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Abstract

The conservation laws of continuum mechanic written in an Eulerian frame
make no difference between fluids and solids except in the expression of the
stress tensors, usually with Newton’s hypothesis for the fluids and Helmholtz
potentials of energy for hyperelastic solids. By taking the velocities as un-
known, monolithic methods for fluid structure interactions (FSI) are built. In
this article such a formulation is analyzed when the fluid is compressible and
the fluid is incompressible. The idea is not new but the progress of mesh gener-
ators and numerical schemes like the Characteristics-Galerkin method render
this approach feasible and reasonably robust. In this article the method and
its discretization are presented, stability is discussed by through an energy
estimate. A numerical section discusses implementation issues and presents a
few simple tests.

AMS classification 65M60 (74F10 74S30 76D05 76M25).

Introduction

Currently two methods dominate FSI science: Arbitrary Lagrangian Eulerian
methods especially for thin structures [28][32] and immersed boundary meth-
ods (IBM)[29][10], for which the mathematical analysis is more advanced[5]
but the numerical implementations lack behind. ALE for large displace-
ments have meshing difficulties [25] and to a lesser extent with the matching
conditions at the fluid-solid interface[23]. Furthermore, iterative solvers for
ALE-based FSI methods which rely on alternative solutions of the fluid and
the structure parts are subject to the added mass effect and require special
solvers[15][7].

Alternatives to ALE and IBM are few. One old method [2][3] has resur-
faced recently, the so-called actualized Lagrangian methods for computing
structures [22] [26] (see also [9] although different from the present study
because it deals mostly with membranes).

∗Written in honor of Philippe Ciarlet for his 80th birthday.
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Continuum mechanics doesn’t distinguish between solids and fluids till it
comes to the constitutive equations. This has been exploited numerically
in several studies but most often in the context of ALE[24][20][34].

In the present study, which is a follow up of [31] and [18], we investigate
what Stephan Turek[20] Heil[19] and Wang[36] call a monolithic formulation
but here in an Eulerian framework, as in [12][13][33][14], following the dis-
placed geometry of the fluid and the solid. In [12] the authors obtained ex-
cellent results with the fully Eulerian formulation adopted here but at the
cost of meshing difficulties to handled the Lagrangian derivatives. Here we
advocated the Characteristic-Galerkin method and obtain an energy estimate
which is not a proof of stability but a prerequisite for it.

1 Conservation Laws

Let the time dependent computational domain Ωt be made of a fluid region

Ωft and a solid region Ωst with no overlap: Ωt = Ω
f
t ∪ Ω

s
t , Ωft ∩ Ωst = ∅ at any

times t ∈ (0, T ). At initial time Ωf0 and Ωs0 are prescribed.

Let the fluid-structure interface be Σt = Ω
f
t ∩ Ω

s
t and the boundary of Ωt

be ∂Ωt. The part of ∂Ωt on which either the structure is clamped or there is
a no slip condition on the fluid, that part is denoted by Γ and assumed to be
independent of time.

The following standard notations are used (see [8],[27],[2],[20],[24],[1]):

• X : Ω0 × (0, T ) 7→ Ωt: X(x0, t), the Lagrangian position at t of x0.

• u = ∂tX, the velocity of the deformation,

• F = ∇TX = ((∂x0
i
Xj)), the Jacobian of the deformation,

• J = detF.

We denote by trA and detA the trace and determinant of A. To describe the
fluid structure system we need the following:

• ρ = 1
Ω

f
t
ρf + 1Ωs

t
ρs, the density,

• σ = 1
Ω

f
t
σf + 1Ωs

t
σs, the stress tensor,

• f(x, t) the density of volumic forces at x, t.

• d = X(x0, t)− x0, the displacement.

Finally and unless specified all spatial derivatives are with respect to x ∈ Ωt
and not with respect to x0 ∈ Ω0. If φ is a function of x = X(x0, t), x0 ∈ Ω0,

∇x0φ = [∂x0
i
φ] = [∂x0

i
Xj∂xjφ] = FT∇φ.

When X is one-to-one and invertible, d and F can be seen as functions of
(x, t) instead of (x0, t). They are related by

FT = ∇x0X = ∇x0(d+ x0) = ∇x0d+ I = FT∇d+ I, ⇒ F = (I−∇d)−T

Time derivatives are related by

Dtφ :=
d

dt
φ(X(x0, t), t)|x=X(x0,t) = ∂tφ(x, t) + u · ∇φ(x, t).

It is convenient to introduce the notation

Du = ∇u +∇Tu.
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Figure 1.1: The geometry of the FLUSTRUK test[14]. The cylinder (in black)
is fixed but the flagella is a compressible Mooney-Rivlin material clamped to the
cylinder by its left boundary; the outer rectangle is filled with a fluid which enters
from the left Γin and leaves on the right Γout; the horizontal boundaries of the outer
rectangle are walls, so they form together with the cylinder the boundary Γw. The
flagella is at time zero a rectangle of size l × h. The outer rectangle has L×H for
dimensions. The center of the circle representing the cylinder is at (c, c) when the
lower left corner of the outer boundary is (0, 0); the cylinder radius is r.

Conservation of momentum and conservation of mass take the same form for
the fluid and the solid:

ρDtu = f +∇ · σ, d

dt
(Jρ) = 0,

So Jρ = ρ0 at all times and

J−1ρ0Dtu = f +∇ · σ in Ωt, ∀t ∈ (0, T ), (1.1)

with continuity of u and of σ ·n at the fluid-structure interface Σ in absence
of interface constraints. There are also unwritten constraints pertaining to
the realizability of the map X (see [8],[27]). Note that incompressibility in the
fluid implies J |

Ω
f
t

= 1 and so ρf = ρf0 constant in Ωft .

1.1 Constitutive Equations

.

• For a Newtonian incompressible fluid : σf = −pfI + µfDu

• For an hyperelastic material : σs = ρs∂FΨFT

where Ψ is the Helmholtz potential which, in the case of a St-Venant-Kirchhoff
material, is [8]

Ψ(F) =
λs

2
tr2

E + µstrE2 , E =
1

2
(FTF− I) (1.2)

It is easy to see that trE = 1
2
trFTF − 1 and

∂FtrFTF = ((∂Fij

∑
m,n

F 2
m,n)) = 2F ⇒ ∂FtrE = F
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∂Ftr(FTF)2 = ((∂Fij

∑
n,m,p,k

Fn,kFn,mFp,mFp,k)) = 4FFTF (1.3)

which implies that ∂FtrE2 = 2FE. Therefore

∂FΨ(F)FT = (λstrEF + 2µsFE)FT

which in turn implies that

σs = ρsF(λstrE + 2µsE)FT = J−1ρs0F(λstrE + 2µsE)FT

Proposition 1. Let

γ = trFFT = (2− 2∇ · d + |∇d|2)J2, γ̃ = γJ−2

where |A| =
∑
ij A

2
ij. The following holds

σs = ρs
(
aI + 2b(Dd−∇d∇Td)

)
, with

a = λs(
1

2
γ − 1)(γ̃ − 1) + µs(γ − J2 − 1)γ̃,

b =
1

2
(
λs

2
+ µs)(γ − 1)− λs

4
(1.4)

Proof
First note that if B = FFT then

σs = ρs
[
[λs(

1

2
γ − 1)− µs]B + µsB2

]
(1.5)

Now by the Cayley- Hamilton theorem in 2 dimensions, B2 − γB + J2I = 0.
As B−1 = I −Dd +∇d∇Td let C = I−B−1 = Dd−∇d∇Td. Then

B = γI− J2B−1 = (γ − J2)I + J2C, B2 = (γ2 − (1 + γ)J2)I + γJ2C.(1.6)

Therefore

σs = ρs
[
[λs(

1

2
γ − 1)− µs][(γ − J2)I + J2C] + µs[(γ2 − (1 + γ)J2)I + γJ2C]

]
= ρs

[
[(λs(

1

2
γ − 1))(γ − J2)

+ µsγ(γ − 1− J2)]I + [λs(
1

2
γ − 1) + µs(γ − 1)]J2C

]
(1.7)

�

1.2 Variational Monolithic Eulerian Formulation

Consequently one must find (u, p) with u|Γ = 0, d and Ωrt , r = s, f , solution
for all (û, p̂) with û|Γ = 0 of

∫
Ω

f
t

[
ρfDtu · û− p∇ · û− p̂∇ · u +

µf

2
Du : Dû

]
+

∫
Ωs

t

ρs
[
Dtu · û + b(Dd−∇d∇Td) : Dû + a∇ · û

]
=

∫
Ωt

f · û

Dtd = u, and {ẋ(t) = u(x(t), t), x(0) = x0 ∈ Ωr0 ⇒ x(t) ∈ Ωrt}.

(1.8)

Existence of solution up to time T ∗ is shown in [4] (see also [11][35]) for a
non clamped structure provided a regularization term is added to insure that
the solution satisfies ∂td ∈ H(Ω); T ∗ is such that the solid does not touch the
boundary and Σt does not buckle.
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2 Numerical Scheme

For the stability of the numerical scheme one must extract from a∇ · û in the
above variational formulation a term proportional to (∇ · d)(∇ · û).

Notice that

J2 = 1 + 2∇ · d− 2det∇d + 3(∇ · d)2 + o(|∇d|2)

γ = 2(1 +∇ · d + (∇ · d)2 +
1

2
|∇d|2 − 2det∇d) + o(|∇d|2)

(
γ

2
− 1)(γ̃ − 1) = ∇ · d− (∇ · d)2 − 1

2
|∇d|2 − 2det∇d + o(|∇d|2) (2.1)

So it makes sense to define

c = a− λs∇ · d (2.2)

To prepare the time discretization of (1.8) with a given time step δt, let

d̃ = d− δtu

Then (1.8) becomes

∫
Ω

f
t

[
ρfDtu · û− p∇ · û− p̂∇ · u +

µf

2
Du : Dû

]
+

∫
Ωs

t

ρsδt
[
b(Du−∇d̃∇Tu−∇u∇T d̃ + δt∇u∇Tu) : Dû + λs∇ · u ∇ · û

]
+

∫
Ωs

t

ρs
[
Dtu · û + b(Dd̃−∇d̃∇T d̃) : Dû + (c+ λs∇ · d̃)∇ · û

]
=

∫
Ωt

f · û

Dtd = u,

2.1 Discretization of Total Derivatives

Let Ω ⊂ Rd, u ∈ H1
0(Ω) = (H1

0 (Ω))d, (d = 2 here), t ∈ (0, T ) and x ∈ Ω.
Then let χtu,x(τ) be the solution at time τ of

χ̇(τ) = u(χ(τ), τ) with χ(t) = x.

If u is Lipschitz in space and continuous in time the solution exists. The
Characteristics-Galerkin method relies on the concept of total derivative:

Dtv(x, t) :=
d

dτ
v(χ(τ), τ)|τ=t = ∂tv + u · ∇v.

Given a time step δt, let us approximate

χ
(n+1)δt

un+1,x
(nδt) ≈ Yn+1(x) := x− un+1(x)δt

Remark 1. Note that

Jn+1 := det∇Yn+1 = 1−∇ · un+1δt+ det∇un+1δt
2.

Remark 2. Note also that, as ρr is convected by u, r = f, s, that is
ρr(χtu,x(τ), τ) = ρr(x, t), so a consistent approximation is

ρrn ◦ Yn+1(x) = ρrn+1(x), x ∈ Ωrn+1.

Thus discretizing the total derivative of u or ρu will give the same scheme.

ρn+1
un+1 − un ◦ Yn+1

δt

∣∣∣∣
x

=
ρn+1u

n+1 − (ρnu
n) ◦ Yn+1

δt

∣∣∣∣
x
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2.2 Updating the fluid and solid domain

From the definition of Y notice that the only way to be consistent is to define
Ωn+1 with un+1, i.e. implicitly since the later is defined also on Ωn+1:

Ωn+1 = (Yn+1)−1(Ωn) = {x : Yn+1(x) := x− un+1(x)δt ∈ Ωn}

2.3 The Fully Time Discretized Scheme

Let

dn+1 = d̃n + δtun+1, with d̃n := dn ◦ Yn+1 (2.3)

Let b̃n, c̃n be given by (1.4,2.2) computed with d̃n. The following defines
un+1, pn+1: un+1|Γ = 0 and ∀û, p̂, with û|Γ = 0,

∫
Ωn+1

ρn+1
un+1 − un ◦ Yn+1

δt
· û

+

∫
Ω

f
n+1

[
− pn+1∇ · û− p̂∇ · un+1 +

µf

2
Dun+1 : Dû

]
+

∫
Ωs

n+1

ρsn+1δt
[
b̃n(Dun+1 −∇d̃n∇Tun+1 −∇un+1∇T d̃n) : Dû

+λs∇ · un+1∇ · û + δtb̃n∇un+1∇Tun+1 : Dû
]

+

∫
Ωs

n+1

[
b̃n(Dd̃n −∇d̃n∇T d̃n) : Dû + (c̃n + λs∇ · d̃n)∇ · û

]
=

∫
Ωn+1

f · û

(2.4)

2.4 Iterative Solution by Fixed Point

The most natural method to solve the above is to freeze some coefficients so
as to obtain a well posed linear problem and iterate:

1. Set ρ = ρn, Ω = Ωn,u = un,Y(x) = x− uδt.

2. Solve

∫
Ω

ρ
un+1 − un ◦ Y

δt
· û

+

∫
Ωf

[
− pn+1∇ · û− p̂∇ · un+1 +

µf

2
Dun+1 : Dû

]
+

∫
Ωs

ρsδt
[
b̃n(Dun+1 −∇d̃n∇Tun+1 −∇un+1∇T d̃n) : Dû

+λs∇ · un+1∇ · û + δtb̃n∇u∇Tu : Dû
]

+

∫
Ωs

[
b̃n(Dd̃n −∇d̃n∇T d̃n) : Dû + (c̃n + λs∇ · d̃n)∇ · û

]
=

∫
Ω

f · û

(2.5)

3. Set u = un+1,Y(x) = x − uδt,Ωr = Y−1(Ωrn), r = s, f,Ω = Ωf ∪ Ωs,
recompute ρ, b, c with un+1

4. If not converged return to Step 2.

Notice that (2.5) is a well posed linear problem whenever

A(u, û) =

∫
Ωs

[
b(Du−∇d̃n∇Tu−∇u∇T d̃n) : Dû + λs∇ · u∇ · û

]
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is coercive. Then (2.5) gives a solution bounded in H1(Ω) and converging

subsequences can be extracted from ρn+1,u
n+1,Ωrn+1 when Ω̄ = Ωfn ∪ Ωsn is

fixed. Then convergence would occur if we could prove that Ωrn+1 converges
to an open set.

2.5 Spatial Discretization with Finite Elements

Let T 0
h be a triangulation of the initial domain. Spatial discretization can be

done with the most popular finite element for fluids: the Lagrangian trian-
gular elements of degree 2 for the space Vh of velocities and displacements
and Lagrangian triangular elements of degree 1 for the pressure space Qh
provided that the pressure be different in the structure and the fluid because
the pressure is discontinuous at the interface Σ; therefore Qh is the space of
piecewise linear functions on the triangulation continuous in Ωrn+1, r = s, f .
A small penalization with parameter ε must be added to impose uniqueness
of the pressure.

This leads us to find un+1
h ∈ Vh0Γ , pn+1

h ∈ Qh, Ωn+1 such that for all
ûh, p̂h ∈ Vh0Γ ×Qh with

d̃nh := dnh ◦ Yn+1, where Yn+1(x) = x− un+1
h (x)δt,

the following holds:

a(b̃n, c̃n;un+1, û) :=

∫
Ωn+1

ρn+1
un+1
h − unh ◦ Yn+1

δt
· ûh

+

∫
Ω

f
n+1

[
− pn+1∇ · ûh − p̂∇ · un+1

h +
µf

2
Dun+1

h : Dûh
]

+

∫
Ωs

n+1

ρsn+1δt
[
b̃n(Dun+1

h −∇d̃nh∇Tun+1
h −∇un+1

h ∇T d̃nh) : Dûh

+λs∇ · un+1
h ∇ · ûh

]
+

∫
Ωs

n+1

[
b̃n(Dd̃nh −∇d̃nh∇T d̃nh) : Dûh + (c̃n + λs∇ · d̃nh)∇ · ûh

]
=

∫
Ωn+1

f · ûh, Ωn+1 = (Yn+1)−1(Ωn) = {x : Yn+1(x) ∈ Ωn}.

(2.6)

Then d is updated by

dn+1
h = d̃nh + δtun+1

h ,

2.6 Implementation

The various tests we made lead us to recommend the following:

• Move the vertices of the mesh in the structure by the velocity:

qn+1
i = qni + un+1

h (qn+1
i )δt (2.7)

which, as explained above has to be implemented through an iterative
process.

• Remesh the fluid part at each iteration with a Delaunay-Voronoi mesh
generator from the boundary vertices.
This required the development of a specific module to identify compu-
tationally the vertices of the fluid-structure interface Σ, which are then
input to the fluid mesh generator.
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• In doing so, the discrete topological properties of the structural part are
preserved and we have the important property that the value d[i] of d
at vertex qi in the computer implementation of d by an array of values
at the nodes, satisfies

dn+1[i] = dn[i] + δtun+1[i], ∀i.

In other words dn ◦Yn+1 is dn[i] when the vertices are moved by (2.7).

3 Energy Estimate

3.1 Stability of the Scheme Discretized in Time

To conserve energy we need to change the scheme (2.6) slightly

a(b̃n, c̃n;un+1, û) =

∫
Ωn+1

f · ûh →

a(bn+1, cn+1;un+1, û) + δt2
∫

Ωs
n+1

ρsn+1bn+1∇un+1
h ∇Tun+1

h : Dûh

=

∫
Ωn+1

f · ûh (3.1)

Lemma 3.1. The mapping Xn : Ω0 7→ Ωn is given by Xn+1 = (Yn+1)−1◦Xn,
n ≥ 1 and the jacobian of the transformation is Fn := ∇Tx0

Xn = (I−∇dn)−T .

Proof
Notice that Y1(Y2(..Yn−1(Yn(Ωn))..)) = Ω0 Hence

Xn+1 = [Y1(Y2(..Yn(Yn+1)))]−1 = (Yn+1)−1 ◦Xn.

By definition of dn+1 in (2.3)

dn+1(Xn+1(x0)) = dn(Yn+1(Xn+1(x0))) + un+1(Xn+1(x0))δt
= dn(Xn(x0)) + un+1(Xn+1(x0))δt, (3.2)

so Xn+1(x0) = dn+1(Xn+1(x0)) + x0 and therefore

Fn+1 = ∇tx0
(dn+1((Xn+1(x0))) + x0),

= ∇dn+1TFn+1 + I ⇒ Fn+1 = (I−∇dn+1)−T (3.3)

�
Note that (3.2) shows also that

Fn+1 = Fn + δt∇Tx0
un+1 (3.4)

Lemma 3.2. With Ψ defined by (1.2),∫
Ωs

n+1

ρsn+1

[
bn+1(Ddn+1 −∇dn+1∇Tdn+1) : Dû + an+1∇ · û

]
=

∫
Ωs

0

∂FΨn+1 : ∇x0 û (3.5)

Proof By Propositions 3.1 and 1∫
Ωs

n+1

ρsn+1

(
an+1I + 2bn+1(Ddn+1 −∇dn+1∇Tdn+1)

)
: ∇û
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=

∫
Ωs

n+1

σsn+1 : ∇û =

∫
Ωs

n+1

[
ρsn+1∂FΨFT

]
|n+1 : ∇û

=

∫
Ωs

n+1

[
J−1
n+1ρ

s
0∂FΨFT

]
|n+1 : ∇û =

∫
Ωs

0

ρs0∂FΨn+1 : ∇û (3.6)

�
Theorem 3.3. When f = 0 and ρ is constant in each domain Ωrn, r = s, f ,
the numerical scheme (3.1) has the following property:∫

Ωn

ρn
2
|un|2 + δt

n∑
k=1

∫
Ω

f
k

ν

2
|Duk|2 +

∫
Ωs

0

Ψn ≤
∫

Ω0

ρ0

2
|u0|2 +

∫
Ωs

0

Ψ0 (3.7)

Proof Let r = s or f . Let us choose û = un+1 in (2.6). By Schwartz
inequality

∫
Ωr

n+1

(ρrnu
n)◦Yn+1·un+1 ≤

(∫
Ωr

n+1

(
√
ρr
n
(un)2 ◦ Yn+1

) 1
2
(∫

Ωr
n+1

ρrn+1u
n+12

) 1
2

because ρrn ◦ Yn+1(x) = ρrn+1(x), x ∈ Ωrn+1. So by a change of variable∫
Ωr

n+1

ρrn+1(un ◦ Yn+1)2 =

∫
Ωr

n+1

(
√
ρrnu

n)2 ◦ Yn+1 =

∫
Ωr

n

ρrnu
n2

Consequently, using ab ≤ 1
2
a2 + 1

2
b2,∫

Ωr
n+1

ρrn+1u
n ◦ Yn+1 · un+1 ≤ 1

2

∫
Ωr

n

ρrnu
n2 +

1

2

∫
Ωr

n+1

ρrn+1u
n+12

Finally,∫
Ωn+1

ρn+1

2
|un+1|2 + δt

∫
Ω

f
n+1

ν

2
|Dun+1|2 +

∫
Ω0

Ψn+1

≤
∫

Ωn

ρn
2
|un|2 +

∫
Ω0

Ψn(3.8)

�

3.2 Conservation of Energy for the Time and Space
Discrete Scheme

The proof for the spatially continuous case will work for the discrete case if

Xn = Xn+1 ◦ Yn+1. (3.9)

As discussed in [18] it may be possible to program an isoparametric P 2 −
P 1 element for which (3.9) but it is certainly far from easy. On the other
hand, consider the P 1

3 −P 1 element: the fluid pressure and the solid pressure
are continuous and piecewise linear on the triangulation and each ”pressure-
triangle” is divided into 3 smaller triangles by a a fourth vertex anywhere
inside the triangle; on this refined triangulation the velocity is continuous
piecewise linear.

Then (3.9) holds and the proof of the spatially continuous case can be
adapted. The inner vertex used to construct the fluid mesh will be moved by
Yn+1 but Xn+1 ◦Yn+1 remains linear and for each triangle T kn = Yn+1(T kn+1).
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T k
0

T k
n T k

n+1

Xn

Yn+1

Xn+1

qjn qjn+1

Figure 3.1: Sketch to understand if Xn = Yn+1 ◦ Xn+1 holds with the P 1
3 − P1

element where each triangle is divided into four subtriangles on which the velocities
are P 1 and continuous. A triangle T k

0 in the reference domain (chosen here to be
its initial position at time zero) becomes triangles T k

n and T k
n+1: T k

n = Xn(T k
0 ) and

T k
n+1 = Xn+1(T k

0 ) Vertices are preserved by these transformations. However the
inner vertex does not stay in the center of the pressure triangle, which is alright so
lang as it stays with the triangle.

Remark 3. Because of energy preservation scheme (3.1), implemented via
a fixed point algorithm as in (2.5), generates bounded sequences ρ,u, qi; it
seems safe to assess that out of these bounded subsequences will converge to
a solution of the problem discretized in space but continuous in time when
δt→ 0.

4 Numerical Tests

In our tests we have used the P 2 − P 1 element, confident that it will behave
as well as the 3P 1 − P1 element as indicated in [18].

4.1 The Cylinder-Flagella Test

A compressible hyperelastic Mooney-Rivlin material, shaped as a rectangular
flagella of size [0, l]× [0, h], is attached behind a cylinder of radius r and beats
in tune with the Karman vortices of the wake behind the cylinder; the fluid in
the computational rectangular domain [0, L]× [0, H] enters from the left and
is free to leave on the right. The center of the cylinder is at (c, c) (see figure
1.1). In [12] the following numerical values are suggested:

Geometry l = 0.35, h = 0.02, L = 2.5, H = 0.41, c = 0.2 which puts the
cylinder slightly below the symmetry line.

Fluid density ρf = 103kg/m3 and a reduced viscosity νf =
µf

ρf
= 10−3m2/s;

inflow horizontal velocity u(0, y) = Ū

(
6

H2
y(H − y), 0

)T
is a parabolic

profile with flux ŪH. Top and bottom boundaries are walls with no-slip
conditions.

Solid E = 2µ(1 + σ)/ρs, σ = 0.4, λ =
Eσ

(1 + σ)(1− 2σ)
.

Initial velocities and displacements are zero. In all cases the same mesh is
used initially with 2500 vertices. The time step is 0.005.
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4.1.1 Free Fall of the Flagella

When Ū = 0, µ = 0.135106 and ρs = 20ρf , the flagella falls under its own
weight; it comes to touch the lower boundary with zero velocity at time 0.49
and then moves up under its spring effect. This test is named FLUSTRUK-
FSI-2∗ in [12] but we have used a different value for µ because the one reported
in [12] seems unlikely.

Figure 4.1 shows a zoom around the flagella at the time when it has stopped
to descent and started to move upward. Pressure lines are drawn in the flow
region together with the mesh and the velocity vectors in the flagella and
drawn at each vertex. Figure 4.2 shows the coordinates of the upper right tip
of the flagella versus time.

Figure 4.1: FLUSTRUK-FSI-2∗[12]. Zoom near the flagella at t=0.495 just as it
begins to move up after the fall under its own weight in a flow initially at rest.Mesh
and Pressure lines are shown in the fluid and velocity vectors in the solid.
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Figure 4.2: FLUSTRUK-FSI-2∗ test of [12]. Position of the upper right corner of
the flagella versus time: x vs t on the left and y vs t on the right.

4.1.2 Flow past a Cylinder with a Flagella Attached

This test is known as FLUSTRUK-FSI-3 in [12]. The geometry is the same
as above but now Ū = 2, µ = 2106 and ρs = ρf . After some time a Karman-
Vortex alley develops and the flagella beats accordingly. Results are shown



12 O. Pironneau

on figures 4.3 and 4.4; the first one displays a snapshot of the velocity vector
norms and the second the y-coordinate versus time of the top right corner of
the flagella.

Figure 4.3: FLUSTRUK-FSI-3 Test. Color map based on the norm of the fluid and
solid velocity vectors

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

Figure 4.4: FLUSTRUK-FSI-3 Test. Vertical position of the upper right tip of the
flagella versus time shown up to t=5

These numerical results compair reasonably well with those of [12]. The
frequency is 5s−1 compared to 5.04 and the maximum amplitude 0.031 com-
pared with 0.032. However the results are sensitive to the time step.

Conclusion

A fully Eulerian fluid-structure formulation has been presented for compress-
ible materials with large displacements, discretized by an implicit first order
Euler Scheme and the 3P 1 − P1 or P2 − P1 elements. An energy estimate
has been obtained which guarantees the stability of the scheme so long as the
motion of the vertices does not flip-over a triangle. The method has been
implemented with FreeFem++[17]. It is reasonably robust when the vertices in
the structure are moved by their velocities and the fluid is remeshed with an
automatic Delaunay mesh generator. The method is first order in time and
therefore somewhat too diffusive for delicate tests. It needs to be extended to
3D and to second order in time discretization.
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