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Aerial Robots with Rigid/Elastic-joint Arms:
Single-joint Controllability Study and Preliminary Experiments

Burak Yüksel1, Nicolas Staub2 and Antonio Franchi2

Abstract— We present the dynamic modeling, analysis, and
control design of a Planar-Vertical Take-Off and Landing
(PVTOL) underactuated aerial vehicle equipped either with
a rigid- or an elastic-joint arm. We prove that in both cases
the system is exactly linearizable with a dynamic feedback and
differentially flat for the same set of outputs (but different
controllers). We compare the two cases with extensive and
realistic simulations, which show that the rigid-joint case
outperforms the elastic-joint case for aerial grasping tasks while
the converse holds for link-velocity amplification tasks. We
present preliminary experimental results using a actuated joint
with variable stiffness (VSA) on a quadrotor platform.

I. INTRODUCTION

The scientific interest on aerial robotics is increasing
everyday with technological developments done over the
last two decades. Vertical Take-Off and Landing (VTOL)
vehicles, such as multi-rotors and ducted fan platforms, are
able to track complex trajectories [1], and have been mainly
used as flying sensors for several fields, such as surveil-
lance, search and rescue, civil monitoring, agriculture, and
multi-vehicle human collaboration with haptic interfaces [2]–
[7]. More recently, another application area of the flying
robots became a great interest of the researchers; Aerial
Physical Interaction (APhI). In such application, a flying
robot is required to exert certain forces and torques to the
environment, while maintaining a stable flight [8]. Examples
of APhI are various, such as, e.g., tool operation [9], [10],
surface inspection [11], object transportation [12], [13] and
manipulation [14], and tethered flight [15], [16].

Aerial grasping is one important example of APhI, where
flying robot grasps a moving or a stationary object during
flight. This was firstly studied in [17], where the aerial
robot is equipped with a rigid tool that is not moving w.r.t.
the aerial robot’s body-fixed frame. In [18] an aerial robot
equipped with a rigid-joint arm system has been presented,
and the flatness property is used for aerial grasping task.

In almost all the current designs, aerial manipulators are
equipped with rigid-joint arms. On the other hand, compliant-
joint manipulators are widely used in ground robots like
humanoids and manipulators physically interacting with hu-
mans [19]. They are also effective tools for fast motion tasks,
exploiting the elasticity of the joint such as throwing an
object or hammering on a surface, which requires high veloc-
ities that rigid-joint arm cannot provide [20]. Yet, their usage
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in aerial robotics and APhI is not fully investigated, except
presumably for [21], which shows the passive compliance of
an elastic-joint arm attached to a flying quadrotor.

Driven by these facts, the goal of this paper is to rigorously
study the tracking capabilities of aerial robots equipped with
either a rigid- or an elastic-joint. Our main contributions
are: i) to show that both rigid- and elastic-joint systems are
exactly linearizable via a dynamic feedback and therefore
are differentially flat1; ii) to present two nonlinear con-
trollers (one for the rigid-joint case and one for the elastic-
joint case) for the independent control of the flat outputs,
namely the position of the aerial platform CoM and the
absolute orientation of the link; iii) to use realistic dynamical
simulations (including accurate dynamical modeling of all
the inertial parts, parameter uncertainty, quantization, and
noise) to validate the proposed controllers and to compare
the rigid-joint case and the elastic-joint case, showing that
the former is more suited for pure tracking tasks such as
the aerial grasping while the latter is better shaped for
tasks involving velocity maximization such as throwing and
hammering (these results are given mainly as a technical
report of this paper in [22], due to the page limitation); iv) a
set of preliminary experiments, which show what we believe
is the very first flying quadrotor plus single-joint arm with
a Variable Stiffness Actuator (VSA) setup in the literature.
The interested reader is encouraged to read also [23] for
interesting preliminary results on multi-link arms.

The paper is organized as follows. In Sec. II we present
the kinematics of both systems. Section III presents the
dynamic model in the rigid-joint case and shows its exact
feedback linearization and flatness properties. Section IV
does the same for the elastic-joint case. In Sec. V we present
a possible outer-loop controller. In Sec. VI-A we explain
the experimental setup of our flying robot, consisting of a
quadrotor and Qbmove2. Full and realistic simulation results
that show the capabilities of the controllers and compare the
two different cases are shown in Sec. II of [22].

II. SYSTEM MODEL

In this section we model the kinematics and dynamics of
a robot composed of an aerial platform (VTOL) equipped
with a rigid- or elastic-joint arm. Similar to previous studies
(see, e.g., [18], [24]) we consider here the case of a (vertical)
planar-VTOL (PVTOL) aerial platform. This reduced system
still captures the nonlinear features and the underactuation

1We depart from [18] in two main aspects: i) we consider a more generic
model where the center of thrust actuation is not forced to coincide with the
center of mass (CoM) of the vehicle, which covers a larger class of realistic
designs. ii) we consider also the case of elastic-joint arm (absent in [18]).

2http://www.qbrobotics.com/, and http://www.naturalmotioninitiative.org

mailto:burak.yueksel@tuebingen.mpg.de
mailto:nstaub@laas.fr
mailto:afranchi@laas.fr
http://www.qbrobotics.com/
http://www.naturalmotioninitiative.org


−utz1

PGm1
dG

PW
xW

zW

x1

z1
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Fig. 1: Left: a sketch of the PVTOL equipped with an actuated
link. Notice the offset between the CoM of the PVTOL (PC1 , red
point) and the center of actuation (PG, green point). The rigid link
is attached to PC1 , around which the motor rotates and a either rigid
or elastic joint is placed, i.e. PC1 = PM.
Right-up: relative and absolute angles of the rigid bodies, where the
length of the z axes are made different just for better illustration.
Right-down: locations of important points on the arm.

of a 3D system, and allows to generalize the obtained results
in a later stage. Furthermore, many practical aerial problems
are, fundamentally, 2D problems immersed in a 3D world.

The PVTOL with the attached arm is depicted in Fig. 1.
We denote with FW : {PW,xW ,zW} and F1 : {PC1 ,x1,z1},
the world (inertial) frame and the frame attached to the
PVTOL, respectively, where PC1 is the CoM of the PVTOL
(without the arm). Both the motor and the joint of the
arm rotate about an axis parallel to zW × xW and passing
through PC1 (i.e. PC1 = PM). We then define the motor
frame as FM : {PM,x1,z1} that is rigidly attached to the
motor output shaft. The joint can be either rigid or elastic,
as explained later, therefore we consider also a link frame
F2 : {PC2 ,x2,z2}, where PC2 is the CoM of the link. Finally
we denote with PE the center point of end-effector.

Given an angle θ∗ ∈ R between the z-axes of two frames
(all the angles are given in Fig. 1) the usual rotation matrix
definition R∗ ∈ SO(2) holds. Therefore, the orientations of
F1 in FW , FM in F1, F2 in F1, and F2 in FM are
expressed by the rotation matrixes R1, Rm, R2, and Re,
respectively. Finally, the absolute motor angle is θ1m =
θ1+θm and absolute link angle is θ12 = θ1+θ2, as depicted
in Fig. 1 (right). Notice that θe = θ2−θm = θ12−θ1m remains
zero if the joint is rigid and can be any if the link is elastic.

The constant position of PC1 in F2 is denoted with −d2 =
[−d2x −d2z ]

T ∈R2. The vector de = [dex dez ]
T ∈R2 denotes

the constant position of the end-effector PE in F2. The (time-
varying) positions of PC (CoM of the overall system), PC1 ,
PC2 and PE in FW are denoted with pc = [xc zc]

T ∈R2, pc1 =
[x1 z1]

T ∈ R2, pc2 = [x2 z2]
T ∈ R2, and pe = [xe ze]

T ∈ R2,
respectively. The mass and moment of inertia of PVTOL,
motor, and link are denoted with m1 ∈R>0, J1 ∈R>0; mm ∈
R>0, Jm ∈ R>0; m2 ∈ R>0, J2 ∈ R>0, respectively. We use
the symbol ḡ ∈ R+ to denote the the gravitational constant.

The PVTOL is actuated by means of: i) a total thrust
force −utz1 ∈ R2 applied at a point PG, where ut ∈ R is its
magnitude, and ii) a total torque (moment) ur(z1 × x1) ∈
R2 applied at PG, where ur ∈ R is the torque intensity.3

3For a planar birotor, PG is the center of two coplanar propellers, ut the
sum of the propeller thrusts and ur their difference times the distance to PG.

Furthermore, a motor is attached to the PVTOL and applies a
torque τ(z1×x1) ∈R2 at PC1 to the joint, where τ ∈R is its
intensity. The inputs of the system are gathered in the vector
u = [ut ur τ]T ∈ R3 and shortly denoted in the following
as thrust, PVTOL torque and motor torque. The constant
position of PG in F1 is denoted with dG = [dGx dGz ]

T ∈ R2.

Remark 1. We extend the literature in two directions: first
we assume that PC1 6≡ PG (i.e., dG is any , contrarily to what
is typically assumed in the literature, see e.g., [18] where
dG = [0 0]T ); and second we also consider, for the first time,
the case in which the joint can be elastic and not only rigid.

Two cases are then investigated, briefly referred to as Case-
R (rigid case) and Case-E (elastic case). In both cases the
system dynamics is written using the Lagrange equation as

q̈ = M−1(q)(G(q)u− c(q, q̇)−g(q)+ fE(q)+ fext) (1)

where q ∈ Rn are the considered generalized coordinates
(n = 4 for Case-R whereas n = 5 for the Case-E), M ∈Rn×n

is the generalized inertia matrix, G ∈ Rn×3 is the control
input matrix, c∈Rn is the centrifugal/Coriolis forces, g∈Rn

represents the gravitational forces, and fE ∈Rn represents the
forces due to the potential energy stored in the elastic joint
(in the rigid-joint case fE = 0). Finally, fext ∈ Rn represents
the wrench applied to the system from external environment.

If y ∈R3 is a flat output of (1), then denoting the higher-
order derivatives of y with ȳ, one can write the following

ȳ = f̄(x̄)+ Ḡ(x̄)ū, (2a)

ū = Ḡ−1(v− f̄), (2b)
ȳ = v, (2c)

where x̄∈Rn̄ is the augmented state of dimension n̄, Ḡ is an
invertible decoupling matrix, and v is a virtual input. Then 2b
describes the linearizing control law that brings the system
in the form of 2c, which is linear and controllable, as long as
Ḡ is invertible, and moreover no zero dynamics appear if the
total relative degree matches with n̄. We shall use this useful
property throughout this paper. For the interested reader, we
provide an informal review of exact feedback linearization
and differential flatness in Sec. I of [22].

III. CASE R: PVTOL WITH A RIGID-JOINT ARM

In this section we show that [pT
c1

θ12]
T is an exactly

linearizing (i.e., flat) output for the system of Case-R. In
order to prove that, let us choose as generalized coordinates
q = [pT

c1
θ1 θ12]

T ∈ R4. Then let us compactly write R̄∗ =
∂R∗
∂θ∗

. With respect to those coordinates, the terms in (1) are
the following (computations are omitted for brevity):

M =

 msI2 ∗ ∗
01×2 mA ∗

βββ T (θ12) 0 mB

= MT ∈ R4×4, where (3)

ms = m1 +mm +m2, mA = J1,

mB = m2 ‖d2‖2
2 + J2 + Jm, βββ (θ12) = m2R̄12d2 ∈ R2,
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c(q, q̇) =


β1(θ12)θ̇

2
12

β2(θ12)θ̇
2
12

0
0

 , g(q) =

 0
−msḡ

0
g4(θ12)

 , (4)

β1 =−m2(d2x cos(θ12)+d2z sin(θ12)),

β2 =−m2(d2z cos(θ12)−d2x sin(θ12)),

g4 = m2ḡ(d2x cos(θ12)+d2z sin(θ12)),

G(q) =

−sin(θ1) 0 0
−cos(θ1) 0 0

dGx 1 −1
0 0 1

 , fE = 04×1. (5)

The explicit functional dependency of q̈ then becomes

ẍ1 = f1(θ1,θ12, θ̇12,ut ,τ), z̈1 = f2(θ1,θ12, θ̇12,ut ,τ),

θ̈1 = f3(ut ,ur,τ), θ̈12 = f4(θ1,θ12, θ̇12,ut ,τ).
(6)

Now choose y = [pT
c1

θ12]
T ∈ R3 as output. From (6), it is

ÿ = fff 1(θ1,θ12, θ̇12,ut ,τ). In this case, the relative degree of
the system is r = 2+2+2 = 6 and the total number of states
is n̄ = 2n = 8. As explained in Sec. I of [22], we aim at
equate these two values. This is achieved by considering as
new control inputs ū = [üt ur τ̈]T ∈R3, and augmented state
x̄ = [qT q̇T ut u̇t τ τ̇]T ∈ R12, thus n̄ = 12. Taking the time
derivative of ÿ twice and substituting θ̈12 and θ̈1 from (6):

y(4) = fff 3(θ1,θ12, θ̇1, θ̇12,ut , u̇t ,τ, τ̇, üt ,ur, τ̈), (7)

which implies that r = 4+4+4 = 12 and ȳ = y(4). Therefore
it is now worth checking the invertibility of Ḡ. In fact it is
possible to analytically compute the determinant of Ḡ

det(Ḡ) =− ut

J1ms

(
(J2+Jm)ms+m2(m1+mm)‖d2‖22

) . (8)

Therefore Ḡ is always invertible, as long as ut 6= 0. Being
Ḡ(x̄) invertible, and knowing that ȳ = y(4) and f̄(x̄) = ȳ−
Ḡ(x̄)ū from (2a), the controller in the form of (2b) is exactly
linearizing, i.e., it brings the system to the linear controllable
form (2c). We have then just proved the following statement:

Proposition 1. The vector [pT
c1

θ12]
T is an exactly linearizing

output via dynamic feedback for the model in Case-R, as long
as ut 6= 0. As a consequence, it is also a flat output.

Proposition 1 states the differential flatness indirectly. A
direct proof using the algebraic map from the outputs to the
states and inputs is provided in Sec. I-A of [22].

IV. CASE-E: PVTOL WITH AN ELASTIC-JOINT ARM

In this section we show that for Case-E the output y =
[pT

c1
θ12]

T is also an exactly linearizing (i.e., flat) output. In
order to prove it, let us consider as generalized coordinates
q = [pT

c1
θ1 θ12 θ1m]

T ∈ R5, where an additional coordinate
θ1m entered to the configuration because of the elastic-joint.
In order to fix the ideas, an idealized elastic connection is
sketched in Fig. 2, where θ2 = θm + θe. In this case the
matrices of the dynamical model (1) are, after some algebra,

M =

 msI2 ∗ ∗ ∗
01×2 J1 ∗ ∗

βββ T (θ12) 0 mB− Jm ∗
01×2 0 0 Jm

= MT ∈ R5×5, (9)

θ1

θm
θe

θ2

zW
z1

pvtol

motor

link

zm
z2

Fig. 2: An ideal example of elastic joint between the motor output
shaft and link. Proportions are distorted for illustration purposes.
The innermost circle, fixed to F1, represents the PVTOL. The
middle circle, fixed to FM , represents the actuator (or motor).
The outermost circle is connected to the middle circle via elastic
components, and it is rigidly connected to the link (fixed to F2.)

c(q, q̇) =


β1(θ12)θ̇

2
12

β2(θ12)θ̇
2
12

0
0
0

 , g(q) =


0
−msḡ

0
g4(θ12)

0

 ,

G(q)=


−sin(θ1) 0 0
−cos(θ1) 0 0

dGx 1 −1
0 0 0
0 0 1

 , fE(q)=


0
0
0

fl(θ1m,θ12)
fm(θ1m,θ12)

 . (10)

Notice that fl(θ1m,θ12) is the elastic force acting on the link
side, and fm(θ1m,θ12) is the elastic force acting on the motor
side. These forces can be nonlinear functions of θ1m and
θ12. In the linear spring case (or in the nonlinear case but
for small deviations) we have that fl(θ1m,θ12) = ke(θ1m−
θ12) and fm(θ1m,θ12) = ke(θ12− θ1m), where ke > 0 is the
stiffness (local, for the nonlinear case) of the elastic element.

Replacing M, c, g, G and fE in (1) we can derive the
explicit dependency of each entry of q̈, here summarized:

ẍ1 = ξ1(θ1,θ12, θ̇12,θ1m,ut), z̈1 = ξ2(θ1,θ12, θ̇12,θ1m,ut),

θ̈1 = ξ3(ut ,ur,τ), θ̈12 = ξ4(θ1,θ12, θ̇12,θ1m,ut),

θ̈1m = ξ5(θ1m,θ12,τ). (11)

Considering, as before, y = [pT
c1

θ12]
T , from (11) we have

ÿ = ξξξ 1(θ1,θ12, θ̇12,θ1m,ut). (12)

The total relative degree is r = 2+ 2+ 2 = 6 and the state
dimension is n̄ = 2n = 10. As explained in Sec. I of [22], we
aim at equate these two values. This is achieved by consider-
ing as new control inputs ū= [üt ur τ]T ∈R3, and augmented
state x̄ = [qT q̇T ut u̇t ]

T ∈ R12. In fact, differentiating twice
w.r.t. time and substituting θ̈12, θ̈1, θ̈1m from (11) we have

y(4) = ξξξ 3(θ1,θ12,θ1m, θ̇1, θ̇12, θ̇1m,ut , u̇t , üt ,ur,τ),

which means that r = 4+4+4 = 12 and n̄ = 12, as wanted.
Therefore it is now worth to check if the matrix Ḡ(x̄) is

invertible. The analytical expression of its determinant is

det(Ḡ) =− ut ke

J1Jmms

(
(J2ms+m2(m1+mm)‖d2‖22

) . (13)

Therefore Ḡ is always invertible, as long as ut 6= 0 and ke 6= 0.
Being Ḡ(x̄) invertible, and knowing that ȳ = y(4) and f̄(x̄) =
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Configuration Variables Linearizing (Flat) Outputs Relative Degree Augmented States New Inputs

Case R: q = [pT
c1

θ1 θ12]
T ∈ R4 y = [pT

c1
θ12]

T ∈ R3 ȳ = [p(4)
c1

T
θ
(4)
12 ]T x̄ = [qT q̇T ut u̇t τ τ̇]T ∈ R12 ū = [üt ur τ̈]T ∈ R3

Rigid-joint r = 12 n̄ = 12

Case E: q = [pT
c1

θ1 θ12,θ1m]
T ∈ R5 y = [pT

c1
θ12]

T ∈ R3 ȳ = [p(4)
c1

T
θ
(4)
12 ]T x̄ = [qT q̇T ut u̇t ]

T ∈ R12 ū = [üt ur τ]T ∈ R3

Elastic joint r = 12 n̄ = 12

TABLE I: First row: summary for the Case-R (rigid-joint arm). Second row: summary for the Case-E (elastic-joint arm). In both cases
the total number of states n̄ matches with the total relative degree r, which implies exact linearization and absence of internal dynamics.

ȳ− Ḡ(x̄)ū from (2a), the controller in the form of (2b) is
exactly linearizing, i.e., it brings the system to the linear
controllable form (2c). We have then just proved that:

Proposition 2. The vector [pT
c1

θ12]
T is an exactly linearizing

output via dynamic feedback for the model with elastic-
joint arm (Case-E), as long as ut 6= 0 and ke 6= 0. As a
consequence, they is is also a flat output.

Proposition 2 states the differential flatness indirectly. A
direct proof using the algebraic map from the outputs to the
states and inputs is provided in Sec. I-B of [22].

Remark 2. In Case-R both ut and τ have to be ‘delayed’
twice, while for Case-E this is needed only for ut . This
happens because the spring in Case-E is a natural double
integrator, so further delaying for τ is not needed.

Remark 3. Contrarily to the grounded manipulator
case [25], where the flat outputs are the relative orientation
of the consecutive links and motors, in the aerial case one
has to consider the absolute link and motor orientations. This
is due to the underactuation of the flying platform that we
are using as the base of the rigid/elastic-joint arm.

Corollary 1. For both Case-R and Case-E, y = [pT
e θ12]

T is
also a flat (and exactly linearizing) output.

Proof. The end-effector position pe is a function of the sole
y = [pT

c1
θ12]

T , in fact pe = pc1 +R12(θ12)(d2 +de).

Table I summarizes the results of Sections III and IV.

V. OUTERMOST CONTROL LOOP

We have presented the feedback linearizing (nonlinear)
controllers in Sec. III and Sec. IV, where the flat outputs are
(in both cases) y = [pc1 θ12]

T . The nonlinear inner loop (2b)
is first used to bring the system in the decoupled and
controllable linear form, as explained in Sec. II, and also in
Sec. I of [22]. Then, given any 3-ple of desired trajectories of
class C3, xd

1(t), zd
1(t), θ d

12(t) for x1, zm, and θ12, respectively,
many outer control methods can be used as, e.g.,

v = ȳd +K[eT ėT ëT ...e T ]T ∈ R3, (14)

where e = [ex ez eθ ]
T and ex = xd

1 − x1, ez = zd
1 − z1, eθ =

θ d
12−θ12, and with K being the juxtaposition of 3×3 positive

definite gain matrixes with properly chosen elements. To
compensate the errors due to uncertainties, an integral term
Ki∗
∫ t f

t0 e∗dt is added in the outer loop of each channel, where
∗ := {x,z,θ} and Ki∗ ∈R>0. A scheme of whole control loop
for the Case-E can be found in Fig. 1 of [22].

Remark 4. Notice that this control strategy needs only the
measurements of q and q̇, since the derivatives of the outputs

present in (14) are computed as algebraic functions of q and
q̇, thanks to the model (1) and its analytical derivatives.

VI. PRELIMINARY EXPERIMENTS

In this section we present our experimental setup, which
consists of a quadrotor equipped with a rigid link that is
actuated via a VSA, and present our preliminary exper-
imental results. Extensive and realistic simulation results
(with parametric uncertanties, measurement noises, sampling
errors and actuation limits) are provided in [22] and in the
video attachment of this paper.

A. Preliminary Experiments
Table II presents the main components of the experimental

setup. We implemented all the controller parts sketched in
Fig. 1 of [22] as C/C++ libraries and ROS nodes, similarly
to what done in [27] and [28].

1) Preparation of the Qbmove: We decided to use a
variable stiffness actuator for its wide range of stiffness
preset capabilities which allow the user to choose between,
e.g., high and low stiffness values, depending on the task
of the robot (see also Sec. II of [22]). We opted for the
Qbmove, an agonistic/antagonistic servo-VSA, whose spec-
ifications are available2. The meticulous reader will see that
no gripper is featured in our setup, this is mainly due to
safety considerations on the maximal deflection supported
by the Qbmove. In order for our controller to work with
Qbmove, several extra steps have to be conducted. First of
all, a parametric identification of the Qbmove + rigid arm
system has been performed in order to retrieve the parameters
of the equivalent motor in Fig 2 (for more details see [22]).
All the identified and computed parameters are available
in Table III. Moreover, the control framework requires a
torque-controlled motor, while a Qbmove is not proposing
this control modality. For this reason we have implemented
an outer loop controller around the Qbmove device, which
translates the desired torque into a desired position using the
estimated parameters and second order system model. This
bridge between the proposed controller of the paper and the

Component description key figure
VTOL mikrokoprer Quadrotor4

total mass (incl. payload) 1.5kg
max. thrust and torque 28N, 1.5Nm

Qbmove Variable Stiffness Actuator2 (VSA)
max. torque 1.2Nm
control frequency 500Hz

Optitrack Motion Capture System (MoCap) 100Hz
6-axis IMU 1kHz
Kalman Filter: IMU+MoCap 1kHz

TABLE II: Characteristics of the main components of the setup.
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Fig. 3: Evolution from theory to application. a) Conceptual sketch of the model in 3D. The motion in Plane-A is controlled using
the controller presented in this paper. The motion in Plane-B (except the translational motion along z1) and the rotation around z1 is
controlled using a near-hovering controller [26]. b) CAD model of the 3D system and a snapshot from SimMechanics simulation, where
the implemented controllers have been tested. Different colors correspond to the different parts of the real system. The results are given
in the video attachment of this paper. c) Real system on flight. On board of the VTOL, from top to bottom, there are MoCap markers,
an Odroid-XU computer, four brushless motor controllers with their power board, a flight controller (incl. IMU), battery pack, Qbmove
with its connectors, a rigid arm attached to it. Red ropes are used only for safety reasons, with no tension on them.

Qbmove is directly implemented as a ROS node. We avoid
the details on this part for the sake of brevity.

2) Quadrotor Setup: The Quadrotor setup is extensively
described and depicted in both Figs. 3b and 3c.

3) Preliminary Experiment of a Quadrotor with a VSA
Arm: In the first experiment we tested the complete system
for a trajectory tracking along the z axis while staying at
zero on the x axis. Results are given in Fig. 4, where the
maximum error for both x1 and z1 is around 2cm. In this
experiment the desired motion of the arm is constant.

In the second experience performed, the absolute link
orientation follows a sinusoidal trajectory, while the PVTOL
CoM follows another trajectory along the z axis and tries to
stay at zero on the x axis. Results are given in Fig. 5, where
for x1 and z1 the maximum errors are around 2cm. Control
inputs are omitted here and presented in Fig. 7 of [22].

For both experiments, steady-state errors are observed
mainly due to unmodeled effects as, e.g., neglecting the
damping of the spring, and the displacement between the
PC1 and PM in the real setup (see Fig. 3a), while in theory
we considered them coincident (see Fig. 1).

VII. CONCLUSIONS

In this paper we presented the dynamic modeling, property
analysis, and control of a PVTOL system equipped either

Real Parameters Notation Value Unit
mass of the quadrotor m̃1 1.309 kg
mass of the VSA m̃m 0.06 kg
mass of the arm m̃2 0.098 kg
dis. vec. betw. PC1 & PG d̃G [0.0 0.0081]T m
dis. vec. betw. PC2 & PM d̃2 [0 0.0979]T m
inertia of the PVTOL J̃1 0.0154 kgm2

motor inertia J̃m 0.4101 kgm2

link inertia J̃2 0.0011 kgm2

spring stiffness k̃e 3.55 Nm/rad
spring damping k̃ f 0.07 Nms/rad

TABLE III: Measured, computed or identified parameters of the
setup. The variable ∗̃ denotes the quantity ∗ for the experimental
setup. Notice that k̃ f is identified but not used in the controller.
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Fig. 4: First test on controlling the Quadrotor + VSA arm position
along x and z directions. A step-like trajectory is followed along
the z-axis. Notice that negative z is upwards.

with a rigid- or an elastic-joint arm. We have proven that
both systems are differentially flat for the same set of outputs
(see Table I as well), and we provided exact linearization
tracking controllers for each cases, separately. Extensive
numerical tests, provided in [22], show clear differences be-
tween the two models; rigid-link setup is more advantageous
for precisely tracking tasks such as aerial grasping, while
elastic-link setup is more suitable for tasks requiring link
velocity amplification such as throwing or hammering. We
then performed another numerical validation using the full
3D model of the real setup in SimMechanics, and finally we
presented our preliminary experimental results of controlling
a quadrotor VTOL equipped with a Qbmove. In fact, a clear
trade-off between rigid-link and elastic-link setups directs us
to use variable stiffness actuators for a wide range of aerial
physical interaction tasks.

This work is a bridge between our previous experi-
ences [21] and our future studies, which will include; i) fur-
ther experiments using the quadrotor and Qbmove setup,
e.g., peg-in-hole or throwing, hammering; ii) extension of
the theory to 3D and/or arms with multiple degrees, see [23]
for interesting preliminary results.; iii) use of sensor-based
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Fig. 5: Preliminary results for trajectory tracking with Quadro-
tor+VSA arm setup. The arm attached to the Qbmove is swinging
back and forth (see θ12), while Quadrotor VTOL is tracking a stable
trajectory along x-direction, and a step-like trajectory along the z-
direction. Oscillations on θ1 are due to the motion of the arm,
against which controller is trying to keep x position constant. Notice
that negative z is upward.

calibration methods as, e.g., in [29] to retrieve the system
parameters on the fly.
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