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An exact non-trivial relation between spatial mean enstrophy and dissipation in closed
incompressible flows is derived analytically, which also applies to unbounded fluid domains when
the velocity decays to zero sufficiently rapidly at infinity. The quantity^v22s2& is shown to
depend only on the boundary conditions, and it is pointed out that in many confined flows, the
equality ^v2&5^s2& is not satisfied. ©1996 American Institute of Physics.
@S1070-6631~96!01308-6#

It is now well known1 that in a constant density, constant
viscosity fluid, by taking the divergence of the Navier-Stokes
equations, one finds

¹2p5~r/2!~v22s2!, ~1!

where v25(¹`vW )252v i j
2 is the square of the vorticity

modulus, also called enstrophy, ands252s i j
2 is the square

of the rate of strain tensor, withv i j ands i j defined as

v i j5
1

2
~] iv j2] jv i !, ~2!

s i j5
1

2
~] iv j1] jv i !. ~3!

Equation~1! is analogous to Poisson’s law in electrostatics
on the electrical potential, so thatv2 ands2 behave, respec-
tively, like negative and positive charges. This simple re-
mark has had a renewal of interest those last years in the field
of turbulence, with the direct and numerical observation of
vorticity filaments2–8 which create intermittency. These fila-
ments have also been characterized by low-pressure events,
both experimentally and numerically.9–11 It has been empha-
sized that the fluid is a ‘‘neutral’’ medium, i.e.̂v2&
5^s2&, where^X& denotes the volume integral*DXdt. We
prove in this paper that the hypothesis of neutrality is not
verified for many boundary conditions.

We suppose that the fluid domainD is either infinite,
with a velocity field decaying to zero sufficiently rapidly at
infinity ~see later!, or finite with solid boundaries, in such a
case we denote byVf the volume of fluid. The flow might be
produced by a solid bodyDs moving in the fluid, for in-
stance a body in translation, or a rotating disk. We denote by
Vs the solid volume. If the domain is finite, the total volume
inside the container isVc5Vs1Vf .

Since the velocity field is generally not known exactly
~especially in turbulent flows!, we have to calculate the
quantity^v22s2& indirectly. First of all, we turn the volume
integral into a surface integral, keeping in mind that in an
incompressible flow, the velocity field satisfies the continuity
equation] iv i50. We get

^v22s2&522E
D

] i~v j] jv i !dt522E
S
~v j] jv i !nidS,

~4!

wherenW is the unit normal to the element of surface, and
oriented outward the fluid, as shown in Fig. 1.S5SsøSc

designates both the surface of the solid,Ss , and that of the
container,Sc , which is eventually at infinity. In this latter
case, we suppose thatvW decays to zero likeR2a when
R→`. A straightforward calculation shows that the surface
integral tends to zero at infinity ifa.1/2, which seems to be
generally the case in flows produced by a finite moving
body. Note again that this result would not hold in open
flows like for example pipe flows, since the stress boundary
conditions up- and downstream~corresponding to inlet and
exit! are not knowna priori.

Due to viscosity, the velocity in the fluid at the boundary
is equal to the velocity of the solid. However, a problem
arises concerning the continuity of the derivatives of the ve-
locity, which is not satisfieda priori. We can nevertheless
prove the continuity of (v j] jv i)ni across the solid boundary
S.

First of all, we note that this quantity may be written:

~v j] jv i !ni5v j] j~v ini !2v iv j] jni . ~5!

The first term on the right hand-side of the above equation
involves the derivatives of the normal velocity, while the
second term is related to the curvature of the boundary. The
continuity of the velocity field is written as

vW f~M ,t !5vW b~M ,t !, ~6!

whereM is any point on the solid surfaceS, and the sub-
scripts f or b are used, respectively, to denote a quantity
calculated in the fluid domain or in the boundary. Equation
~6! immediately implies that at the boundary

~v iv j] jni ! f5~v iv j] jni !b . ~7!

In order to evaluate the first term in the right hand-side of
Equation~5!, we consider a pointM on the boundary and we
denote bynW [eW z the unit normal at pointM . The local el-
ementary surface satisfies an equationz5j(x,y), with
j(0,0)50 at pointM . Equation~6! locally is written as:
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vW f~x,y,j~x,y!,t !5vW b~x,y,j~x,y!,t !. ~8!

However, due to the smoothness of the boundary, the partial
derivatives ofj verify ]xju(0,0)5]yju(0,0)50 ~the surface is
locally tangent to a plane!, and a Taylor development gives
at first order

]xvW f5]xvW b , ~9!

]yvW f5]yvW b , ~10!

at point M . Now, because of the continuity equation
] iv i50, we can write that

~v j] jvz! f5~vx]xvz1vy]yvz2vz~]xvx1]yvy!! f . ~11!

Then, with Equations~8!, ~9!, and~10!

~v j] jvz! f5~vx]xvz1vy]yvz2vz~]xvx1]yvy!!b . ~12!

Note thatv ini5vz is not necessarily null in the general point
of view chosen. Now, we use the fact that the incompress-
ibility hypothesis] iv i50 is also valid in the solid, and

~v j] jvz! f5~v j] jvz!b , ~13!

which holds for any pointM on the boundary. Together with
Equations~5! and ~7!, we obtain

E
S
~v j] jv i ! fnidS5E

S
~v j] jv i !bnidS. ~14!

In the solid boundary,s i j50, and¹ ` vW 52VW , where
VW 5VW (t) is the instantaneous rotation rate vector of the
solid. We denoteVW 5VW c for the container andVW 5VW s for
the solid body. We drop the subscriptb in those calculations.
Thus we have

] jv i5v j i5
1

2
« j ik~¹`vW !k5« j ikVk , ~15!

and we finally obtainv j] jv i5(VW ` vW ) i . We can now turn
back the surface integral into a volume integral:

E
S
~v j] jv i !bnidS

5E
Sc

~VW c`vW c!•nWdS1E
Ss

~VW s`vW s!•nWdS, ~16!

5E
DøDs

¹•~VW c`vW c!dt2E
Ds

¹•~VW s`vW s!dt, ~17!

where the sign2 is used becausenW is oriented inward the
solid onSs ~see Fig. 1!. Noting that in a solid

¹•~VW `vW !5vW •~¹`VW !2VW •~¹`vW !522V2, ~18!

we get

E
S
~v j] jv i !bnidS52~VsVs

22VcVc
2!, ~19!

and finally, from Equations~4!, ~14!, and~19!:

^v22s2&54~VcVc
22VsVs

2!. ~20!

The case of an unbounded domain with velocity decaying to
zero more rapidly thanR21/2 at infinity is recovered by let-
ting VW c50W . Equality ~20! proves that̂ v2&Þ^s2& in con-
fined flows produced by rotating solids. Moreover, the quan-
tity ^v22s2& does not depend on the dynamics of the flow
~laminar or turbulent!, but is fixed by the boundary condi-
tions. If VW c5VW c(t) or VW s5VW s(t), thus ^v22s2& also de-
pends on time. We can introduce the local dissipation rate
per mass unit,e5ns2, wheren is the kinematic viscosity of
the fluid. Thus equation~20! implies

^v2&2 K e

n L 54~VcVc
22VsVs

2!. ~21!

We can discuss some particular cases
~1! VW s50W andVW c50W : When the flow is produced by a

body having a movement of translation@VW s50W and

vW (M ,t)5vW (t);M P Ds#, thus neutrality is rigorously veri-
fied, i.e. ^v2&5^s2&. This is the case for example in the
experiment by Villermauxet al.,8 where the flow is produced
by an oscillating grid.

~2! VW sÞ0W and VW c50W : when a solid is rotated in the
fluid, then^s2&.^v2&, which corresponds in the analogy to
a ‘‘positive total charge.’’ This is the case for the example
for the flow driven by two counter-rotating cylinders.2,9,11

Note however that for a given̂«&, although^vW &50W @see
Equation~28! below#, this flow produces lesŝv2& than that
studied by Villermauxet al.8 When the rotation rate of the
disks is constant, Equation~21! may be rewritten:

^v2&5 K e

n L 1Cst. ~22!

However, it was shown experimentally for this very flow in
air that ^e& is a highly time-fluctuating quantity12; Hence,
because of Equation~22!, ^v2& fluctuates correspondingly.
These fluctuations of the dissipation could thus be related to
the appearance of the vorticity filaments.

FIG. 1. Orientation of the unit normalnW .
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~3! VW s50W andVW cÞ0W : in that case, the flow is submitted
to a solid body rotation, which creates an additional^v2&
compared tô s2&; in terms of the electrostatic analogy, the
domain is ‘‘charged negatively.’’

We are now going to prove in the general caseVW sÞ0W

andVW cÞ0W that, in the frameR8 of the container, rotating
with angular velocityVW c , *Dc

(v8222s82)dt50. In this

frame,s25s82 is unchanged, andvW 5vW 812VW c . Thus

E
Dc

v2dt5E
Dc

v82dt14VW c•E
Dc

vW 8dt14VcVc
2 . ~23!

First of all, we calculate*Dc
vW 8dt. Noting that, for any fixed

vectoreW :

eW•E
D

vW dt5E
D

¹•~vW `eW !dt, ~24!

5E
S
~vW `eW ! fnWdS5E

S
~vW `eW !bnWdS, ~25!

5eW•E
Dc

vW cdt2eW•E
Ds

vW sdt, ~26!

5eW•~2VcVW c22VsVW s!, ~27!

we get

^vW &52VcVW c22VsVW s . ~28!

In the solid body, we haves i j50 andvW 52VW s . Hence,

E
Dc

vW 8dt5^vW 8&1E
Ds

vW 8dt, ~29!

5^vW &22VfVW c12Vs~VW s2VW c!50W , ~30!

because of Equation~28!. Thus,

E
Dc

~v8222s82!dt5E
Dc

~v22s2!dt24VcVc
250.

~31!

Therefore neutrality is verified in the frameR8 for the do-
main $solid1fluid%: this striking result is simply due to the

continuity ofv22s2 and of its derivatives at the boundaries
@Equation~13!#, so that the Green-Ostrogradski theorem can
be applied directly inDc for this quantity!

In conclusion, in this paper, we have related the mean
enstrophy and dissipation by the formula

K v22
«

n L 54~VcVc
22VsVs

2!, ~32!

whereVc andVs are, respectively, the volume of the con-
tainer and the volume of the solid, andVW c and VW s their
instantaneous rotation rates; the case of unbounded flows
with velocity decaying to zero more rapidly thanR21/2 is
recovered by lettingVW c50W . We assume that this exact result
will be of interest for further experiments.
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