPC
formulation, allowing changes only at regular time intervals.

Evaluation is done on a model previously validated on a real
MapReduce system. It shows that the constrained cost-based
event triggered MPC significantly reduced the number of events
as well as the changes in the control law. We generate 86% less
events compared to an error based method and we obtain at least
8% cost saving when simulating with a real 1-day workload
(based on Amazon EC2 pricing).

Work is in progress to validate the constrained cost-based
event triggered MPC approach through experiments using the
latest MapReduce release on a public Cloud such as Amazon
EC2. We expect to have better results due to the reduction of
cluster reconfigurations which are even more costly on the real
system due to congestion of communication channels leading to
performance degradation. Further researches will also lead to an
extension of the cost-based event functions to handle other type
of disturbances while improving performances.

REFERENCES

[1] M. Alamir and G. Bornard. On the stability of receding horizon
control of nonlinear discrete-time systems. Systems & Control Letters,
23(4):291–296, 1994.

[2] A. Ali-Eldin, M. Kihl, J. Tordsson, and E. Elmroth. Efficient
provisioning of bursty scientific workloads on the cloud using adaptive
elasticity control. In Proceedings of the 3rd Workshop on Scientific
Cloud Computing Date, ScienceCloud ’12, pages 31–40. ACM, 2012.

[3] A. Ali-Eldin, J. Tordsson, and E. Elmroth. An adaptive hybrid elastic-
ity controller for cloud infrastructures. In IEEE Network Operations
and Management Symposium (NOMS), pages 204–212. IEEE, 2012.

[4] Amazon. Amazon EC2. http://aws.amazon.com/ec2/.
[5] K. E. Årzén. A simple event-based PID controller. In Preprints of the

14th World Congress of IFAC, 1999.
[6] K. J. Aström. Event based control. In Alessandro Astolfi and Lorenzo

Marconi, editors, Analysis and Design of Nonlinear Control Systems,
pages 127–147. Springer Berlin Heidelberg, 2008.

[7] M. Berekmeri. Modeling and control of cloud services : application
to MapReduce performance and dependability. PhD thesis, Université
Grenoble Alpes, November 2015.

[8] M. Berekmeri, D. Serrano, S. Bouchenak, N. Marchand, and B. Robu.
A control approach for performance of big data systems. In Proceeed-
ings of the 19th World Congress of IFAC, 2014.

[9] M. Berekmeri, D. Serrano, S. Bouchenak, N. Marchand, and B. Robu.
Feedback autonomic provisioning for guaranteeing performance in
mapreduce systems. IEEE Transactions on Cloud Computing, page
to appear, 2016.

[10] F. Cappello, E. Caron, M. Dayde, F. Desprez, Y. Jegou, P. Primet,
E. Jeannot, S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst,
B. Quetier, and O. Richard. Grid’5000: A large scale and highly
reconfigurable grid experimental testbed. In Proceedings of the 6th
IEEE/ACM International Workshop on Grid Computing, pages 99–
106, 2005.

[11] T. De Ruiter. A workload model for MapReduce. PhD thesis, TU
Delft, Delft University of Technology, 2012.

[12] J. Dean and S. Ghemawat. MapReduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[13] S. Durand and N. Marchand. Further results on event-based PID
controller. In Proceedings of the European Control Conference, 2009.

[14] A. Eqtami, D. V. Dimarogonas, and K. J. Kyriakopoulos. Event-
triggered control for discrete-time systems. In Proceedings of the
IEEE American Control Conference, 2010.

[15] Evolven. Downtime, outages and failures - understanding their true
costs. http://www.evolven.com/, 18 September 2013.

[16] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. Kozuch.
Autoscale: Dynamic, robust capacity management for multi-tier data
centers. ACM Transactions on Computer Systems, 30(4):14:1–14:26,
November 2012.

[17] Z. Gong, X. Gu, and J. Wilkes. Press: Predictive elastic resource
scaling for cloud systems. In International Conference on Network
and Service Management (CNSM), pages 9–16. IEEE, 2010.

[18] Google. Google App Engine. https://cloud.google.com/
appengine.

[19] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and
T. Keller. Energy management for commercial servers. Computer,
36(12):39–48, 2003.

[20] T. Lorido-Botran, J. Miguel-Alonso, and J. Lozano. A review of
auto-scaling techniques for elastic applications in cloud environments.
Journal of Grid Computing, 12(4):559–592, 2014.

[21] J. Lunze and D. Lehmann. A state-feedback approach to event-based
control. Automatica, 46:211–215, 2010.

[22] N. Maheshwari, R. Nanduri, and V. Varma. Dynamic energy efficient
data placement and cluster reconfiguration algorithm for mapreduce
framework. International Journal of eScience - Future Generation
Computer Systems, 28(1):119–127, 2012.

[23] N. Marchand, S. Durand, and J. F. Guerrero-Castellanos. A general
formula for event-based stabilization of nonlinear systems. IEEE
Transactions on Automatic Control, 58(5):1332–1337, 2013.

[24] A. Matsunaga and J. Fortes. On the use of machine learning to predict
the time and resources consumed by applications. In Proceedings of
the 2010 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing, pages 495–504, 2010.

[25] D. Q. Mayne and H. Michalska. Receding horizon control of nonlinear
systems. IEEE Trans. on Automatic Control, 35(7):814–824, 1990.

[26] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: Managing
performance interference effects for qos-aware clouds. In Proceedings
of the 5th European Conference on Computer Systems, pages 237–250.
ACM, 2010.

[27] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes. Agile: Elastic
distributed resource scaling for infrastructure-as-a-service. In Proceed-
ings of the 10th International Conference on Autonomic Computing,
pages 69–82. USENIX, 2013.

[28] Z. Ren, X. Xu, J. Wan, W. Shi, and M. Zhou. Workload characteri-
zation on a production Hadoop cluster: A case study on Taobao. In
IEEE International Symposium on Workload Characterization, pages
3–13, 4-6 Nov 2012.

[29] Y. Shen, Y. Li, L. Wu, S. Liu, and Q. Wen. Enabling the New Era
of Cloud Computing: Data Security, Transfer, and Management. IGI
Global, 1st edition, 2014.

[30] M. Velasco, P. Martı́, and E. Bini. On Lyapunov sampling for event-
driven controllers. In Proceedings of the 48th IEEE Conference on
Decision and Control, 2009.

http://aws.amazon.com/ec2/
http://www.evolven.com/blog/downtime-outages-and-failures-understanding-their-true-costs.html
https://cloud.google.com/appengine
https://cloud.google.com/appengine

	INTRODUCTION
	MOTIVATING EXAMPLE: BIG DATA Cloud SYSTEMS
	PRELIMINARIES ON MPC
	TRIGGERING ON THE COST FUNCTION
	Triggering strategy
	Stability of the proposed scheme

	APPLICATION TO MAPREDUCE FRAMEWORK
	MapReduce Modeling
	Model predictive controller

	VALIDATION USING MAPREDUCE
	Step response analysis
	Evaluation using a real MapReduce workload

	CONCLUSIONS AND FUTURE WORKS
	References

