
HAL Id: hal-01348637
https://hal.science/hal-01348637v1

Submitted on 29 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Jolinar: Analysing the Energy Footprint of Software
Applications (Demo)

Adel Noureddine, Syed Islam, Rabih Bashroush

To cite this version:
Adel Noureddine, Syed Islam, Rabih Bashroush. Jolinar: Analysing the Energy Footprint of Software
Applications (Demo). The International Symposium on Software Testing and Analysis, Jul 2016,
Saarbrücken, Germany. pp.Pages 445-448, �10.1145/2931037.2948706�. �hal-01348637�

https://hal.science/hal-01348637v1
https://hal.archives-ouvertes.fr


Jolinar: Analysing the Energy Footprint of Software
Applications (Demo)

Adel Noureddine, Syed Islam, and Rabih Bashroush
School of Architecture, Computing and Engineering

University of East London
London, United Kingdom

a.noureddine@uel.ac.uk, syed.islam@uel.ac.uk, r.bashroush@qub.ac.uk

ABSTRACT
Monitoring energy consumption of applications is crucial for
energy optimisation and improvements in software systems.
With the recent emphasis on energy efficiency, it is vital
that software engineers have an understanding of the energy
consumed by the code they write. In this paper, we present
Jolinar, a tool that bridges the gap between energy mea-
surements and accessibility to software engineers and even
end-users. The tool builds on top of recent energy models to
provide an accurate, light and easy-to-use interface for en-
ergy measurements. The target audience of Jolinar is both
software engineers and non-technical end-users who want to
monitor their applications’ energy footprint. We show that
end-users can use Jolinar’s GUI to determine the energy
consumed by the software they are using, and software en-
gineers can use the tool to analyse energy consumption of
systems to make energy-conscious decisions.

CCS Concepts
•Hardware → Power estimation and optimization;
•Software and its engineering→ Empirical software val-
idation;

Keywords
Energy Footprint; Program Analysis

1. INTRODUCTION
With the proliferation of computer devices, the rate of en-

ergy consumption of Information and Communication Tech-
nologies (ICT) is rising at an alarming rate. It is esti-
mated that ICT consumption will rise from 168 to 433 Gi-
gawatts (7% to 14.5%) by 2020 [1]. Greenhouse Gas emis-
sions (GHG) from ICT are also expected to double to 1430
MtCO2e within the same period [2], highlighting the need
for more energy efficient hardware and designing sustainable
software.

For developers to be able to enhance efficiency and opti-
mise performance of software systems, they need to be able
to measure energy consumption in order to identify bottle-
necks, hotspots or energy smells in the code. Energy effi-
ciency is an emerging software engineering quality that soft-
ware architects consider as a major architectural concern in
the next five years [3].

In addition to traditional software properties often cited
to aid in program analysis and understanding [4], it is vital
for software engineers to understand the energy consumed by
their application and is an important part for program anal-
ysis and comprehension [5]. This is further highlighted by
the recent treatment of energy consumption as a significant
non-functional property in both industry and academia.

Accordingly, monitoring and optimising the energy con-
sumption of software systems have gained considerable trac-
tion over the last few years. Researchers and practitioners
are focusing on accurate models to estimate the energy con-
sumption of software, which sometimes includes the use of
complex formulas or additional hardware. However, limited
research has been conducted on accessible tools to aid such
effort and raise the awareness [6].

In this paper, we demonstrate Jolinar, our energy mon-
itoring tool. Jolinar is an easy-to-use software tool that
allows developers understand the energy consumed by their
application. It is designed to be accessible by non-technical
users and software engineers alike, providing an intuitive
graphical user interface and a command-line tool for easy
inclusion in external frameworks.

2. MOTIVATION & RELATED WORK
Current approaches for monitoring energy range from hard-

ware devices to power models and tools [7]. Hardware-based
solutions, such as power meter devices and dedicated inte-
grated circuits or sensors, demand additional investment,
complex installations, and, treat the entire system as a black
box. Tools, such as pTop, PowerSpy, PowerAPI, JouleMe-
ter or Energy Checker provide power and energy insights
into software energy footprint but at the cost of limiting us-
ability. For instance, some require a power meter in order
to calibrate their models, or for runtime energy monitoring
(PowerAPI, PowerSpy, JouleMeter). Others require modi-
fications to applications’ source code or patching parts of
the operating system to effectively monitor software energy
consumption (pTop, Energy Checker). While these modi-
fications and additional investments might be accessible to
researchers, this acts as a potential barrier for developers
and end-users. This problem is further compounded by the



lack of access to physical hardware in modern software devel-
opment cycles where deployment is moving to the cloud [8].
Jolinar addresses these challenges by providing a light-

weight and easy to install and use energy monitoring tool.
Jolinar requires no power meter or source code modifica-
tions enabling easy incorporation into any analysis toolkit.
The visual information provided by Jolinar is pragmatic
for precise energy data, while deploying familiar indicators
and gauges that the non-energy experts can easily grasp.

3. JOLINAR DESIGN
Jolinar is based on our energy models [9]. These models

were implemented in a system library tool called PowerAPI.
PowerAPI was developed as an energy library that provides
an API and is designed to scale to monitor multiple applica-
tions at the same time. It runs on personal computers and
servers alike, but requires time consuming setup and an ad-
vanced level of technical and programming expertise to run,
effectively making it difficult to use for end-users.
Jolinar bridges this gap between accurate energy esti-

mations and usability. It monitors single applications at a
time (with a limitation of one process per application), is
easy to deploy and incorporate into an external framework
and is also able to provide data in an easy to understand
format. Our estimation models are based on hardware char-
acteristics and software resource utilisation. The former are
retrieved from publicly available OEM specifications, while
resource utilisation is monitored at runtime with the help of
metrics collected by the operating system. Our model uses
this information to estimate the overall energy consumption
of applications at runtime, as well as at the individual hard-
ware component level. For example, we can estimate the
total energy consumed by a particular application, and the
breakdown per CPU, hard disk and memory components.

The estimation approach starts by monitoring hardware
resource utilisation, such as the current frequency of the
CPU or the number of bytes read or written to the hard disk.
Next, OEM hardware specification data, along with resource
utilisation information, are used by our estimation models
to calculate the energy consumed by hardware components.
Then, Jolinar monitors resource utilisation of the applica-
tion, such as the CPU time or cycles used, and the number of
bytes read or written. Finally, this information is used by the
energy models to estimate the overall software energy con-
sumption. Figure 1 summarises our energy estimation ap-
proach. Our CPU energy model [9] takes into consideration
modern processors’ characteristics, such as DVFS (Dynamic
Voltage and Frequency Scaling), CPU’s TDP (Thermal De-
sign Power) and real-time processor frequency and voltage
changes. The power consumption is calculated every 500
milliseconds, following power variation whenever frequency
or voltage changes. Disk and memory energy models use a
similar approach of capturing resources and estimating en-
ergy consumption. Disk energy model uses the number of
bytes read and written by the application, while the memory
mode uses the percentage of RAM memory occupied by the
application.

Our energy models were validated with an error margin
of around 3% on average [9]. However, we are aware that
energy estimations may lose some accuracy on most recent
releases of hardware. Jolinar is designed in a modular way
where modules for energy models are independent of the
user interface. Accordingly, when new energy models are

Figure 1: Jolinar’s energy estimation approach.

Figure 2: A successful energy monitoring by Jolinar.

designed to increase accuracy for latest hardware releases,
Jolinar can easily be updated to reflect such changes.

4. END-USER USE CASE USING GUI
This section introduces the interface design and an end-

user use case interaction of Jolinar. Figures 2, and 3, dis-
play an example of using Jolinar GUI to monitor the en-
ergy consumed by FileZilla, an FTP client on GNU/Linux.
A typical use case where an end–user wants to understand
the amount of energy consumed by usage of software.
Jolinar was designed to be an easy to install and use

tool. The tool is distributed as executable Jar, .deb and .rpm
packages where dependencies are automatically managed.
As such, no compilation or command line instructions are
required as the tool is packaged in .deb or .rpm packages.

The initial view of Jolinar is divided into two areas: the
input box for choosing the application to monitor, and the
visual output display, which shows the energy consumed by
the application (Figure 2). Users simply need to indicate
the name of the application to start monitoring. Jolinar

launches the application and starts monitoring its energy
consumption instantaneously. This presents the best trade-
off between swiftness, monitoring and accessibility avoiding
the need to deal with process ids. We chose to use a text



Figure 3: Jolinar’s settings view.

box to input the application name instead of a list to choose
from, or permanently monitoring all applications, because
this option presents the best trade-off between swiftness of
monitoring and accessibility. Therefore, there is no need for
software modification, memorising the application’s process
ID, or fiddling with a long list of monitored applications to
find the one the user needs.

The second tab in Jolinar’s GUI window is where users
can specify the settings and configuration information needed
for the application and the energy models (Figure 3). Our
models use hardware specification data that are usually pro-
vided by hardware OEMs, such as the TDP, frequency and
voltage, or read/write power rates. An option to generate
logs is also available for developers and will store runtime
software power consumption (in Watts) each 500 millisec-
onds. When Jolinar launches the application and starts
monitoring, it will do so in the background without im-
pacting the performance of the application. Users can then
use their software normally. On exit, Jolinar displays the
energy estimations in both numerical values (in Joule and
percentage) and using visual feedback. Energy estimations
are broken into individual hardware components along with
the total energy consumed by the application. This provides
better understanding and awareness of which hardware com-
ponent is responsible for the highest/lowest energy impact
in the monitored application (which could help in identifying
energy hotspots).

In the example of Figure 2, FileZilla consumed 6.73 Joules
in a benchmark run consisting of sending and receiving 5 files
to an FTP server, with most of that energy (5.85 Joules) be-
ing consumed by the processor (86% of the total energy of
the application). Disk energy was around 2% due to reading
files for FTP transfer, while the RAM memory consumed
10% of FileZilla’s energy (0.72 Joules). This breakdown,
both in Joules and in percentage, helps both software devel-
opers and end-users understand which hardware components
are consuming the most energy. For developers, this will pro-
vide them with a first indication of the energy consumption
of applications and help them focus their optimisation and
improvement work to increase the energy efficiency of their
software. Therefore, Jolinar is complementary, rather than
a replacement, to tools such as Jalen [10] which monitors

Figure 4: Command line version of Jolinar.

energy consumption of software source code (at the meth-
ods level). For end-users, the breakdown would allow them
to better understand the energy footprint of each hardware
component in their computer.

5. ANALYSIS USE CASE USING CLI
This section of the paper introduces the command line

interface of Jolinar and shows its use in a use case where
Jolinar is used to analyse libraries and executables, helping
software engineers make energy conscious decision.

In addition to the graphical user interface, Jolinar pro-
vides a command-line tool (JCL) that is suited for large runs,
scientific experiments, for headless applications in server
configurations and incorporation into external frameworks.
We designed the command line version to be as much in-
tuitive and easy-to-use as the GUI one. Figure 4 displays
the configuration wizard that is executed at the first run
of Jolinar or when the configuration file is missing. The
GUI and command-line versions both share the same con-
fig.properties file, giving users and developers two methods
to update the settings (they can also edit the file directly).

The command-line tool offers simple commands to up-
date settings or monitor energy with multiple options and
flags. For instance, updating the TDP can be achieved by
simply typing: jolinar -tdp 20 to update its value to 20
Watts. Finally, monitoring an application follows a similar
straightforward approach as the GUI, users only need to in-
dicate the name of the application to monitor and Jolinar

will execute, monitor and then output its energy consump-
tion. JCL is suitable for inclusion in frameworks, such as GP
that can consider energy consumption as fitness function to
evolve programs.

We measure the energy consumed by two different algo-
rithm implementations of calculating the digits of the num-
ber Pi. We measure the energy consumed by each algorithm
to show the energy consumption for operating on the same
set of inputs and computing the same set of data. We use y-
cruncher [11], a software implementing multiple algorithms
for calculating many constants - including Pi, to compare
Chudnovsky’s algorithm and Ramanujan’s algorithm imple-
mentations on a GNU/Linux operating system. We com-
pare the algorithms using a single thread and in a multi-
threaded environment, for calculating digits of Pi ranging
from 10 million to 100 million digits. We run the experi-
ments on an HP G70 laptop with an Intel Dual T3400 pro-
cessor at 2.16 GHz. The results in Figure 5 show that the
Chudnovsky multi-threaded implementation (Chudnovsky-
MT ) consumes less than half the energy compared to Ra-
manujan’s single-threaded one (Ramanujan-Single). More
precisely, across all experiments, the multi-threaded version
on average consumes 38% less energy compared to the single-



Chudnovsky-MT
Chudnovsky-Single
Ramanujan-MT
Ramanujan-Single

En
er

gy
 (J

ou
le

)

0

2,000

4,000

6,000

8,000

10,000

12,000

Digits of Pi (Million)
10 20 30 40 50 60 70 80 90 100

Figure 5: Energy consumption of Pi algorithms

threaded implementation. In addition, Ramanujan’s algo-
rithm has a 32% energy overhead, on average, compared to
Chudnovsky’s algorithm.

In cases where a software engineer is deciding whether to
use an implementation of a Pi algorithm as a library fea-
ture, Jolinar would help them make an energy conscious
decision thereby reducing the carbon footprint of the soft-
ware. Profiling and analysis of energy consumption such as
this can help developers identify the features that are con-
suming more energy and use additional information (such as
importance and likely frequency of use) to decide on where
to focus optimisation efforts (e.g. optimise code or dedi-
cate energy efficient resources to frequently used features).
Although software energy consumption varies from one plat-
form to another, we identified in [10] that energy distribution
within source code remains mostly stable with a variance of
less than 4%.

6. CONCLUSIONS
In this paper, we present Jolinar, a software tool that can

estimate the energy consumption of applications in an ac-
curate, lightweight and accessible way to researchers, prac-
titioners and non-technical end-users alike. With minimal
setup and an automated approach, users only need to choose
an application to monitor and Jolinar will provide detailed
energy measurements with minimal effort. Jolinar is avail-
able as a free open-source software for GNU/Linux systems1,
and can monitor the energy consumption of any application.

We show how Jolinar can be used by end-users to iden-
tify energy consumption of software applications, as well as,
aid software engineers profile energy usage and make energy-
conscious decisions. We plan to improve the usability and
the relevance of provided data with additional features, such
as autotype and auto-search for applications to monitor; al-
low Jolinar to monitor already started applications; moni-
tor mulitple process spwaned by an application; and provide
energy consumption in monetary units.

7. REFERENCES
[1] W. Vereecken, W. Van Heddeghem, D. Colle,

M. Pickavet, and P. Demeester. Overall ICT footprint

1http://www.noureddine.org/research/jolinar

and green communication technologies. In
Communications, Control and Signal Processing
(ISCCSP), 2010 4th International Symposium on,
pages 1–6, March 2010.

[2] Molly Webb. SMART 2020: enabling the low carbon
economy in the information age, a report by The
Climate Group on behalf of the Global eSustainability
Initiative (GeSI). GeSI, 2008.

[3] R. Bashroush, E. Woods, and A. Noureddine. Data
center energy demand: What got us here won’t get us
there. IEEE Software, 33(2):18–21, Mar 2016.

[4] M. A. Storey. Theories, methods and tools in program
comprehension: past, present and future. In 13th
International Workshop on Program Comprehension,
May 2005.

[5] Syed Islam, Adel Noureddine, and Rabih Bashroush.
Measuring energy footprint of software features. In
IEEE International Conference on Program
Comprehension, To appear: May 2016.

[6] Gustavo Pinto, Fernando Castor, and Yu David Liu.
Mining questions about software energy consumption.
In Proceedings of the 11th Working Conference on
Mining Software Repositories, MSR 2014, pages
22–31, New York, NY, USA, 2014. ACM.

[7] Adel Noureddine, Romain Rouvoy, and Lionel
Seinturier. A review of energy measurement
approaches. SIGOPS Oper. Syst. Rev., 47(3):42–49,
November 2013.

[8] Anthony I Wasserman. Software engineering issues for
mobile application development. In Proceedings of the
FSE/SDP workshop on Future of software engineering
research, pages 397–400. ACM, 2010.

[9] Adel Noureddine, Aurelien Bourdon, Romain Rouvoy,
and Lionel Seinturier. A preliminary study of the
impact of software engineering on greenit. In
Proceedings of the First International Workshop on
Green and Sustainable Software, Piscataway, NJ,
USA, 2012. IEEE Press.

[10] Adel Noureddine, Romain Rouvoy, and Lionel
Seinturier. Monitoring energy hotspots in software.
Automated Software Engineering, 22(3):291–332, 2015.

[11] y-cruncher, a multi-threaded pi-program.
http://www.numberworld.org/y-cruncher/.

http://www.numberworld.org/y-cruncher/

	Introduction
	Motivation & Related Work
	Jolinar Design
	End-user Use Case using GUI
	Analysis use case using CLI
	Conclusions
	References

