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Abstract

The conservation laws of continuum mechanics, written in an Eulerian
frame, do not distinguish fluids and solids, except in the expression of the
stress tensors, usually with Newton’s hypothesis for the fluids and Helmholtz
potentials of energy for hyperelastic solids. By taking the velocities as un-
known monolithic methods for fluid structure interactions (FSI) are built. In
this article such a formulation is analysed when the fluid is compressible and
the fluid is incompressible. The idea is not new but the progress of mesh gener-
ators and numerical schemes like the Characteristics-Galerkin method render
this approach feasible and reasonably robust. In this article the method and
its discretisation are presented, stability is discussed through an energy esti-
mate. A numerical section discusses implementation issues and presents a few
simple tests.

AMS classification 65M60 (74F10 74S30 76D05 76M25).

Introduction

Currently two methods dominate FSI (Fluid-Structure-Interaction) science:
Arbitrary Lagrangian Eulerian (ALE) methods especially for thin structures
[30][34] and immersed boundary methods (IBM)[31][12], for which the math-
ematical analysis is more advanced[6] but the numerical implementations lag
behind. ALE for large displacements have meshing difficulties [27] and to
a lesser extent with the matching conditions at the fluid-solid interface[25].
Furthermore, iterative solvers for ALE-based FSI methods which rely on alter-
native solutions of the fluid and the structure parts are subject to the added
mass effect and require special solvers[17][8].

Alternatives to ALE and IBM are few. One old method [2][3] has resur-
faced recently, the so-called actualized Lagrangian methods for computing
structures [24] [28] (see also [11] although different from the present study
because it deals mostly with membranes).

∗Written in honour of Philippe Ciarlet for his 80th birthday.
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Continuum mechanics doesn’t distinguish between solids and fluids till it
comes to the constitutive equations. This has been exploited numerically
in several studies but most often in the context of ALE[26][22][36].

In the present study, which is a follow-up of [33] and [20], we investigate
what Stephan Turek[22] Heil[21] and Wang[38] call a monolithic formulation
but here in an Eulerian framework, as in [14][15][35][16], following the dis-
placed geometry of the fluid and the solid. In [14], the authors obtained
excellent results with the fully Eulerian formulation adopted here but at the
cost of meshing difficulties to handle the Lagrangian derivatives. Here we ad-
vocated the Characteristic-Galerkin method and obtain an energy estimate,
which is not a proof of stability but a prerequisite for it.

1 Conservation Laws

Let the time dependent computational domain Ωt be made of a fluid region

Ωf
t and a solid region Ωs

t with no overlap: Ωt = Ω
f

t ∪ Ω
s

t , Ω
f
t ∩ Ωs

t = ∅ at any
times t ∈ (0, T ). At initial time Ωf

0 and Ωs
0 are prescribed.

Let the fluid-structure interface be Σt = Ω
f

t ∩ Ω
s

t and the boundary of
Ωt be ∂Ωt. The part of ∂Ωt on which either the structure is clamped or on
which there is a no slip condition on the fluid, that part is denoted by Γ and
assumed to be independent of time.

The following standard notations are used. For more details see one of a
textbook: [10],[29],[2],[1], or the following article: ,[22],[26]. For clarity we use
bold characters for vectors and tensors/matrices, with some exceptions, like
x, x0 ∈ R

d, d = 2 or 3.

• X : Ω0 × (0, T ) 7→ Ωt: X(x0, t), the Lagrangian position at t of x0.

• u = ∂tX, the velocity of the deformation,

• F = ∇TX = ((∂x0
i
Xj)), the Jacobian of the deformation,

• J = detF.

We denote by trA and detA the trace and determinant of A. To describe the
fluid structure system we need the following:

• ρ = 1
Ω

f
t
ρf + 1Ωs

t
ρs, the density,

• σ = 1
Ω

f
t
σf + 1Ωs

t
σs, the stress tensor,

• f(x, t) the density of volumic forces at x, t.

• d = X(x0, t)− x0, the displacement.

Finally and unless specified all spatial derivatives are with respect to x ∈ Ωt

and not with respect to x0 ∈ Ω0. Let φ a function of x, t; as x = X(x0, t), x0 ∈
Ω0, φ is also a function of x0 and we have:

∇x0φ = [∂x0
i
φ] = [∂x0

i
Xj∂xj

φ] = F
T∇φ.

When X is one-to-one and invertible, d and F can be seen as functions of
(x, t) instead of (x0, t). They are related by

F
T = ∇x0X = ∇x0(d+ x0) = ∇x0d+ I = F

T∇d+ I, ⇒ F = (I−∇d)−T

Time derivatives are related by (note the notation Dt)

Dtφ :=
d

dt
φ(X(x0, t), t)|x=X(x0,t) = ∂tφ(x, t) + u · ∇φ(x, t).
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Figure 1.1: The geometry of the FLUSTRUK test[16]. The cylinder (in black) is
fixed but the flag is a thick compressible Mooney-Rivlin material clamped to the
cylinder by its left boundary; the outer rectangle is filled with a fluid which enters
from the left Γin and leaves on the right Γout; the horizontal boundaries of the outer
rectangle are walls, so they form together with the cylinder the boundary Γw. The
flag is at time zero a rectangle of size l × h. The outer rectangle has size L × H.
The center of the circle representing the cylinder is at (c, c) in a frame of reference
which has the lower left corner at (0, 0); the cylinder has radius r and is fixed.

It is convenient to introduce (note the difference between Dt above and D
here):

Du = ∇u+∇T
u.

Conservation of momentum and conservation of mass take the same form for
the fluid and the solid:

ρDtu = f +∇ · σ, Dtρ+ ρ∇ · u = Dt(Jρ) = 0,

So Jρ = ρ0 at all times and

J−1ρ0Dtu = f +∇ · σ in Ωt, ∀t ∈ (0, T ), (1.1)

with continuity of u and of σ ·n at the fluid-structure interface Σ in absence of
interface constraint like surface tension. There are also unwritten constraints
pertaining to the realisability of the map X (see [10],[29]).

1.1 Constitutive Equations

We consider a bi-diemsional geometry. For the 3d case, see [9].

• For a Newtonian incompressible fluid : σf = −pfI+ µfDu

• For an hyperelastic material : σs = ρs∂FΨFT

where Ψ is the Helmholtz potential which, in the case of a St-Venant-Kirchhoff
material, is [10]

Ψ(F) =
λs

2
tr2E + µstrE2 , E =

1

2
(FT

F− I) (1.2)

It is easy to see that trE = 1
2
trFT F − 1 and

∂FtrFT F = ((∂Fij

∑

m,n

F 2
m,n)) = 2F ⇒ ∂FtrE = F
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∂Ftr(FT F)2 = ((∂Fij

∑

n,m,p,k

Fn,kFn,mFp,mFp,k)) = 4FFT
F (1.3)

which implies that ∂FtrE2 = 2FE. Therefore

∂FΨ(F)FT = (λstrEF+ 2µs
FE)FT

which in turn implies that

σs = ρsF(λstrE + 2µs
E)FT = J−1ρs0F(λ

strE + 2µs
E)FT

For a tensor A define |A| =
∑

ij A
2
ij .

Remark 1. Some authors have a different definition for the Lamé coeficient
λρs0 → λ, µρs0 → µ which define σs.

Proposition 1. Let γ = trFFT ; then

γ = trFFT = (2− 2∇ · d+ |∇d|2)J2, γ̃ = γJ−2

and the following holds

σs = ρs
(

aI+ 2b(Dd−∇d∇T
d)
)

, with

a = λs(
1

2
γ − 1)(γ̃ − 1) + µs(γ − J2 − 1)γ̃,

b =
1

2
(
λs

2
+ µs)(γ − 1)−

λs

4
(1.4)

Proof
First note that if B = FFT then

σs = ρs
[

[λs(
1

2
γ − 1) − µs]B+ µs

B
2
]

(1.5)

Now by the Cayley- Hamilton theorem in 2 dimensions, B2 − γB+ J2I = 0.
As B−1 = I −Dd+∇d∇Td let C = I−B−1 = Dd−∇d∇Td. Then

B = γI− J2
B

−1 = (γ − J2)I+ J2
C, B

2 = (γ2 − (1 + γ)J2)I+ γJ2
C.(1.6)

Therefore

σs = ρs
[

[λs(
1

2
γ − 1)− µs][(γ − J2)I+ J2

C] + µs[(γ2 − (1 + γ)J2)I+ γJ2
C]
]

= ρs
[

[(λs(
1

2
γ − 1))(γ − J2)

+ µsγ(γ − 1− J2)]I+ [λs(
1

2
γ − 1) + µs(γ − 1)]J2

C
]

(1.7)

⋄

1.2 Variational Monolithic Eulerian Formulation

From now on we limit our analysis to the case ρs0,ρ
f
0 constant.

One must find (u, p) with u|Γ = 0, d and Ωs
t , Ω

f , solution for all (û, p̂)
with û|Γ = 0 of































∫

Ω
f
t

[

ρfDtu · û− p∇ · û− p̂∇ · u+
µf

2
Du : Dû

]

+

∫

Ωs
t

ρs
[

Dtu · û+ b(Dd−∇d∇T
d) : Dû+ a∇ · û

]

=

∫

Ωt

f · û

Dtd = u, J−1 = detI−∇d, ρr = J−1ρr0,
{ẋ(t) = u(x(t), t), x(0) = x0 ∈ Ωr

0 ⇒ x(t) ∈ Ωr
t}, r = s, f.

(1.8)

For an existence result, up to time T ∗, see [4] [13] (see also [37]), provided
a regularization term is added to the formulation to insure that ∂td has H1-
regularity; T ∗ is such that the solid does not touch the boundary and Σt does
not buckle.
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2 Numerical Scheme

For the stability of the numerical scheme, the problem is that even for small
displacements the Lamé terms µs∇u : ∇û+λs∇·u∇·û are hidden in bDd : Dû

and a∇ · û in the above variational formulation (1.8).
But notice that

J2 = 1 + 2∇ · d− 2det∇d + 3(∇ · d)2 + o(|∇d|2)

γ = 2(1 +∇ · d+ (∇ · d)2 +
1

2
|∇d|2 − 2det∇d) + o(|∇d|2)

(
γ

2
− 1)(γ̃ − 1) = ∇ · d− (∇ · d)2 −

1

2
|∇d|2 − 2det∇d+ o(|∇d|2) (2.1)

So it makes sense to define

c = a− λs∇ · d (2.2)

To prepare the time discretisation of (1.8) with a given time step δt, let

d̄ = d− δtu (2.3)

Then (1.8) becomes






































∫

Ω
f
t

[

ρDtu · û− p∇ · û− p̂∇ · u+
µf

2
Du : Dû

]

+

∫

Ωs
t

ρδt
[

b(Du−∇d̄∇T
u−∇u∇T

d̄+ δt∇u∇T
u) : Dû+ λs∇ · u ∇ · û

]

+

∫

Ωs
t

ρ
[

Dtu · û+ b(Dd̄−∇d̄∇T
d̄) : Dû+ (c+ λs∇ · d̄)∇ · û

]

=

∫

Ωt

f · û

Dtd = u, ρ = ρ0detI−∇d.

Here linear elasticity is visible because the zero order term of b is µf

2
. From

now on we do not use d̄ because the Characteristics-Galerkin discretisation of
Dtd = u will give an analogue of (2.3).

2.1 Discretisation of Total Derivatives

Let Ω ⊂ R
d, u ∈ H1

0(Ω) = (H1
0 (Ω))

d, (d = 2 here), t ∈ (0, T ) and x ∈ Ω.
Then let χt

u,x(τ ) be the solution at time τ of

χ̇(τ ) = u(χ(τ ), τ ) with χ(t) = x.

If u is Lipschitz in space and continuous in time the solution exists. The
Characteristics-Galerkin method relies on the concept of total derivative:

Dtv(x, t) :=
d

dτ
v(χ(τ ), τ )|τ=t = ∂tv + u · ∇v.

Given a time step δt, let us approximate

χ
(n+1)δt

un+1,x
(nδt) ≈ Y

n+1(x) := x− u
n+1(x)δt

Remark 2. Note also that, as Jρ is convected by u, that is Jρ|χt
u,x(τ),τ =

Jρ|x,t, so a consistent approximation is

(Jnρn) ◦ Y
n+1(x) = Jn+1(x)ρn+1(x), x ∈ Ωn+1.

Thus discretizing the total derivative of u or the one of ρ0u will give the same
scheme.

ρ0(x)
un+1(x)− un(Yn+1(x))

δt
= Jn+1ρn+1

un+1 − un ◦ Yn+1

δt

=
Jn+1ρn+1u

n+1 − (Jnρnu
n) ◦ Yn+1

δt
=

ρ0u
n+1 − (ρ0u

n) ◦ Yn+1

δt
(2.4)
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2.2 Updating the fluid and solid domain

From the definition of Y, notice that the only way to be consistent is to define
Ωn+1 using un+1, i.e. implicitly, since the later is defined also on Ωn+1:

Ωn+1 = (Yn+1)−1(Ωn) = {x : Y
n+1(x) := x− u

n+1(x)δt ∈ Ωn}

2.3 The Time Discretized Scheme

Let

d̃
n := d

n ◦ Yn+1, d
n+1 = d̃

n + δtun+1, ρn+1 = ρ0detI−∇dn+1 . (2.5)

Let b̃n, c̃n be given by (1.4,2.2) computed with d̃n. The following defines
un+1, pn+1 with un+1|Γ = 0: ∀û, p̂, with û|Γ = 0,



















































































∫

Ωn+1

ρn+1
un+1 − un ◦ Yn+1

δt
· û

+

∫

Ω
f
n+1

[

− pn+1∇ · û− p̂∇ · un+1 +
µf

2
Du

n+1 : Dû
]

+

∫

Ωs
n+1

ρn+1δt
[

b̃n(Du
n+1 −∇d̃

n∇T
u
n+1 −∇u

n+1∇T
d̃
n) : Dû

+λs∇ · un+1∇ · û
]

+

∫

Ωs
n+1

[

b̃n(Dd̃
n −∇d̃

n∇T
d̃
n) : Dû+ (c̃n + λs∇ · d̃n)∇ · û

]

=

∫

Ωn+1

f · û.

(2.6)

2.4 Iterative Solution by Fixed Point

The most natural method to solve the above is to freeze some coefficients so
as to obtain a well posed linear problem and iterate:

1. Start with u = un, Y(x) = x− uδt, Ωr = Y
−1(Ωr

n), r = s, f .

2. Set d̃n = dn ◦ Y, ρ̃n = ρ0detI−∇d̃
; compute b̃n, c̃n.

3. Find un+1, pn+1 by solving







































































∫

Ω

ρ̃n
un+1 − un ◦ Y

δt
· û

+

∫

Ωf

[

− pn+1∇ · û− p̂∇ · un+1 +
µf

2
Du

n+1 : Dû
]

+

∫

Ωs

ρ̃nδt
[

b̃n(Du
n+1 −∇d̃

n∇T
u
n+1 −∇u

n+1∇T
d̃
n) : Dû

+λs∇ · un+1∇ · û
]

+

∫

Ωs

[

b̃n(Dd̃
n −∇d̃

n∇T
d̃
n) : Dû+ (c̃n + λs∇ · d̃n)∇ · û

]

=

∫

Ω

f · û

(2.7)

4. Set u = un+1,Y(x) = x− uδt,Ωr = Y
−1(Ωr

n), r = s, f .

5. If not converged return to Step 2 else set dn+1 = dn ◦ Y+ δtun+1.
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Notice that (2.7) is a well posed linear problem whenever

A(u, û) =

∫

Ωs

[ ρ

δt
u · û+ b̃(Du−∇d̃

n∇T
u−∇u∇T

d̃
n) : Dû+ λs∇ · u∇ · û

]

is coercive. Then (2.7) gives a solution bounded in H1(Ω) and converging

subsequences can be extracted from ρn+1,u
n+1,Ωr

n+1 when Ω̄ = Ωf
n ∪ Ωs

n is
fixed. Then convergence would occur if we could prove that Ωr

n+1 converges.

2.5 Spatial Discretisation with Finite Elements

Let T 0
h be a triangulation of the initial domain. Spatial discretisation can be

done with the most popular finite element for fluids: the Lagrangian triangular
elements of degree 2 for the space Vh of velocities and displacements and
Lagrangian triangular elements of degree 1 for the pressure space Qh; later
we will also discuss the stabilised P 1 − P 1 element; provision must be made
for two pressure variables, one in the structure and one in the fluid because
the pressure is discontinuous at the interface Σ; therefore Qh is the space of
piecewise linear functions on the triangulation continuous in Ωr

n+1, r = s, f .
A small penalization with parameter ǫ must be added to impose uniqueness
of the pressure.

This leads us to find un+1
h ∈ Vh0Γ , pn+1

h ∈ Qh, Ωn+1 such that for all
ûh, p̂h ∈ Vh0Γ ×Qh with

d̃
n
h := d

n
h ◦ Yn+1, where Y

n+1(x) = x− u
n+1
h (x)δt,

the following holds:



















































































a(ρ̃n, b̃n, c̃n;u
n+1, û) :=

∫

Ωn+1

ρ̃n
un+1
h − un

h ◦ Yn+1

δt
· ûh

+

∫

Ω
f
n+1

[

− pn+1∇ · ûh − p̂∇ · un+1
h +

µf

2
Du

n+1
h : Dûh

]

+

∫

Ωs
n+1

ρ̃snδt
[

b̃n(Du
n+1
h −∇d̃

n
h∇

T
u
n+1
h −∇u

n+1
h ∇T

d̃
n
h) : Dûh

+λs∇ · un+1
h ∇ · ûh

]

+

∫

Ωs
n+1

[

b̃n(Dd̃
n
h −∇d̃

n
h∇

T
d̃
n
h) : Dûh + (c̃n + λs∇ · d̃n

h)∇ · ûh

]

=

∫

Ωn+1

f · ûh, Ωn+1 = (Yn+1)−1(Ωn) = {x : Y
n+1(x) ∈ Ωn}.

(2.8)

Then d

d
n+1
h = d̃

n
h + δtun+1

h ,

2.6 Implementation

The various tests we made lead us to recommend the following:

• Move the vertices of the mesh in the structure with its own velocity:

qn+1
i = qni + u

n+1
h (qn+1

i )δt (2.9)

which, as explained above has to be implemented through an iterative
process.
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• Remesh the fluid part at each iteration with a Delaunay-Voronoi mesh
generator from the boundary vertices (Σn+1 included).
This required the development of a specific module to identify compu-
tationally the vertices of the fluid-structure interface Σ, which are then
input to the fluid mesh generator.

• In doing so, the discrete topological properties of the structural part are
preserved and we have the important property that the value d[i] of d
at vertex qi in the computer implementation of d by an array of values
at the nodes, satisfies

d
n+1[i] = d

n[i] + δtun+1[i], ∀i.

In other words dn ◦ Yn+1 is dn[i] after moving the vertices by (2.9).

3 Energy Estimate

3.1 Stability of the Scheme Discretized in Time

To conserve energy we need to change the scheme (2.8) slightly, from

a(ρ̃n, b̃n, c̃n;u
n+1, û) =

∫

Ωn+1

f · ûh to

a(ρn+1, bn+1, cn+1;u
n+1, û) + δt2

∫

Ωs
n+1

ρsn+1bn+1∇u
n+1
h ∇T

u
n+1
h : Dûh

=

∫

Ωn+1

f · ûh (3.1)

Lemma 3.1. The mapping Xn : Ω0 7→ Ωn is also Xn+1 = (Yn+1)−1 ◦ Xn,
n ≥ 1 and the jacobian of the transformation is Fn := ∇T

x0
Xn = (I−∇dn)−T .

Proof
Notice that Y1(Y2(..Yn−1(Yn(Ωn))..)) = Ω0 Hence

X
n+1 = [Y1(Y2(..Yn(Yn+1)))]−1 = (Yn+1)−1 ◦Xn.

By definition of dn+1 in (2.5)

dn+1(Xn+1(x0)) = d
n(Yn+1(Xn+1(x0))) + u

n+1(Xn+1(x0))δt
= d

n(Xn(x0)) + u
n+1(Xn+1(x0))δt, (3.2)

and since Xn+1(x0) = dn+1(Xn+1(x0)) + x0 we have that

Fn+1 = ∇t
x0
(dn+1((Xn+1(x0))) + x0),

= ∇d
n+1T

F
n+1 + I ⇒ F

n+1 = (I−∇d
n+1)−T (3.3)

⋄
Note that (3.2) shows also that

F
n+1 = F

n + δt∇T
x0
u
n+1 (3.4)

Lemma 3.2. With Ψ defined by (1.2),

∫

Ωs
n+1

ρsn+1

[

bn+1(Dd
n+1 −∇d

n+1∇T
d
n+1) : Dû+ an+1∇ · û

]

=

∫

Ωs
0

∂FΨ
n+1 : ∇x0

û (3.5)
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Proof By Proposition 1 and Lemma 3.1:
∫

Ωs
n+1

ρsn+1

(

an+1
I+ 2bn+1(Dd

n+1 −∇d
n+1∇T

d
n+1)

)

: ∇û

=

∫

Ωs
n+1

σs
n+1 : ∇û =

∫

Ωs
n+1

[

ρsn+1∂FΨF
T
]

|n+1 : ∇û

=

∫

Ωs
n+1

[

J−1
n+1ρ

s
0∂FΨF

T
]

|n+1 : ∇û =

∫

Ωs
0

ρs0∂FΨ
n+1 : ∇û (3.6)

⋄

Theorem 3.3. When f = 0 and ρ0 is constant in each domain Ωr
0, r = s, f ,

the numerical scheme (3.1) has the following property:

∫

Ωn

ρn
2
|un|2 + δt

n
∑

k=1

∫

Ω
f
k

µf

2
|Du

k|2 +

∫

Ωs
0

Ψn ≤

∫

Ω0

ρ0
2
|u0|2 +

∫

Ωs
0

Ψ0(3.7)

Proof Let r = s or f . Let us choose û = un+1 in (3.1). By Schwartz
inequality
∫

Ωr
n+1

ρn+1(u
n ◦ Yn+1) · un+1 = ρ0

∫

Ωr
n+1

(Jn+1)−1(un) ◦ Yn+1) · un+1

≤ ρ0

(

∫

Ωr
n+1

(Jn+1)−1(un ◦ Yn+1)2
) 1

2
(

∫

Ωr
n+1

(Jn+1)−1(un+1)2
) 1

2

=

[

∫

Ωr
n

ρn(u
n)2
∫

Ωr
n+1

ρn+1(u
n+1)2

] 1
2

≤
1

2

∫

Ωr
n

ρrnu
n2 +

1

2

∫

Ωr
n+1

ρrn+1u
n+12,

Plugging this estimate in (3.1) with û = un+1 leads to
∫

Ωn+1

ρn+1

2
|un+1|2+δt

∫

Ω
f
n+1

µf

2
|Du

n+1|2+

∫

Ω0

Ψn+1 ≤

∫

Ωn

ρn
2
|un|2+

∫

Ω0

Ψn

⋄

3.2 Energy Estimate for the Fully Discrete Scheme

The proof for the spatially continuous case will work for the discrete case if

X
n = X

n+1 ◦ Yn+1. (3.8)

As discussed in [20] it may be possible to program an isoparametric P 2 −P 1

element for which (3.8) but it is certainly far from easy. On the other hand,
consider the stabilised P 1 − P 1 element: the fluid pressure and the solid
pressure are continuous and piecewise linear on the triangulation. The inf-
sup condition for stability does not hold unless the incompressibility condition
in the fluid, ∇ · u = 0, is changed to −ǫ∆p +∇ · u = 0, (see [5] for details).
It amounts to adding ǫ∇pn+1∇p̂ next to the term with µf in the variational
formulations. Then (3.8) holds (see Figue 3.1) and the proof of the spatially
continuous case can be adapted leading to (3.7) with an additional viscous
term ǫ|∇pn+1|2 next to the term with µf .

Remark 3. Because of energy preservation scheme (3.1), implemented via
a fixed point algorithm as in (2.7), generates bounded sequences ρ,u, qi; it
seems safe to assess that out of these bounded subsequences will converge to
a solution of the problem discretized in space but continuous in time when
δt → 0.
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T k
0

T k
n T k

n+1

Xn

Y
n+1

Xn+1

qjn q
j
n+1 Figure 3.1: Sketch to understand if

Xn = Y
n+1

◦ Xn+1 holds with the
P 1

− P1 stabilised element. A trian-
gle T k

0 in the reference domain (cho-
sen here to be its initial position at
time zero) becomes triangle T k

n at tn
and T k

n+1 at time tn+1: T
k
n = Xn(T k

0 )
and T k

n+1 = Xn+1(T k
0 ) Vertices are

preserved by these transformations.

4 Numerical Tests

In our tests we have used the P 2 − P 1 element, confident that it will behave
as well as the stabilised P 1 − P1 element as indicated in [20].

4.1 The Cylinder-Flag Test

A compressible hyperelastic Mooney-Rivlin material, shaped as a rectangle of
size [0, l]× [0, h], is attached behind a cylinder of radius r and beats in tune
with the Karman vortices of the wake behind the cylinder; the fluid in the
computational rectangular domain [0, L] × [0, H ] enters from the left and is
free to leave on the right. The center of the cylinder is at (c, c) (see figure
1.1). In [14] the following numerical values are suggested:

Geometry l = 0.35, h = 0.02, L = 2.5, H = 0.41, c = 0.2 which puts the
cylinder slightly below the symmetry line.

Fluid density ρf = 103kg/m3 and a reduced viscosity νf =
µf

ρf
= 10−3m2/s;

inflow horizontal velocity u(0, y) = Ū

(

6

H2
y(H − y), 0

)T

is a parabolic

profile with flux ŪH . Top and bottom boundaries are walls with no-slip
conditions.

Solid E = 2µ(1 + σ)/ρs, σ = 0.4, λ =
Eσ

(1 + σ)(1− 2σ)
.

Initial velocities and displacements are zero. In all cases the same mesh is
used initially with 2500 vertices. The time step is 0.005.

4.1.1 Free Fall of a Thick Flag

The gravity is g = 9.81 in Ωt. When Ū = 0, µ = 0.135106 and ρs = 20ρf ,
the flag falls under its own weight; it comes to touch the lower boundary with
zero velocity at time 0.49 and then moves up under its spring effect. This test
is named FLUSTRUK-FSI-2∗ in [14] but we have used a different value for µ
because the one reported in [14] seems unlikely.

Figure 4.1 shows a zoom around the flag at the time when it has stopped
to descend and started to move upward. Pressure lines are drawn in the flow
region together with the mesh and the velocity vectors in the flag and drawn
at each vertex. Figure 4.2 shows the coordinates of the upper right tip of the
flag versus time.
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