
HAL Id: hal-01348496
https://hal.science/hal-01348496

Submitted on 24 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterization of Order-like Dependencies with
Formal Concept Analysis

Victor Codocedo, Jaume Baixeries, Mehdi Kaytoue, Amedeo Napoli

To cite this version:
Victor Codocedo, Jaume Baixeries, Mehdi Kaytoue, Amedeo Napoli. Characterization of Order-
like Dependencies with Formal Concept Analysis. Thirteenth International Conference on Concept
Lattices and Their Applications (CLA 2016), Jul 2016, Moscou, Russia. pp.123-134. �hal-01348496�

https://hal.science/hal-01348496
https://hal.archives-ouvertes.fr

Characterization of Order-like Dependencies
with Formal Concept Analysis

Victor Codocedo1, Jaume Baixeries2, Mehdi Kaytoue1, and Amedeo Napoli3

1 Université de Lyon. CNRS, INSA-Lyon, LIRIS. UMR5205, F-69621, France.
2 Universitat Politècnica de Catalunya. 08032, Barcelona. Catalonia.

3 LORIA (CNRS - Inria Nancy Grand Est - Université de Lorraine), B.P. 239,
F-54506, Vandœuvre-lès-Nancy.

Corresponding author : mehdi.kaytoue@insa-lyon.fr

Abstract. Functional Dependencies (FDs) play a key role in many fields
of the relational database model, one of the most widely used database
systems. FDs have also been applied in data analysis, data quality, knowl-
edge discovery and the like, but in a very limited scope, because of their
fixed semantics. To overcome this limitation, many generalizations have
been defined to relax the crisp definition of FDs. FDs and a few of their
generalizations have been characterized with Formal Concept Analysis
which reveals itself to be an interesting unified framework for charac-
terizing dependencies, that is, understanding and computing them in a
formal way. In this paper, we extend this work by taking into account
order-like dependencies. Such dependencies, well defined in the database
field, consider an ordering on the domain of each attribute, and not sim-
ply an equality relation as with standard FDs.

Keywords: functional dependencies, order dependencies, formal con-
cept analysis

1 Introduction

Functional dependencies (FDs) are well-known constraints in the relational model
used to show a functional relation between sets of attributes [12], i.e. when the
values of a set of attributes are determined by the values of another set of at-
tributes. They are also used in different tasks within the relational data model,
as for instance, to check the consistency of a database, or to guide the design of
a data model [10].

id Month Year Av. Temp. City
t1 1 1995 36.4 Milan
t2 1 1996 33.8 Milan
t3 5 1996 63.1 Rome
t4 5 1997 59.6 Rome
t5 1 1998 41.4 Dallas
t6 1 1999 46.8 Dallas
t7 5 1996 84.5 Houston
t8 5 1998 80.2 Houston

Table 1

Different generalizations of FDs have been
defined in order to deal with imprecision, errors
and uncertainty in real-world data, or simply,
to mine and discover more complex patterns
and constraints within data when the seman-
tics of FDs have shown to be too restrictive for
modeling certain attribute domains.

For example, consider the database in Table 1 as an example4. Attributes of
these 8 tuples are city names, month identifiers, years and average temperatures.
From this table, we could expect that the value for average temperature is deter-
mined by a city name and a month of the year (e.g. the month of May in Houston
is hot, whereas the month of January in Dallas is cold). Therefore, we would
expect that this relationship should be somehow expressed as a (functional) de-
pendency in the form city name, month → average temperature. However, while
the average temperature is truly determined by a city and a time of the year, it
is very hard that it will be exactly the same from one year to another. Instead,
we can expect that the value will be similar, or close throughout different years,
but rarely the same. Unfortunately, semantics of FDs is based on an equivalence
relation and fail to grasp the dependencies among these attributes.

To overcome the limitations of FDs while keeping the idea that some at-
tributes are functionally determined by other attributes, different generalizations
of functional dependencies have been defined, as recently deeply reviewed in a
comprehensive survey [4]. Actually, the example presented in the last paragraph
is a so-called similarity dependency [2,4]. Several other families of dependencies
exist and allow relaxing the definition of FDs on the extent part (e.g. the de-
pendency must hold only in a subset of the tuples in a database table) or on
the intent part (equality between attribute values is relaxed to a similarity or
tolerance relation).

The definition of a variation of a functional dependency shows different prob-
lems: characterization, axiomatization and computation. Formal Concept Anal-
ysis (FCA [7]) has already been used to characterize and compute functional
dependencies. Moreover, in order to overcome some of the limitations of FCA
to discover FDs, a more sophisticated formalization is presented in [1] and [3]
where pattern structures ([6]) were used. The same framework is used in [2] to
compute similarity dependencies.

In this paper we present an FCA-based characterization of order-like de-
pendencies, a generalization of functional dependencies in which the equality of
values is replaced by the notion of order. Firstly, we show that the characteriza-
tion of order dependencies in their general definition [8] can be achieved through
a particular use of general ordinal scaling [7]. Secondly, we extend our charac-
terization in order to support restricted order dependencies through which other
FDs generalizations can be modeled, namely sequential dependencies and trend
dependencies [4]. Finally, we present a characterization to a complex FD gener-
alization named lexicographical ordered dependencies [11] showing the flexibility
of our approach.

The rest of this paper is organized as follows. In Section 2 we formally intro-
duce the definition of functional dependencies, formal concept analysis and the
principle of the characterization of FDs with FCA. In Section 3, we characterize
order dependencies in their general definition. We show that our formalization
can be adapted to restricted ordered dependencies in Section 4 and lexicographical
ordered dependencies [11] in Section 5 before presenting our conclusions.

4 http://academic.udayton.edu/kissock/http/Weather/

http://academic.udayton.edu/kissock/http/Weather/

2 Preliminaries

2.1 Functional dependencies

We deal with datasets which are sets of tuples. Let U be a set of attributes and
Dom be a set of values (a domain). For the sake of simplicity, we assume that
Dom is a numerical set. A tuple t is a function t : U 7→ Dom and then a table T is
a set of tuples. We define the functional notation of a tuple for a set of attributes
X ⊆ U as follows, assuming that there exists a total ordering on U . Given a tuple
t ∈ T and X = {x1, x2, . . . , xn}, we have: t(X) = 〈t(x1), t(x2), . . . , t(xn)〉.

Definition 1 (Functional dependency [12]). Let T be a set of tuples (data
table), and X,Y ⊆ U . A functional dependency (FD) X → Y holds in T if:

∀t, t′ ∈ T : t(X) = t′(X)→ t(Y) = t′(Y)

id a b c d

t1 1 3 4 1
t2 4 3 4 3
t3 1 8 4 1
t4 4 3 7 8

Table 2

Example. The table on the right presents 4 tuples T =
{t1, t2, t3, t4} over attributes U = {a, b, c, d}. We have that
t2({a, c}) = 〈t2(a), t2(c)〉 = 〈4, 4〉. Note that the set notation is
usually omitted and we write ab instead of {a, b}. In this example,
the functional dependency d→ c holds and a→ c does not hold.

2.2 Formal Concept Analysis (FCA)

Let G and M be arbitrary sets, respectively called objects and attributes, and
I ⊆ G ×M an arbitrary binary relation: (g,m) ∈ I is interpreted as “g has
attribute m”. (G,M, I) is called a formal context. The two following derivation
operators (·)′ define a Galois connection between the powersets of G and M .

A′ = {m ∈M | ∀g ∈ A : gIm} for A ⊆ G,
B′ = {g ∈ G | ∀m ∈ B : gIm} for B ⊆M

For A ⊆ G, B ⊆ M , a pair (A,B) such that A′ = B and B′ = A, is called
a (formal) concept while A is called the extent and the set B the intent of
the concept. Concepts are partially ordered by (A1, B1) ≤ (A2, B2) ⇔ A1 ⊆
A2 (⇔ B2 ⊆ B1): the set of all formal concepts forms a complete lattice called
the concept lattice of the formal context (G,M, I). An implication of a formal
context (G,M, I) is denoted by X → Y , X,Y ⊆ M and means that all objects
from G having the attributes in X also have the attributes in Y , i.e. X ′ ⊆ Y ′.
Implications obey the Armstrong rules (reflexivity, augmentation, transitivity).

m1 m2 m3

g1 x
g2 x x
g3 x x
g4 x x

Example. The table on the left presents a
formal context: we have ({g3}′′, {g3}′) =
({g3, g4}, {m2,m3}) and the implication m1 →
m2. Its concept lattice representation involves
reduced labeling : each node is a concept, lines
represent partial ordering while an attribute
(resp. object) label is inherited from the top
(resp. the bottom).

2.3 Characterization of Functional Dependencies with FCA

It has been shown in previous work that functional dependencies, can be char-
acterized with FCA. For example, Ganter & Wille [7] presented a data transfor-
mation of the initial set of tuples into a formal context. In this context, implica-
tions are in 1-to-1 correspondence with the functional dependencies of the initial
dataset. In Figure 1, we illustrate this characterization with the set of tuples
of Table 2. Each possible pair of tuples gives rise to an object in the formal
context. Attributes remain the same. An object, say (ti, tj), has an attribute m
iff ti(m) = tj(m). The concept lattice is given on the right hand side of this
figure: there are two implications, namely d→ c and d→ a, which are also the
functional dependencies in the original set of tuples.

However, this approach implies that a formal context much larger than the
original dataset must be processed. It was then shown that this formal context
can actually be encoded with a pattern structure [6]: each attribute of the original
dataset becomes an object of the pattern structure and is described by a partition
on the tuple set. Actually, each block of the partition is composed of tuples taking
the same value for the given attribute [9]. For example, in Table 2, the partition
describing a is {{t1, t3}, {t2, t4}}. Then, the implications in the pattern concept
lattice are here again in 1-to-1 correspondence with the functional dependencies
of the initial dataset [3]. What is important to notice is that this formalization
is possible as a partition is an equivalence relation: a symmetric, reflexive and
transitive binary relation.

In [2], another kind of dependencies was formalized in a similar way, i.e.
similarity dependencies, where the equality relation is relaxed to a similarity
relation when comparing two tuples. An attribute is not anymore described by a
partition, but by a tolerance relation, i.e. a symmetric, reflexive, but not neces-
sarily transitive binary relation (“the friends of my friends are not necessarily my
friends”). Each original attribute is then described by a set of tolerance blocks,
each being a maximal set of tuples that have pairwise similar values (instead of
equal values for classical dependencies).

This way of characterizing FDs and similarity dependencies actually fails for
order dependencies, as the relation in this case is not symmetric: it is neither an
equality nor a similarity but a partial order in the general case.

3 Characterization of Order Dependencies with FCA

Although functional dependencies are used in several domains they cannot be
used to express some relationships that exist in data. Many generalizations have
been proposed and we focus in this article on order dependencies [8,4]. Such
dependencies are based on the attribute-wise order on tuples. This order assumes
that each attribute follows a partial order associated to the values of its domain.
For the sake of generality, we represent this order with the symbol vx for all
x ∈ U . In practice, this symbol will be instantiated by intersections of any
partial order on the domain of this attribute, as, for instance, <,≤, >,≥, etc.

id a b c d

t1 1 3 4 1

t2 4 3 4 3

t3 1 8 4 1

t4 4 3 7 8

K a b c d

(t1, t2) × ×
(t1, t3) × × ×
(t1, t4) ×
(t2, t3) ×
(t2, t4) × ×
(t3, t4)

Fig. 1: Characterizing functional dependencies with FCA.

We remark that this order on the set of values of a single attribute does not
need to be a total order, although in many different instances, like numeric or
character strings domains, this will be the case. In the following, we formalize
operator vx (Definition 2) and define accordingly order dependencies (Definition
3).

Definition 2 (Attribute-wise ordering). Given two tuples ti, tj ∈ T and a
set of attributes X ⊆ U , the attribute-wise order of these two tuples on X is:

ti vX tj ⇔ ∀x ∈ X : ti[x] vx tj [x]

This definition states that one tuple is greater –in a sense involving the order of
all attributes– than another tuple if their attribute-wise values meet this order.
This operator induces a partial order ΠX = (T,≺X) on the set T of tuples.

Definition 3 (Order dependency). Let X,Y ⊆ U be two subsets of attributes
in a dataset T . An order dependency X → Y holds in T if and only if:

∀ti, tj ∈ T : ti vX tj → ti vY tj

id a b c

t1 1 3 1
t2 2 7 2
t3 3 4 4
t4 5 3 9
t5 4 2 5
t6 3 8 4

Table 3

Example. Consider the table on the right with six tuples and three
attributes. Taking va, vb and vc defined as the ordering ≤. The
orders induced by the sets of attributes {a},{b},{c} and {a, b} are:

Πa = (T,≺a) = {{t1} ≺ {t2} ≺ {t3, t6} ≺ {t5} ≺ {t4}}
Πb = (T,≺b) = {{t5} ≺ {t1, t4} ≺ {t3} ≺ {t2} ≺ {t6}}
Πab = (T,≺ab) = {{t1} ≺ {t2} ≺ {t6};

{t1} ≺ {t3};
{t1} ≺ {t4};
{t5} ≺ {t4}}

Πc = (T,≺c) = {{t1} ≺ {t2} ≺ {t3, t6} ≺ {t5} ≺ {t4}}
These orders are such that the order dependency {a, b} → {c} holds. Remark

that Definition 3 is generic since the orders that are assumed for each attribute

need to be instantiated: we chose ≤ in this example for all attributes, while
taking the equality would produce standard functional dependencies.

To achieve the characterization of order dependencies with FCA, we propose
to represent the partial order ΠX = (T,≺X) associated to each subset of at-
tribute X ⊆ U as a formal context KX (a binary relation on T × T thanks to
a general ordinal scaling [7]). Then, we show that an order dependency X → Y
holds iff KX = KXY .

Definition 4 (General ordinal scaling of the tuple set). Given a subset
of attributes X ⊆ U and a table dataset T , we define a formal context for ΠX =
(T,≺X) (the partial order it induces) as follows:

KX = (T, T,@X)

where @X= {(ti, tj) | ti, tj ∈ T, ti vX tj}. This formal context is the general
ordinal scale of ΠX [7]. All formal concepts (A,B) ∈ KX are such that A is the
set of lower bounds of B and B is the set of upper bounds of A. Its concept lattice
is the smallest complete lattice in which the order ΠX can be order embedded.

This way to characterize a partial order is only one among several pos-
sibilities. However, the choice of formal contexts is due to their versatility,
since they can characterize binary relations, hierarchies, dependencies, differ-
ent orders [7] and graphs [5]. In the next section we will see how this versatil-
ity allows us to generalize similarity dependencies. Given the set of attributes
X ⊆ U , an associated partial order ΠX = (T,≺X) and the formal context
(T, T,@X), it is easy to show that the later is a composition of contexts defined
as: (T, T,@X) = (T, T,

⋂
x∈X
@x).

We can now propose a characterization of order dependencies with FCA.

Proposition 1. An order dependency X → Y holds in T iff KX = KXY .

Proof. Recall that KXY = (T, T,@XY) = (T, T,@X ∩ @Y). We have that

X → Y ⇐⇒ @X=@X ∩ @Y
⇐⇒ @X ⊆@Y
⇐⇒ ∀ti, tj ∈ T, ti vX tj → ti vY tj

Example. To calculate (T, T,@ab), we just need to calculate (T, T,@a ∩ @b), as
illustrated in the example below.

@a t1 t2 t3 t4 t5 t6
t1 × × × × ×
t2 × × × ×
t3 × ×
t4
t5 ×
t6 × ×

Table 4: (T, T,@a)

@b t1 t2 t3 t4 t5 t6
t1 × × ×
t2 ×
t3 × ×
t4 × × ×
t5 × × × × ×
t6

Table 5: (T, T,@b)

@ab t1 t2 t3 t4 t5 t6
t1 × × ×
t2 ×
t3
t4
t5 ×
t6

Table 6: (T, T,@ab)

The fact that the order dependency {a, b} → {c} holds can be illustrated
with the formal contexts in Tables 7,8 and 9. We have indeed that Kab = Kabc.

@c t1 t2 t3 t4 t5 t6
t1 × × × × ×
t2 × × × ×
t3 × × ×
t4
t5 ×
t6 × ×

Table 7: (T, T,@c)

@ab t1 t2 t3 t4 t5 t6
t1 × × ×
t2 ×
t3
t4
t5 ×
t6

Table 8: (T, T,@ab)

@abc t1 t2 t3 t4 t5 t6
t1 × × ×
t2 ×
t3
t4
t5 ×
t6

Table 9: (T, T,@abc)

Order dependencies and other FDs generalizations. We have seen that
the definition of order dependencies replaces the equality condition present in
FDs or other similarity measures present in other dependencies, by an order
relation. This may suggest that order dependencies and other kinds of FDs gen-
eralizations are structurally very similar, whereas this is not the case. Functional
dependencies generate a reflexive, symmetric and transitive relation in the set
of tuples, i.e. an equivalence relation. Then the set of tuples can be partitioned
into equivalence classes that are used to characterize and compute the set of
FDs holding in a dataset, as presented in a previous work [3].

In the generalization of functional dependencies that replaces the equality
condition by a similarity measure or a distance function, this measure generates
a symmetric relation in the set of tuples, but not necessarily a transitive relation.
In turn, this implies that the set of tuples can be partitioned into blocks of
tolerance instead of equivalence classes, as shown in [2].

In this article, the novelty is that we are dealing with a transitive relation,
but not necessarily a symmetric relation. That means that we are not dealing
with equivalence classes nor blocks of tolerance any longer, but, precisely, with
orders. And since the characterization of these dependencies cannot be performed
in terms of equivalence classes nor blocks of tolerance, will use a more general
approach: general ordinal scaling.

4 Characterization of Restricted Order Dependencies

Time People waiting
t1 10:00 101
t2 10:20 103
t3 10:40 105
t4 11:00 77
t5 11:20 80
t6 11:40 85

Table 10

Order dependencies allow taking into account the or-
dering of the values of each attribute when looking for
dependencies in data. However, violations of the or-
dering due to value variations should sometimes not
be considered in many real world scenarios. Consider
the example given in Table 10: it gives variations on
the number of people waiting at a bus station over
time. In such a scenario we can expect that more people will be waiting in the
station as time moves on (People waiting → Time). However, at some point,
a bus arrives and the number of people waiting decreases and starts increasing
again. It is easy to observe that the order dependency People waiting → Time

does not hold as we have the counter-example:

t4 vPeople waiting t3 and t3 vTime t4
However, the gap between the values 77 and 105 is significant enough to be

considered as a different instance of the ordering. We can formalize this idea
by introducing a similarity threshold θ = 10 for the attribute People waiting
such that the ordering between values is checked iff the difference is smaller than
θ. In this way, the previous counter-example is avoided (restricting the binary
relation) along with any other counter-example and we have that the restricted
order dependency People waiting → Time holds.

We now formalize the tuple ordering relation, and consequently the notion
of restricted order dependencies.

Definition 5. Given two tuples ti, tj ∈ T and a set of attributes X ⊆ U , the
attribute-wise order of these two tuples on X is:

ti v∗x tj ⇔ ∀x ∈ X : 0 ≤ tj [x]− ti[x] ≤ θx
Definition 6. Let X,Y ⊆ U two sets of attributes in a table T such that |T | = n,
and let θX , θY be thresholds values of tuples in X and Y respectively. A restricted
order dependency X → Y holds in T if and only if:

t[X] v∗X t′[X]→ t[Y] v∗Y t′[Y]

Using these definitions we can encode the tuple ordering relations as formal
contexts for any subset of attributes X ⊆ U . Indeed, the binary relations between
tuples by operator v∗X can be encoded in a formal context K∗X = (T, T,v∗X)
which in turn, can be composed from single attributes x ∈ U as follows:

v∗X=
⋂
x∈X
v∗x

Moreover, we can use the same rationale we used to mine order dependencies
to find restricted order dependencies.

Proposition 2. A restricted order dependency X → Y holds in T iff

X → Y ⇐⇒ K∗X = K∗XY
Proof. This proposition can be proved similarly to Proposition 1.

Example. For the previous example, we calculate the corresponding formal con-
texts shown in Tables 11 and 12 (v∗Tm for Time, and v∗Pp for People waiting). It
is easy to observe that the restricted order dependency People waiting → Time
holds as we have that K∗Pp = K∗Pp,Tm.

v∗
Tm t1 t2 t3 t4 t5 t6
t1 × × × × × ×
t2 × × × × ×
t3 × × × ×
t4 × × ×
t5 × ×
t6 ×

Table 11: (T, T,v∗Tm)

v∗
Pp t1 t2 t3 t4 t5 t6

t1 × × ×
t2 × ×
t3 ×
t4 × × ×
t5 × ×
t6 ×

Table 12: (T, T,v∗Pp)

v∗
Tm,Pp t1 t2 t3 t4 t5 t6
t1 × × ×
t2 × ×
t3 ×
t4 × × ×
t5 × ×
t6 ×

Table 13: (T, T,v∗Tm,Pp)

Restricted order dependencies and other FDs generalizations. Simi-
larity dependencies (SDs) generalize functional dependencies through the use of
a tolerance relation instead of an equivalence relation between values of tuples
for a given set of attributes. A tolerance relation is a reflexive, symmetric and
non-transitive binary association between two tuples given a threshold θ. In a
nutshell, a SD is established between two tuples if their values are within a
given distance controlled by the threshold. Such dependencies were studied in
a previous work [2]. However, from the perspective of order dependencies, we
can request that such distance has a certain polarity. As we have previously dis-
cussed, order dependencies arise from anti-symmetric, not necessarily reflexive,
and transitive binary relations (<,≤). Then, it can be expected that using a
threshold of distance θ between tuple values for a given set of attributes requires
an antisymmetric, non-transitive relation between the values of tuples w.r.t. a
set of attributes X, that we have defined as v∗X .

Observe that the difference between Definition 5 and tolerance relations is
the drop of the absolute value for tj [x] − ti[x] and the requirement that this is
a positive number, i.e. ti[x] < tj [x],∀x ∈ X. There is an important difference
between this setting and SDs. While in SDs the threshold θ is used to relax
the strict equivalence condition of standard functional dependencies, from the
perspective of order dependencies the threshold is actually used to restrict tuple
relations.

Restricted order dependencies have the potential to implement some other
generalizations of FDs such as sequential dependencies and trend dependen-
cies [4]. The latter is actually a particular case of restricted order dependencies
where the threshold is applied to an attribute not contained in the attributes
of the dependency. Instead, it is applied to a time attribute that allows defin-
ing a snapshot of the database. In sequential dependencies, the antecedent is a
mapping (ρ) of a set of attributes with a complete unrestricted order (without
a threshold). Currently, we are able to support some instances of sequential de-
pendencies when the mapping is symmetric (ρ(XY) = ρ(Y X)). Details on this
matter has been left out from this paper for space reasons. Rather, in the fol-
lowing section we describe another dependency which is not symmetric, namely
lexicographical ordered dependencies (LODs), that exemplifies the flexibility of
our approach to support complex dependency definitions.

5 Lexicographical ordered dependencies LODs

LODs use the notion of lexicographical ordering in a rather unconventional man-
ner5. While it could be expected that they compare the values of different at-
tributes using lexicographical order, instead new descriptions (or projections) are
composed from the Cartesian product of attribute domains on which the lexi-
cographical order is applied [11]. Consequently, the order in which we compose
new descriptions becomes relevant.

5 Consider lexicographical order as the order of words in a dictionary.

For example, in Table 14 we compose a description using the ordered set X =
〈b, e〉 such that the new descriptions or projections of tuples t1, t2 onX are tX1 =<
3, 5 > and tX2 =< 4, 0 > respectively. It is clear that tX1 is lexicographically lower
than tX2 . However, considering Y = 〈e, b〉 which is the inverse of X, we have
tY1 = 53 and tY2 = 04 where tY2 is lexicographically lower than tY1 . Definition 7
formalizes lexicographical ordering for tuple projections.

Definition 7 ([11]). Let X ⊆M be an ordered set, such that n = |X|, and let
[1, n] be the set of indices of the ordered set X. A lexicographical ordering on X,
denoted by ≤lX is defined for tX1 , t

X
2 as tX1 ≤lX tX2 , if either:

1. ∃k ∈ [1, n] s.t. tX1 [k] < tX2 [k] and tX1 [j] = tX2 [j] with j ∈ [1, k[.
2. tX1 [i] = tX2 [i], ∀i ∈ [1, n]

The main difference between LODs and standard order dependencies is that
LODs are established over ordered sets and thus, the LOD 〈a, b〉 〈c〉 does not
imply that 〈b, a〉 〈c〉 holds, where is used to denote a LOD. Definition 8
formalizes lexicographical order dependencies.

Definition 8 ([11]). Let X,Y ⊆ U be two ordered attribute sets. A LOD,
X Y is satisfied iff for all t1, t2 ∈ r, tX1 ≤lX tX2 implies that tY1 ≤lY tY2 .

In Table 14, we have the LOD 〈c, a, b〉 〈d, e〉 which can be verified as
follows. Let X = 〈c, a, b〉 and Y = 〈d, e〉.

(tX1 = 123) ≤lX (tX2 = 124)→ (tY1 = 45) ≤lX (tY2 = 60)

a b c d e
t1 2 3 1 4 5
t2 2 4 1 6 0

Table 14: Example

≤l〈e,d〉 t1 t2
t1 ×
t2 × ×

Table 15: Kled

≤l〈d,e〉 t1 t2
t1 × ×
t2 ×

Table 16: Klde
As pointed out in [11], a LOD between single attributes is necessarily an

order dependency (with a single attribute there is only one order). Furthermore,
given point 2 of Definition 7, all functional dependencies are also LODs. This
includes the permutations of the antecedent and the consequent of a FD.

In our setting, we have described that a context can be build to encode tuple
relations for a given order operator (e.g. vX ,v∗X) w.r.t. a set of attributes X.
Regarding LODs, this cannot be the case as the set of attributes X is required
to be ordered, meaning that the context Klxy is not necessarily the same as the

context Klyx for x, y ∈ U (Kl indicates a formal context encoding a lexicograph-

ical ordering ≤l). For example, from Table 14 we can build a formal context
encoding ≤l〈e,d〉 (shown in Table 15) where t2 ≤l〈e,d〉 t1, and a different formal

context encoding ≤l〈d,e〉 (shown in Table 16) where t1 ≤l〈d,e〉 t2.
Nevertheless, a close inspection to a generic LOD X Y reveals that it

requires a series of order-like dependencies to hold to be satisfied. For example,
if X Y then the functional dependency X → Y holds. We can prove this

as follows. Consider two tuples such that tXi = tXj (their projections w.r.t. X

are equivalent). Then, ti ≤lX tj and tj ≤lX ti which, if X Y holds, implies
that ti ≤lY tj and tj ≤lY ti which is the same as tYi = tYj . Clearly, tXi = tXj
regardless the order of attributes in X and thus we have a functional dependency
X → Y . Now, consider the first attribute of X, x1 and the first attribute of Y ,
y1. Necessarily, t[x1] < t′[x1] → t[y1] ≤ t′[y1] which is an order-like dependency
between x1 and y1. Similar analysis can be used to obtain sufficient rules so
X Y .

For the sake of brevity, we describe a simple algorithm verifying that the LOD
X Y holds by checking a cascade of order-like dependencies obtained using
the previous analysis. Table 5 presents an example of this algorithm applied to
a table containing a LOD. For each attribute x ∈ U we generate three different
formal contexts, namely K=

x = (T, T,=x), K<x = (T, T,<x) and K≤x = (T, T,≤x).
Then, we proceed as follows:

– Check functional dependency X → Y
– For the i-th element of Y , yi:
• Build Kψ = K=

y1 ∩K=
y2 ∩K=

y3 ∩ · · · ∩K=
yi−1

• For the j-th element of X, xj :
∗ Build Kχ = K=

x1
∩K=

x2
∩K=

x3
∩ · · · ∩K=

xj−1

∗ Check the order-like dependency (Kχ ∩K<xj
∩Kψ) ⊆ K≤yi

Checking 〈a, b〉 〈c, d〉:

– K=
ab is empty and the FD ab→ cd holds.

– For the first element of 〈c, d〉:
• K<

a = {(t1, t2)} ⊆ K≤
c = {(t1, t2), (t1, t3), (t2, t3), (t3, t2)}

• K=
a ∩ K<

b = {(t2, t3)} ⊆ K≤
c = {(t1, t2), (t1, t3), (t2, t3), (t3, t2)}

– For the second element of element of 〈c, d〉:
• K<

a ∩ K=
c = ∅ ⊆ K≤

d = {(t2, t3)}
• K=

a ∩ K<
b ∩ K=

c = {(t2, t3)} ⊆ K≤
d = {(t2, t3)}

a b c d
t1 1 ? 1 ?
t2 2 1 2 1
t3 2 2 2 2

Table 17:
Example

6 Conclusion

Different generalizations of functional dependencies have been defined. The def-
inition of a new kind of generalization of functional dependencies needs to cover
two different aspects: axiomatization and computation.

We have presented a characterization of order dependencies with FCA, which
can be potentially extended to other types of order-like dependencies, and are
used in many fields in database theory, knowledge discovery and data quality.

These dependencies are part of a set of functional dependencies generaliza-
tions where equality condition is replaced with a more general relation. In some
cases, the equality is replaced by an approximate measure, in other cases, like
in order dependencies, by an order relation.

We have seen that order dependencies are based on a transitive, but not nec-
essarily symmetric relation, contrasting approximate dependencies, which are

based on a symmetric, but not necessarily transitive relation. It is precisely this
formalization in terms of FCA that allows us to find these structural differences
between these types of dependencies. We have also seen that this same charac-
terization can be extended to other kinds of approximate dependencies.

This characterization allows us to cover also the computation of these depen-
dencies: they can use the different algorithms that already exist in FCA.

This present work needs to be extended to other kinds of order-like depen-
dencies, and some experimentation needs to be performed in order to verify the
computational feasibility of this approach.

Acknowledgments. This research work has been supported by the SGR2014-890

(MACDA) project of the Generalitat de Catalunya, and MINECO project APCOM

(TIN2014-57226-P) and partially funded by the French National Project FUI AAP 14

Tracaverre 2012-2016.

References

1. J. Baixeries, M. Kaytoue, and A. Napoli. Computing functional dependencies with
pattern structures. In L. Szathmary and U. Priss, editors, CLA, volume 972 of
CEUR Workshop Proceedings, pages 175–186. CEUR-WS.org, 2012.

2. J. Baixeries, M. Kaytoue, and A. Napoli. Computing similarity dependencies with
pattern structures. In M. Ojeda-Aciego and J. Outrata, editors, CLA, volume 1062
of CEUR Workshop Proceedings, pages 33–44. CEUR-WS.org, 2013.

3. J. Baixeries, M. Kaytoue, and A. Napoli. Characterizing Functional Dependencies
in Formal Concept Analysis with Pattern Structures. Annals of Mathematics and
Artificial Intelligence, 72(1-2):129–149, Oct. 2014.

4. L. Caruccio, V. Deufemia, and G. Polese. Relaxed functional dependencies - A
survey of approaches. IEEE Trans. Knowl. Data Eng., 28(1):147–165, 2016.

5. S. Ferré. A Proposal for Extending Formal Concept Analysis to Knowledge Graphs.
In Formal Concept Analysis, volume LNCS 9113, pages 271–286, Nerja, Spain, June
2015.

6. B. Ganter and S. O. Kuznetsov. Pattern structures and their projections. In H. S.
Delugach and G. Stumme, editors, Conceptual Structures: Broadening the Base,
Proceedings of the 9th International Conference on Conceptual Structures (ICCS
2001), LNCS 2120, pages 129–142. Springer, 2001.

7. B. Ganter and R. Wille. Formal Concept Analysis. Springer, Berlin, 1999.
8. S. Ginsburg and R. Hull. Order dependency in the relational model. Theoretical

Computer Science, 26(1):149 – 195, 1983.
9. Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen. Tane: An efficient algo-

rithm for discovering functional and approximate dependencies. Computer Journal,
42(2):100–111, 1999.

10. H. Mannila and K.-J. Räihä. The Design of Relational Databases. Addison-Wesley,
Reading (MA), USA, 1992.

11. W. Ng. Ordered functional dependencies in relational databases. Information
Systems, 24(7):535 – 554, 1999.

12. J. Ullman. Principles of Database Systems and Knowledge-Based Systems, volumes
1–2. Computer Science Press, Rockville (MD), USA, 1989.

	Characterization of Order-like Dependencies with Formal Concept Analysis

