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Results of numerical simulation of the advection-diffusion equation at large P&let number are 
reported, describing the mixing of a scalar field under the action of diffusion and of a class of steady, 
bounded, three-dimensional flows, which can have chaotic streamlines. The time evolution of the 
variance of scalar field is calculated for different flow parameters and shown to undergo modulated 
exponential decay, with a decay rate which is a maximum for certain values of the flow parameters, 
corresponding to cases in which the streamlines are chaotic everywhere. If such global chaos is 
present, the decay rate tends to oscillate, whereas the presence of regular regions produces a more 
constant decay rate. Significantly different decay rates are obtained depending on the detailed 
properties of the chaotic streamlines. The relationship between the decay rate and the characteristic 
Lyapunov exponents of the flow is also investigated. 0 1995 American Institute of Physics. 

I. INTRODUCTION 

Flows exhibiting chaotic streamlines (particle trajecto- 
ries for time dependent flows) have been much studied these 
last ten years (see Ottino,’ and the special issue of Phys. 
Fluids,” for review on the subject). As pointed out by Aref,3 
a particularly interesting feature is that the intrinsic disper- 
sion properties provide an efficient method for the mixing of 
scalar fields, even using simple velocity fields (laminar 
flows, for instance). Indeed, if turbulent flows, which pro- 
duce random motion of particles in the fluid, are mainly used 
in classical mixing systems, they are not always very conve- 
nient, either because the viscosity of the fluid is very high or 
because they lead to undesirable side effects on the substance 

, to mix. Several two-dimensional, time-periodic flow fields 
generating chaotic advection have been proposed in the lit- 
erature, the journal bearing flow (Aref and Balachandar,” 
Chaiken et a1.,5 Chaiken et aL6) or a cavity with moving side 
walls (Chien et aL7) for instance. For two-dimensional flows, 
the velocity field must be time dependent in order to produce 
chaotic advection. In three dimensions, the situation is dif- 
ferent since steady three-dimensional flows may exhibit cha- 
otic streamlines: H&on* and Dombre et aL9 studied the 
Arnold-Beltrami-Childress (ABC) tlow as a prototypical 
example for inviscid fluids. Such behavior is not restricted to 
open flows: Bajer and Moffatt” proposed a class of bounded 
flows exhibiting chaotic streamlines. 

For these flows, stirring efficiency is usually estimated 
from the size of the chaotic region of the flow, evaluated 
using Poincare sections. Optimal stirring requires that the 
chaotic region covers a large part of the fluid domain. Since 
the particle trajectories (or streamlines for steady flows) are 
highly nonintegrable, numerical computation is required to 
determine these chaotic regions. Note however, that analyti- 
cal predictions may be available using the tangle dynamic 
approach: Kaper and Wiggins” successfully applied this 
method to the large scale chaos appearing in a journal bear- 
ing flow. Further considerations on stirring efficiency yield 
the stretching efficiency of material interfaces in the chaotic 
region: to first order, the stretching rate is often approxi- 
mated by the positive Lyapunov exponent,‘2,‘3 although this 

is only an asymptotic limit valid for infinite times. This as- 
sumption will be considered here for comparison with our 
numerical simulations, see section V. 

The mixing process also requires the molecular diffusion 
which determines the homogenization of the smallest scales 
of the scalar field. Indeed, the physical mechanism of mixing 
may be thought as a competition between the action of con- 
vection, which creates smaller and smaller length scales of 
the scalar field by successive stretching and folding, and the 
action of diffusion, which homogenizes the local disparities 
of this scalar field. To take into account molecular diffusion, 
a Lagrangian approach may be pursued by adding terms of 
Brownian motion type to the classical equation for trajecto- 
ries, leading to a generalized Langevin equation. Such an 
approach was used by Aref and Jones12 (see also Jones13) 
and allowed comparison with a scaling theory of the asymp- 
totic dependence on the molecular diffusivity. The main limi- 
tation of the Lagrangian approach is due to its statistical 
nature which requires the computation of a large number of 
particle trajectories, and global characterization of the scalar 
field at large time is rather difficult to obtain. Similarly, the 
alternative Eulerian approach is limited, in many cases, by 
the presence of small scales of the scalar field which must be 
accurately calculated since they reflect the mechanism of 
mixing by chaotic advection. Nevertheless, there may be 
some configurations for which such an approach is available, 
the downside being that they represent model rather than 
physically relevant flow fields. The simulation of the Eule- 
rian advection-diffusion equation allows one direct access to 
the local and global characteristics of the scalar field, as well 
as to its gradients which play an important role in the mixing 
process. In particular, it is possible to study the long time 
evolution of the scalar field as well as the influence of 
streamline topology on global mixing efficiency. 

The present paper describes numerical simulation of the 
mixing of a diffusive scalar field under the action of a steady, 
bounded, three-dimensional flow exhibiting chaotic stream- 
lines, at large but finite P&let number (lo”--105). For such 
large values, the length scale at which diffusion becomes 
important is sufficiently small compared to the overall geom- 

Phys. Fluids 7 (ii), November 1995 1070-6631/95/7(11)/2587/14/$6.00 Q 1995 American Institute of Physics 2587 



etry so that the action of chaotic advection is clearly signifi- 
cant. In this way, asymptotic limiting tendencies become 
plainly visible, whereas too small a P&let number would 
result in specific evolution characteristics, see section IV. 
Owing to the presence of small scales of the scalar field, 
numerical simulation of the Eulerian advection-diffusion 
equation is highly computer intensive and, for this reason, 
the problem considered must be chosen to make the compu- 
tation as efficient as possible. Indeed, the choice of contigu- 
ration was mainly determined by computational consider- 
ations. A parallel piped domain allowing a simple spectral 
method and an analytical expression of the velocity field 
were considered to be of particular interest. The additional 
computing cost resulting from the three-dimensionality of 
the problem was partly compensated by the fact that most of 
the calculations can be performed as two independent two- 
dimensional ones. The typical computing time for most of 
the runs we performed was less than one hour on a CRAY 
YMP which enabled a number of different experiments. 
However, for the smallest diffusivity considered in the paper, 
the computing time was about eight hours. Another interest- 
ing feature, since we deal with finite Schmidt numbers, is 
that, for steady three-dimensional chaotic advection, the to- 
pology of the streamlines is independent of time, so that 
there is no interaction with the characteristic time scale of 
diffusion. Moreover, since the advection-diffusion operator is 
time independent, the formal mathematical problem can be, 
in principle, simply expressed in terms of the spectrum of a 
linear elliptic operator with constant coefficients (note that, 
in the case of a two-dimensional, time-periodic flow field the 
Floquet theory also leads to a similar formalismj. This leads 
to a particularly simple theory of the global evolution of 
passive scalar fields and of the problem of the mixing effi- 
ciency of a prescribed flow field. However, owing to the size 
of the discrete operator, it was not possible to solve the re- 
sulting eigenvalues problem: nevertheless, the approach used 
is somewhat similar to a power method for calculating the 
dominant eigenvalues. 

Section II describes the basis of the method, the geom- 
etry and the numerical approach. Characterization of the 
model flow, using the classical notions of Poincare sections 
and Lyapunov exponents, is presented in section III. Section 
IV is devoted to the results of the numerical simulation of the 
advection-diffusion equation for different flow parameters 
and streamline topologies. An attempt to explain the relation- 
ship between the numerical mixing time and the computed 
Lyapunov exponents is presented in section V. Finally, sec- 
tion VI draws the main conclusions of the work. 

II. FORMULATION 

The mixing of a passive scalar field inside a bounded 
domain bZ having boundary F is considered. The evolution of 
the nondimensional scalar field c(x,t), satisfying the initial 
condition: 

c(x.oj=co(x), (1) 
is governed by the nondimensional advection-diffusion equa- 
tion (see Appendix A): 

1 
~+U(x).Qc=Pev2chln. 

where Pe= ReSc is the P&let number, and U(x) is a pre- 
scribed, time independent, incompressible velocity field sat- 
isfying the boundary condition: 

U-n=0 on I?, (3) 

n being the outward normal to I’. The boundary condition for 
c(x,t). that there be vanishing scalar flux across l?, is given 
by: 

Qc-n=O on F. (4) 
Since the domain is closed, the mean value of the scalar 

field remains constant with time (see Appendix A). Thus, in 
what follows, we subtract a constant from the scalar field so 
that: 

Jncd3x= Jorod3x= o. (5) 

c(x,tj then represents the deviation from the perfectly mixed 
case in which the scalar field is zero everywhere. To quantify 
the mixing state in fl at time t, we define the root mean 
square value of the scalar field: 

Z(t) = (6) 

where the nondimensional volume of 0 is chosen to be unity. 
For a closed domain without sources of c(x,t), this quantity 
must decrease continuously with time owing to the diffusion 
mechanism. Indeed, from equation (2) and boundary condi- 
tions (3) and (4) we have (see Appendix A): 

-g qty= - & J pc12d3x. 
Since the right hand side term of (7) is always negative, c(t) 
is decreasing and it can be shown that: 

c”(t)+0 as t-m. (8) 

Owing to linearity of the problem, it is always possible to 
scale appropriately c(x,t) and we may therefore assume that 
the initial condition satisfies: 

J c’d3x= 1 R0 . is) 

The efficiency of the mixing mechanism is measured by the 
rate of decay of i!(t) with time for any initial condition co(x) 
satisfying condition (9). 

From a mathematical viewpoint, the problem may be 
expressed in terms of the spectrum of the linear elliptic op- 
erator (-U(x).V+ Pe-‘V2); it is known that, under certain 
smoothness assumptions on l? and U(x), this operator pos- 
sesses a countable set of complex eigenvalues ul, v,,..., of 
finite multiplicity, for which the real parts $%(t+j are negative 
and tend to --cx when k-+a [see, for instance, Ladyzenskaya 
and Ural’ceva14). In other words, given arbitrary initial con- 
ditions, for sufficiently long times, we expect exponential 
decay of E(t) at a rate corresponding to the real part of the 
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largest eigenvalues. The main objective of this paper is to 
analyze the time evolution of c(t) for various streamlines 
topologies and to relate its mean rate of decay to the prop- 
erties of the iiow field. 

As already stated, we consider typical values of the Fe- 
clet number of order lo”-105. Of course, this may either 
result from a large Reynolds number of the flow or from a 
large Schmidt number of the scalar; here, since we deal with 
time independent velocity fields, the Reynolds number of the 
flow is necessarily not too large, say, at most of order unity. 
In any case, the velocity fields which are used, which are 
examples of velocity fields in the Stokes limit, are only valid 
for creeping flows when the Reynolds number is small. Thus,, 
the large value of the P&let number arises from a large value 
of the Schmidt number. This is, for instance, typical of fluo- 
rescent contaminants in liquids for which the Schmidt num- 
ber ranges from about 2000 in water up to 10” in 
glycerine.15 
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Such large values of the P&let number can give rise to 
numerical difficulties: from equation (7), the rate of decay of 
c(t) is directly related to the mean square value of the gra- 
dient of c. The effect of convection is to produce high local 
gradients by creating small scales of the scalar field which 
diffuse more rapidly than the larger ones. Consequently, the 
ability of a numerical scheme to simulate mixing is essen- 
tially related to its ability to accurately describe the smallest 
scales of the scalar field, as is often the case for convective 
problems; turbulence modelling, for instance. 

FIG. 1. Sketch of the flow fields: (a) integrable case, (b) nonintegrable case. 

In order to avoid any problem of numerical accuracy, we 
undertake first investigations in a simple geometry for which 
a spectral method is available, as is often the case for direct 
numerical simulation of turbulence. The domain fi consid- 
ered here is thus simply a unit cube: the origin of the Carte- 
sian coordinates is taken to be at a corner of the cube, with 
the three axes parallel to the edges. Owing to the boundary 
conditions (4), it is possible to expand the scalar field using a 
basis of cosine functions in each direction, which are eigen- 
functions of the diffusion operator alone. Note that, since the 
fluid domain is bounded, sine functions may be avoided and 
that the computing cost is lower than for a full expansion. 
Introducing this expansion in equation (2) and applying a 
standard Galerkin method, one obtains a set of couple’d linear 
ordinary differential equations for the amplitude of each 
mode. Since analytical forms of the velocity fields are used, 
it is possible to calculate exact expressions for the coeffi- 
cients. This set of equations is then integrated in time using 
an explicit fourth order Runge-Kutta scheme. 

Ur(x)=U1(-sin(7rx)cos(7rz)eX+cos(7rx)sin(5-z)eZ), 
(10) 

where e, and e, are unit vectors in the direction of the x and 
z-coordinates respectively. Superimposing a second identical 
field at right angles to the first does not lead to any chaotic 
streamlines. Nevertheless, such a tlow will be considered 
later as a prototypical nonchaotic, three-dimensional, ex- 
ample of convecting flow. To obtain chaotic behavior of the 
flow, it is necessary that the dependence in z (or x) is differ- 
ent for the second recirculating flow. Thus we superpose the 
following field: 

III. THE VELOCITY FIELDS 

+cos(rry)sin(27rz)e,). (11) 

Figure 2 shows the streamline patterns for both two- 
dimensional velocity fields U, and UZ. As for any such 
flows, the chaotic properties depend crucially on the relative 
values of the amplitudes U, and UZ of each contribution. 
Since we are interested in the efficiency of mixing, compari- 
sons must be performed for comparable energy costs; for 
Stokes flows, the energy cost is directly related to the global 
viscous dissipation rate, defined as 

The work of Bajer and Moffatt” suggests that chaotic 
streamlines are usual rather than occasional results of steady 
three dimensional laminar flows in confined geometry. How- 
ever, only a few such velocity fields lead to analytical ex- 
pressions. Owing to the cubic geometry, we propose to ana- 
lyze the velocity field due to the superposition of two two- 
dimensional recirculating flows, whose axes of rotation are 
oriented orthogonal to each other (see Fig. 1). 

where D(U) is the rate of straining tensor of the flow. Thus, 
requiring that @ is constant leads to: 

lJ:+yu;= 1. 

The velocity field U1 is chosen as: 

From equation (2j and using the boundary conditions for 
c(x,t) and U(x), one can derive the evolution equation for the 
mean square gradient (see Appendix A): 
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FIG. 2. Streamlines of the two-dimensional fields: (a) U,; (b) uz. 

(4 

d 1 IVc1*d3x= -2/oVc.D(U)Vcd3x dtn 

- ; 

Apparently, the production term for the mean square gra- 
dient is the action of this tensor on the gradient of the scalar 
field. Thus condition (13) also implies that different velocity 
fields have a priori the same ability to create large mean 
gradients. 

Classical tools for characterizing the chaotic properties 
of streamlines induced by a flow field are Poincare sections 
and Lyapunov exponents (for detailed presentation, see, for 
instance, Cuckenheimer and Holmesi or Wigginsi and, in 
the context of Lagrangian chaos, Ottmo’). Here, a section 
may be simply considered as a plane intersecting a. In Pig. 
3 we present Poincare sections of the streamlines for some 
tvpical values of the parameters U1 and U2 satisfying con- 
dition (13). For present purposes, it is sufficient to consider 
the section as the plane defined by y =0.5. These sections are 
computed numerically by integrating a single trajectory us- 

ing an explicit fourth order Runge-Kutta scheme in double 
precision arithmetic. In the particular case LJ, =0.5, we also 
computed two specific trajectories chosen so that they each 
remain in the regular region. In each section, the number of 
points is about 10000. Note that, to facilitate later compari- 
sons (see,section IV), we did not take into account the sign 
of the normal component of the velocity with which the 
streamline intersects the plane. On decreasing the value of 
U, from 1 (a case for which the streamlines are integrable), 
the chaotic region grows progressively larger and covers the 
entire domain when approximately II, =0.25. On further de- 
creasing the value of U1 ~ one observes that the chaotic re- 
gion seems not to cover the domain uniformly. In fact, 
choosing the initial location of a particle in what appears to 
be an empty region in the present Poincare section reveals 
that. the particle at first wanders about in this region for a 
while before escaping into the region shown to be densely 
covered by the present picture. At this stage, it is not clear to 
what extent the how is ergodic in this case, since, due to 
numerical inaccuracy, it is not known if the particle must 
actually escape from the empty region appearing in the 
present figure or not. This phenomenon will have some con 
sequences for the determination of Lyapunov exponents. 

To provide more quantitative information on the chaotic 
behavior of the streamlines, a computational estimation of 
the Lyapunov exponents was performed. By linearizing the 
evolution equation of a Huid particle: 

one obtains the evolution equation of an infinitesimal vector 
e(t) of arbitrary orientation under the action of the flow field: 

Classicaliy, for most initial orientations and initial points 
x{O), the norm of the vector increases with time. If the 
streamlines form closed orbits or lie on a torus, it increases 
linearly with time. If the streamlines exhibit chaotic behav- 
ior, the growth of E(t) is of exponential type: the Lyapunov 
exponent is then: 

X(x(0),E(O))=limlln”B’f)” . f-et ll4O)ll (17) 

where 11***1[ denotes some norm in R3. Such a limit is known 
to existI under certain smoothness assumptions on the ve- 
locity field. More precisely, the solution of the linear nonau- 
tonomous equation (16) may be obtained by: 

&(tj=At. E(0) (18) 

where A’ is the linear operator which maps E(O) to I. 
There exists a triad of Lyapunov exponents which can be 
ordered: A, >X,>h3. These exponents are a priori dependent 
on the initial location of the trajectory, x(0). Nevertheless, we 
expect that when chaos is global the trajectory eventually 
wanders everywhere in the domain so that taking the limit 
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FIG. 3. Poincar6 sections of the streamlines generated by the flow field U, +U,. Section plane is y =OS. Parameter values for U, and (I, are respectively: (a) 
0.5, 0.346; (b) 0.25, 0.387; (c) 0.15, 0.395; (d) 0.05. 0.399. 

for t-+a should lead to the same value for any initial point. 
Our computational results will partially confirm this last con- 
jecture. 

Some properties of the spectrum of Lyapunov exponents 
in the present case need to be emphasized and provide a 
check on the numerical computations. Since the flow field is 
divergence free, the trace of the gradient tensor is zero which 
implies that the sum of the three Lyapunov exponents is zero 
(the integration of the trace with time is simply the change of 
volume of a fluid particle). Moreover, the Lyapunov expo- 
nent in the direction of the streamline is zero for all stream- 
lines except a set of zero measure-including, for instance, 
some of the particular streamlines of the boundary of the 
domain-since equation (15) is invariant in tune: the dis- 
tance between two points of the same streamline is bounded 
for all times. Consequently, for chaotic streamlines,, we have 
h,>O, X,=0 and Xs= -A,, so that the mean dispersion prop- 
erty of the flow may be estimated from only one statistical 
value, ht. 

The relationship between the Lyapunov exponents and 
the mixing mechanism becomes clear from the equation for 

the gradient of the scalar field which can be derived from (2) 
(see Appendix A): 

Clearly, if we ignore the diffusion term of equation (19), Vc 
satisfies an equation similar to equation (16) (there is no 
influence for the transposition on the value of the Lyapunov 
exponents and the consequence of the opposite sign is essen- 
tially to exchange X, with X3 and vice-versa). Thus, in ,a 
chaotic region, the Lyapunov exponents measure the mean 
rate at which the gradient of the scalar field is produced 
under the action of the flow field. In fact, this mechanism is 
limited by diffusive effects involving the second term of the 
right hand side of equation (19). 

The computation of Lyapunov exponents was performed 
using the method proposed by Eckmann and Ruellet8 (see 
also Manneville”). We verified that the Lyapunov exponents 
are actually zero for both the two limiting regular cases 
U, = 1 and U, =0 of the flow field, as well as for the three- 
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FIG. 4. Lyapunov exponents of the flow field U for LT,==O.Z and 
U,=O.387 and three different trajectories corresponding to the following 
values of x(O): (A) (0.25,0.5,0.75); (e) (0.4,0.5,0.7); (+) (0.1,0.5,0.1) re- 
spectively. 

FIG. 5. Lyapunov exponents of the flow field U for U1=0.05 and 
Uz=0.399 and three different trajectories corresponding to the following 
values of x(Oj : (A) (0.25,0.5,0.25) ; (0) (0.4,0.5,0.7); (+) (0.1,0.5,0.1) 
respectively. 

dimensional case of two identical recirculating flows at right 
angles. We also checked that, when both chaotic and regular 
regions are present, the Lyapunov exponent h, effectively 
tends to a zero value for a trajectory lying inside the regular 
domain, and to a strictly positive for a trajectory inside the 
chaotic region. Since, in this case, the resulting value of the 
positive Lyapunov exponent is not typical of the whole flow, 
we next focus our attention on flows exhibiting global cha- 
otic behavior in Poincare sections. The numerical results for 
the Lyapunov exponents in the case U, =0.25 are shown in 
Pii. 4 for three different locations of the initial point x(0). As 
expected, for sufficiently long times, we obtain one positive 
and one negative value of the same magnitude, and a third 
one close to zero. It is also observed that, for this flow, the 
asymptotic values do not depend on the location of the initial 
point. Thus, in this case, the positive Lyapunov exponent 
seems to be a rather good statistical measurement of chaos 
for use in mixing time prediction. Also note that the asymp- 
totic value is reached for nondimensional times of order 500, 
which must be compared with the characteristic times for 
evolution of the scalar field given in the following section. 

A limitation on the use of the characteristic exponent in 
the prediction of mixing times arises when trying to distin- 
guish between different but nearby configurations. Indeed, 
the asymptotic values of Lyapunov exponent for U,=O.25 
and U1 =0.22 do not exhibit any noticeable difference: in 
contrast, we shall see in subsequent sections that the mixing 
properties of these two flows are clearly different. Another 
limitation appears when computing the Lyapunov exponent 
in the case U, =0.05, as shown in Pig. 5. After transient 
effects, the exponents stabilize at different values depending 
on the location of x(0). This fact is related to a previous 
observation: some parts of the fluid domain are rarely visited 
by the trajectory. Depending on whether the initial point is 
taken inside or outside these regions, the computed values 
are different. However, if a much larger time of integration is 
used (%40000), the asymptotic values approach.each other. 
This eventual agreement is clearly due to the fact that, after a 
while, the particle escapes from the rarely visited region. 
Consequently, it is not known whether this agreement is 

physical or due to numerical inaccuracies in the trajectory 
computation. Moreover, the characteristic time required for 
this is roughly one hundred times huger than the character- 
istic time for evolution of the scalar field when Pe = 10” so, 
in the present context, the eventual agreement of values is of 
limited interest. The fact that the evaluation of the Lyapunov 
number at finite times for a given initial location of the tra- 
jectory can be different has already been mentioned in the 
literature, especially by Eckhardt and Yao,” who proposed 
the use of local Lyapunov numbers. In section V, we will see 
how to relate one of the earlier limiting values (the one cor- 
responding to initial location inside the rarely visited do- 
main) for limited time (500) to the evolution of the scalar 
field. 

IV. EVOLUTION OF THE SCALAR FIELD 

We turn now to the simulation of the scalar field sub- 
jected to convection-diffusion mechanisms. Most of the com- 
putations have been performed for a Pdclet number of i04, 
which is sufficiently large that the convection mechanism 
plays an important part in the mixing process, yet not so 
large as to preclude accurate simulation given the limited 
number of modes in each direction. The initial scalar fields is 
chosen to have random amplitudes of the first four modes in 
each direction, suitably scaled so that condition (5) is satis- 
fied while all other modes have zero amplitude. This choice 
is consistent with the fact that, on the one hand, the problem 
is the mixing of a large length scale scalar field and, on the 
other hand, taking too specific an initial condition may lead 
to specific evolution. A check on the accuracy of the compu- 
tation by increasing the number of modes has been per- 
formed in the two cases of partially and globally chaotic 
streamlines. When U,=O.5 for which the flow exhibits a 
sizeable regular region, the evolution had converged for a 
number of modes in each direction (N) greater than 24. 
When Ut=O.25 for which chaos appears global, some dif- 
ferences in the rate of decay are still observed for N up to 48 
(see Fig. 6) but it seems that the accuracy obtained for N=40 
is sufficient for the present purpose and all calculations at 
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FIG. 6. Evolution of S(r) for U1=0.25, U,=O.387 and for differents num- 
bers of modes N in each direction: (0) 12; (Cl) 16; (A) x (0) 32; (0) 40; 
(A) 48. 

Pe = 10” were performed using this number of modes in each 
direction. A similar check was performed by reducing the 
time step. Finally, the evolution obtained for different ran- 
dom values of the initial scalar field reveals that, as expected, 
the behavior remains the same indicating that mixing is es- 
sentially governed by the eigenvalue of highest real part. 

Systematic computations were performed for the same 
initial scalar field and different values of the amplitude U, 
and U, ) see Fig. 7. The first and main conclusion which may 
be derived from Fig. 7 is that, disregarding transient effects 
for short times, there are actually optimal values of the am- 
plitudes of the flow fields for which the mean decay of C(t) 
is the fastest (recall that for all these values of the velocity 
amplitudes the energy cost remains constant). As shown in 
Fig. 8, the optimal value is approximately U, =0.25, and 
corresponds, at least approximately, to the borderline be- 
tween the presence and the absence of regular regions in the 
Poincare sections. Similar computations for a P&let number 
of lo3 lead to a similar optimal value of U, . For larger 
values of the P&let number it was not possible, owing to the 
computational cost, to perform such a parametric study, but 
the partial results we obtained (at Pe=105) indicate that 

FIG. 7. Evolution of C(t) for U, and U, being: (A) 0, 0.4; (A) 1, 0; (0) 
0.5, 0.346; (+) 0.28, 0.384; (0) 0.25, 0.387; (0) 0.21, 0.391; (0) 0.05, 
0.399. (H) integrable, three-dimensional flow. 
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FIG. 8. Asymptotic mean rate of decay of F(t) versus U, . 

similar optimal values should be expected. The existence of 
such optimal values is not surprising since for the two lim- 
iting integrable fields (Vi =1 or lJ,=O), which are two- 
dimensional, the evolution is limited by purely diffusive ef- 
fects in the third direction. Since the evolution for two- 
dimensional flow may be considered as a special case 
because some of the eigenfunctions of the Laplace operator 
are invariant under the action the flow, we also considered 
the integrable, three-dimensional, flow. As may be seen in 
Fig. 7, the rate of decay is considerably lower than that ob- 
tained for the optimal case, and its asymptotic value is ap- 
proximately the same as for two-dimensional flows. Note 
also in Fig. S that some chaotic flows are actually not very 
efficient, even when the chaos seems global (see the Poincare 
section for U, =O. 15 in Fig. 3). In fact, the efficiency de- 
creases continuously when U, decreases below 0.25. For 
very small U, , global mixing is limited by the small remain- 
ing exchange between what appears to be an empty region in 
the Poincare section (Fig. 3) and the remainder of the do- 
main. 

Another interesting feature of Fig. 7 is that, for flows 
exhibiting regular regions, the evolution of E(t), after tran- 
sient effects, appears as a straight line in a log representation 
whereas modulations occur for global chaotic fields. In our 
case, it is particularly easy to obtain the instantaneous rate of 
decay, since, from equation (7): 

dl.nC 1 J-rllVc12d3x -=-- 
dt Pe Jnc2d3x . 

The evolution of the right hand side of this equation is plot- 
ted in Fig. 9. It appears that when sufficiently large regular 
regions are present, the exponential rate of decay tends to a 
time-independent value, reflecting the fact that the dominant 
eigenvalues are of real type. In this case, we show in Appen- 
dix B that there exists a limitating diffusive effect which 
involves only the geometry of the regular region of the flow, 
so that, when large regular regions are present, slow diffusive 
scales are involved. At the same time, we observe that the 
isovalue surfaces of the scalar field align asymptotically with 
the torus of the regular region. This phenomenon is clearly 
shown in Fig. 10, where we have plotted successive sections 
of the scalar field in the plane y =0.5, which was the plane 
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FIG. 9. Evolution of dln(c)/dt for U, and U, being: (0) 0.5, 0.346; (A) 
0.28. 0.384; (0) 0.25, 0.387; (A) 0.2, 0.392. (+) integrable, three- 
dimensional Bow. 

used for Poincare sections in Fig. 3. In these plots, in order to 
show the geometry of the isoscalar surfaces, the difference 
between two contours has been adjusted to take into account 
the mean decay of the scalar field. The initial field is as 
described earlier. For the partially chaotic flow, the scalar 
field is clearly tending to a time independent pattern: of 
course, some unsteady effects are still apparent since several 
eigenfunctions are contributing, but the main characteristics 
of the streamlines in the regular region are recovered. As 
expected, the asymptotic evolution of the scalar field is es- 
sentially related to the geometry of the regular region of the 
flow. Of course, as the size of the regular region decreases, 
the influence of this diffusive mechanism decreases too: the 
influence of the right hand side term in equation (B4) (see 
Appendix B) becomes more and more important which ex- 
plains the appearance of small oscillations of the rate of de- 
cay for flows with small regular regions. 

For globally chaotic flows, the numerical simulation re- 

t=40 t = 50 t=60 t = 70 

t=80 t=!30 

FIG. 10. Evolution of the scalar field for U, =0.5, U,=O.346. The plane is y=O.5. The difference between two neighbouring contours is made to decrease 
with time according to the mean decay of c(x,t). 
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t = 58.8 

FIG. 11. Evolution of the scalar field for U, =0.20, U,=O.392. The plane is y =0.5. The difference between two neighbouring contours is made to decrease 
with time according to the mean decay of c(x,t). The time interval between successive frame is adjusted according to the periodic@ of the mean rate of decay 
of c(x,t). 

veals that the exponential rate of decay oscillates indicating 
that some of the leading eigenvalues are of complex type. 
More precisely, one can distinguish between two types of 
behavior. According to Pig. 9, for U1 =0.2 the time evolution 
of the rate of decay becomes periodic after a transient effect. 
This is also clear from the evolution of the scalar field itself 
(Fig. 11). In this case, the time interval between each picture 
has been adjusted to illustrate the time periodicity of the rate 
of decay. Such a behavior is found for the entire range 
U, G0.23, where the frequency decreases for decreasing U, . 
An analysis of the evolution of the rate of decay shows that 
essentially only one frequency is involved, the relative influ- 
ence of the harmonics being only a few percent. This reflects 
the fact that, for most of the present flow fields exhibiting 
global chaos, the eigenvalue of the advection-diffusion op- 
erator of highest real part is well isolated from the other 
ones. However this is not the case for a small range of the 
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parameter (0.24GU,-. KO.26, if we ignore the small oscilla- 
tions obtained for values close to 0.26) in the vicinity of the 
optimal value: no periodic evolution of the rate of decay is 
observed for these flow fields (see Fig. 9 and Fig. 12). Sev- 
eral eigenvalues with incommensurate frequencies then have 
similar real parts. The sensitivity of this behavior on the 
number of modes was partially checked, increasing the num- 
ber of modes to N=48 did not change the overall character- 
istics of the time evolution of the rate of decay. We also 
suspect that they are dependent on Pe: computations for a 
smaller P&let number (Pe = 103) gave only quasi-constant 
and periodic evolution. 

In short, at Pe = lo3 we obtained three different types of 
evolution of the rate of decay depending on the parameter U, 
and consequently on the topology of the streamlines: a quasi- 
constant rate for U,>O.26, a time periodic evolution for 
U,=SO.23, and an aperiodic evolution between these values. 
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t=80 

t = 60 

FIG. 12. Evolution of the scalar field for U, =0.2.5, U,=O.387. The plane is y=O.5. The difference between two neighbouring contours is made to decrease 
with time according to the mean decay of c(x,t). 

The quasi-constant rate may be explained by the presence of 
regular regions, while the physical mechanism of the other 
types of behavior {for instance, the relationship between the 
observed frequencies and the properties of the flow field) 
remains an open question. 

V. RELATIONSHIP BETWEEN LYAPUNOV EXPONENTS 
AND TIME EVOLUTION OF THE SCALAR FIELD 

For globally chaotic flows, we attempted to relate the 
mean rate of decay obtained in section IV to the values of the 
Lyapunov exponents obtained in section III. For this pur- 
pose, we used the following heuristic approach, based on an 
idea of Aref and Jones.‘* Let us denote a characteristic non- 
dimensional length scale of the scalar field by I: the charac- 
teristic nondimensional time rr to reach the scale 1 by advec- 
tion, starting at scale 1 may be roughly estimated as: 

Zwexp(-hlT,) (21) 

where 1, is the positive characteristic Lyapunov number of 
the flow. The characteristic diffusion time rd of this scale is 
simply given by: 

L’Pe 
‘i-d- ~ 

c(n). 
(22) 

In the present case we have C(a)=d. Since the decay of 
c”(t) is due to the existence of a diffusion mechanism [see 
equation (7)], we assume that the mean exponential rate of 
decay corresponds to the inverse of some diffusion time r,., 
I.e.: 

c(t)-exp 
i 1 

- & . (23) 

Toussaint, Carriire, and Raynal 2596 Phys. Fluids, Vol. 7, No. 11, November 1995 



10’ 
Pe lo3 

lo5 

P* 

10” 

10’ 

10-l 

1o-3 
10-l 10’ Pe lo3 lo5 

FIG. 13. Characteristic mixing time T* versus P&let number. The values of FIG. 14. Characteristic mixing time T* versus P&let number. The values of 
the amplitudes of the flow field are: U,=O.25, U,=O.387. (0) numerical the amplitudes of the flow field are: U,=O.O5, tJ2=0.399. (0) numerical 
results, (A) prediction using computed Lyapunov exponents. results, (A) prediction using the lowest computed Lyapunov exponent. 

We define r, as the diffusion time of the length scale 1, so 
that rC= rd, i.e. when the rate of creation of 1, by advection 
is equal to its rate of dissipation by diffusion. Then rt is 
solution of: 

r*=$exp(-2X,7,). (24) 

The time scale for decay, r,, exhibits a linear dependence at 
small P&let numbers and a logarithmic one at large P&let 
numbers. For integrable flows, this approach would lead to a 
dependence of r* as P~Y”~ at large P&let numbers, because 
the length scale then depends on the inverse of the charac- 
teristic convective, time. A comparison of this heuristic pre- 
diction and the numerical results is shown in Fig. 13, which 
gives the mean value. of r* for P&let numbers in the range 
0.1 to lo5 for U1=0.25 (the solution at Pe=105 was ob- 
tained using 64 modes in each direction). In this case, the 
prediction agrees well with the numerical results. The quasi- 
linear dependence for small P&let number is recovered, 
while the asymptotic form at large P&let number is also well 
described. Nevertheless, this apparently accurate agreement 
must be tempered by the fact that it is impossible to distin- 
guish between the Lyapunov exponents of flows of similar 
but different amplitudes while their evolution can be signifi- 
cantly different, as shown in Fig. 7. Moreover, it must be 
recalled that, for this tlow, the computed Lyapunov expo- 
nents are almost independent ‘of ‘the location of the initial 
point of the trajectory. 

A thornier problem arises when we consider flows for 
which the computed Lyapunov exponents are dependent on 
the location of the initial point. In the case U,=O.O5, we 
obtained a minimum of the estimated Lyapunov exponent at 
finite time (that’ obtained for t=500) for a location of the 
initial point in the sparsely covered region. This corresponds 
to the smallest stretching in the fluid domain. We argue that 
the behavior in this sparsely visited region whose chaotic 
properties lead to the least rapid scalar exponential growth of 
gradients should produce the least rapid decay in C(t). In 

attempting to recover the evolution of r, by equation (24), 
we actually found the agreement when using this lowest 
value of hi (see Fig. 14). 

At this point, it should be observed that the preceding 
results could lead one to the erroneous conclusion that the 
determination of a single constant [the “smallest” Lyapunov 
exponent of the flow) is sufficient to describe global mixing. 
In fact, the two cases considered may be thought of as some- 
what special: when U1 =0.25, a fluid particle wanders every- 
where in the domain with an, at least approximately, uniform 
probability distribution, so that its asymptotic stretching is 
approximately the same whatever the location of the particle. 
At the other extreme U, =0.05, there are two well-separated 
regions and the one with the smallest stretching efficiency 
essentially governs the mixing. In between these two cases, 
the situation is more complicated since finite time stretching 
is then dependent on the point of the domain we consider but 
not in the simple way of two separated regions. The asymp- 
totic Lyapunov number for such intermediate flows does not 
give a satisfactory prediction of the mixing time and thus, for 
most cases, we would need a more local representation of 
finite time stretching. Moreover, the result would be depen- 
dent on the P&let number considered. 

VI. CONCLUSIONS 

The use of numerical simulation of the advection- 
diffusion equation has permitted analysis of the global be- 
havior under mixing of a scalar field by flow fields exhibiting 
chaotic streamlines. The evolution of the variance of the sca- 
lar field is well described by a modulated mean exponential 
decay. In particular, the mean rate of decay of the variance of 
the scalar field is nearby a constant when regular regions are 
present: this has been related to the fact that the isoscalar 
surfaces of the scalar field align asymptotically with the tori 
of the regular region. The efficiency of mixing is then essen- 
tially limited by a diffusive effect involving the geometrical 
properties .(especially the size) of these regular regions. 
When chaos is global, oscillations of the mean rate of decay 
have been found: the periodicity of these oscillations de- 
pends both on the geometry of the streamlines and on the 
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P&let number. In this case, we have yet to find a satisfactory 
explanation of the results. We observe that the efficiency of 
mixing depends on the detailed properties of the streamlines 
inside the chaotic region: in particular, it has been shown that 
the presence of sparsely covered regions in the Poincare sec- 
tions significantly affects the efficiency of mixing. In fact, 
the most important characteristic for efficient mixing is that 
the lluid particle wanders rapidly in the whole domain-i.e. 
does not remain for a long time in a particular region of the 
how-even if the chaos appears global in the Poincare sec- 
tions. This observation may be important when considering 
more realistic flows, which usually do not exhibit homoge- 
neous chaotic regions. It also affects the ability to predict the 
mixing time by a simple approach such as that using a global 
Lyapunov exponent. 
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APPENDIX A: DERIVATION OF THE 
NON-DIMENSIONAL GOVERNING EQUATIONS 

Let us consider a dimensional non-reacting scalar field 
c*(x*,t*) satisfying the initial condition 

c*(x*,o)=c~(x*). (Al) 

Its evolution is governed by the equation: 

642) =; nV.(Vcjd3x- 
I 

where D is the molecular diffusivity of the scalar and U* is 
the velocity field. Let L be a characteristic length scale of the 
domain and U a characteristic velocity scale. A characteristic 
scalar scale is defined as a deviation & with respect to a 
reference scalar F$ satisfying 

c$d3x 
. 

.Thus, the non-dimensional scalar is defined as 

(A4) 

Choosing the characteristic time scale as LIU, the non- 
dimensional equation is 

dC D 
~+u-vc= EV2C. 

Introducing the P&let number (Pe =ReSc=$ %), we ob- 
tain finally 

dC 1 
; +u.vc= p,v2c. 

We recall that U is a prescribed, divergence free, steady ve- 
locity field satisfying the boundary condition 

U-n= 0 along r (A7) 

and that the scalar field satisfies the initial condition 

d.x,O) =QJ(x), 6481 
and the boundary condition 

Vc.n=O along F. (A9) 
Equation (5) is obtained by integrating equation (A6) 

over s1 

(AlO) 
And using the divergence formula 

i/acd3x+/r cU.ndr= Pe ’ I, Vc.ndI’. 

Using conditions (A7) and (A9), one finds 

d 

dtfi I 
cd3x=0. 

so. 

(All) 

W2) 

j-/d3x= /pd3x= 0. (A13j 

Equation (7) is obtained by multiplying equation (A6) by 
c and integrating over 0, and so: 

Using the divergence formula, 

1 d 

I 

3 
z t P(t) + ” U+ndI’ 

I-2 

= A( jrVc.ndT- ja(Vc)‘d3x). 

Using conditions (A7) and (A9), one finds 

1 d 

(A14j 

(A151 

The equation for the scalar gradient is easily deduced 
from equation (A6j: 

$I$+&( Gg=~($)~ (A17j 

(A18) 

Then, 

z VcfU.V(Vc)+VcmJT=V2(Vc), (A19j 
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Multiplying equation (A20) and integrating over Sz, one ob- 
tams 

Vc VUT Vcdsx . . 
- ; 

I 
JV2c)“d3x. (A3 1) 

VcV2(Vc)d3x. (A=) APPENDIX 6: DERIVATION OF A DIFFUSION-LIKE 
EQUATION FOR FLOWS WITH REGULAR 
STREAMLINE REGIONS The left hand side of this equation can be written as 

Let us denote the infinite set of eigenfunctions of the 
Laplace operator by w,(x), o*(x), **a having negative eigen- 
values I-P:, -&, e.1, ordered so that &A6 *a*. Suitably 
normalized, they form a basis of orthonormal functions. If a 
regular region exists in the flow, there is some smooth func- 
tion x(x) with zero normal derivative on I?: 

VW 

x(x)=2 aioi(p), with 2 a;= 1, 
ia1 iZ1 

._ 

031) 

(A24j satisfying: 

U.Vx=O in a.. 032) 

It is then possible to construct, using a suitable algorithm 
such as Gram-Schmidt orthogonalization, a new basis of or- 
thonormal functions containing x(x) and an infinite sequence 
of functions orthogonal to it: x(x), A(X), xi(x). a**. Expand- 
ing c(x,t) using this basis: 

Using condition (A7), one finds 

J‘ 
lW2 d3x ~ 

n2 . (A23 

The first term of the right hand side of this equation can be 
written as 

Vc.VUT.Vcd3x=- Vc.D(.U)Vcd3x 

inserting in equation (2), and using a Gale&in method, one 
finds the following equation for the evolution of &t): - I Vc..dlr(U)Vcd3x, 

n 

= AZ, C;(t) jj2x;xd3x. 

(A26j 

where D(U) is the rate of straining tensor of the flow and’ 
fir&J) the rate of rotation tensor of the flow. Finally, using 
the fact that or(v) is anti-symmetric, one finds 

- 
I 

Vc.VuT.Vcd”x= - 
I 

Vc.D(U)Vcd3x. 
n n. 

(~27) 

The right hand side of this equation can be written as 

Any term involving U(x) has vanished because of condition 
(B2), incompressibility and the boundary conditions on 
the velocity field. Since equation (B4) is linear, the solution 
for Cl(t) is the sum of a general homogeneous solution 
and a particular solution. The homogeneous solution is 
easily found to have exponential decay at the rate: 
Pe-lEial Ly:pr. 

There is a particular function x(x), satisfying condition 
(B2) and minimizing Zttla:~F. Such a function implies the 
existence of asymptotic diffusion effect which involves only 
the geometry of the regular region of the flow. For instance, 
when large regular regions are present, functions x(x) exist 
for which the first coefficients al, cr,, . . . are dominant which 
implies that slow diffusive scales are involved. Note that 
x(x) is not an eigenfunction of the problem, so that the right 
hand side of equation (B4) actually influences the evolution 
of Cl’. What equation (B4) suggests is that large scale diffu- 
sion due to the presence of the regular region dominates the 
long time evolution of the scalar field. 

I VcV2(Vc)d3x 
i-2 

= 
I 

oV(,V2cVc)d3x- 
I 

o( V2c)“d3x, (A28) 

= 
i 

V2cVc.ndI’- JV2cj2d3x. 
J‘ (A29) r 

Using condition (A9), one obtains finaIly 

.I- Vc. V2(Vc)d3x= 
n (A3Oj 

Using both expressions in equation (A21), one finds 
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