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Abstract

This paper presents a novel strategy to generate, from 3-D lidar measures,
dense depth and reflectance images coherent with given color images. It also
estimates for each pixel of the input images a visibility attribute. 3-D lidar
measures carry multiple information, e.g. relative distances to the sensor
(from which we can compute depths) and reflectances. When projecting a
lidar point cloud onto a reference image plane, we generally obtain sparse
images, due to undersampling. Moreover, lidar and image sensor positions
typically differ during acquisition; therefore points belonging to objects that
are hidden from the image view point might appear in the lidar images. The
proposed algorithm estimates the complete depth and reflectance images,
while concurrently excluding those hidden points. It consists in solving a joint
(depth and reflectance) variational image inpainting problem, with an extra
variable to concurrently estimate handling the selection of visible points. As
regularizers, two coupled total variation terms are included to match, two
by two, the depth, reflectance, and color image gradients. We compare our
algorithm with other image-guided depth upsampling methods, and show
that, when dealing with real data, it produces better inpainted images, by
solving the visibility issue.
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1. Introduction

Image-based 3D reconstruction of static and dynamic scenes (Herbort
and Wohler, 2011; Seitz et al., 2006; Stoykova et al., 2007) is one of the main
challenges in computer vision nowadays. In the recent years many efforts
have been made to elaborate configurations and approaches, possibly requir-
ing the employment of multiple sensors, with the final goal of generating
plausible and detailed 3D models of scenes. To this end, typical optical cam-
eras are often combined with non-visual sensors. The intermediate outputs
of these hybrid systems, prior to the final scene rendering, are in general
depth or depth+-color images (RGB-D). Among the non-visual sensors, we
can find Time-of-Flight (ToF) cameras (Kolb et al., 2010), which acquire
low-resolution co-registered depth and color images at a cheap cost, and the
famous Kinect (Zhang, 2012), capable to extract depth information by ex-
ploiting structural light. Another possibility is represented by lidar devices,
which are used in a variety of applications and provide as output point clouds
with measures of distance and reflectivity of the sensed surfaces.

This work lies in the context described and is particularly driven by the
exploitation of data acquired by Mobile Mapping Systems (MMS), such as
(Paparoditis et al., 2012). MMS systems are vehicles equipped with high-
resolution cameras and at least one lidar sensor: their contained dimensions
allow them to be driven through regular streets and acquire data of urban
scenes. The data acquired is a set of calibrated and geolocated images,
together with coherent lidar point clouds. The interest towards them comes
from the possibility of having available, at a relatively small processing cost,
the combination of depth and color information, without having to perform
explicit (error-prone) reconstructions. Having a good depth estimate at each
pixel, for example, would enable the possibility to perform depth-image-
based rendering algorithms, e.g. (Chen et al., 2005; Schmeing and Jiang,
2011; Zinger et al., 2010). Similarly, the availability of depth information
allows the insertion of virtual elements into the image, such as pedestrians or
vehicles generated by a traffic simulation (Brédif, 2013). While MMS data
sets do not include directly depth images aligned with the available color
images, it is easy, by exploiting the known geometry, to project the lidar



point clouds onto each image. This operation produces initial depth images,
which present three main issues (see Figure 1, where three parts of an input
depth image are shown, together with the corresponding image parts).
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Figure 1: Examples of parts from a resulting input depth image (bottom row), with the
corresponding parts from the reference color image (top row), showing the three issues
mentioned: undersampling, appearance of hidden points, and presence of occlusions.

1. Undersampling: since lidar and image acquisitions are deeply different
in terms of geometry and characteristics, the resulting depth images
turn to be irregular. No points are present in the sky and on reflective
surfaces. Moreover, the point density, which depends on the variable
distances between the camera image plane and the positions of the lidar
sensor, is generally significantly smaller than the pixel resolution. We
can therefore talk about sparse input depth images (see for example
Figure la, showing the low density of lidar points from the ground).

2. Visibility (hidden parts appear): since points that are not visible from
the image view point (hidden points) can be occasionally “seen” by
the moving lidar sensor, erroneous values referring to such points can
appear in the input depth image. This occurs even when a Z-buffer
approach (Greene et al., 1993) is used, i.e. only the closest depth values
for each pixel are kept (in case multiple values end up in the same pixel
location). E.g., Figure 1b shows that depth values from the building
behind appear as foreground points.

3. Occlusions (visible parts disappear): for the same reason as above, i.e.
the different acquisition timing and geometry between image and lidar
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sensors, surfaces normally visible from the image view point do not get
a corresponding depth. This can happen when the lidar sensor suffers
occlusions at a given instant or because of the scene dynamics. E.g.,
in Figure 1c, a moving bus that is not present at the moment of the
image shot happens to appear in the depth image.

While there is variety of methods in the literature that deal with the first
issue, i.e. that aim at upscaling an irregular input depth image possibly with
the guidance of a corresponding color image, little work has been performed
to address the last two issues. In this paper, while inpainting the input depth
image, we also intend to tackle the visibility problem. Moreover, we treat at
the same time an additional input: a sparse reflectance image derived in the
same way as the input depth image (i.e., by naively projecting the lidar point
cloud, considering the reflectance information carried out by each point). We
will show that the simultaneous use of a reflectance image, which is inpainted
jointly with the depth, improves the quality of the produced depth image
itself. To jointly inpaint depth and reflectance and concurrently evaluate the
visibility of each point (i.e. establish if a single point is reliable or, since
non-visible, must be discarded), we formulate an optimization problem with
three variables to estimate: depth, reflectance and a visibility attribute per
pixel. The inpainting process is also guided by the available color image, by
means of a two-fold coupled total variation (TV) regularizer.

The remainder of the paper is organized as follows. In Section 2, we
present our approach and mention the related works, in particular on the
image-guided depth inpainting problem. In sections 3 and 4 we describe the
model used and the primal-dual optimization algorithm that arises, respec-
tively. Finally, in Section 5 we bring experimental evidence that proves the
effectiveness of the proposed approach.

2. Problem addressed and related work

Figure 2 depicts the scheme of the proposed approach. Given an MMS
data set consisting of a lidar point cloud and a set of camera images, we
choose among the latter a reference color image (w), and we obtain input
depth (ug) and reflectance (ry) images by re-projecting the lidar points ac-
cording to the image geometry. The two lidar-originated images are sparse
images with irregular sampling and need to be inpainted. We propose to do
that jointly and simultaneously estimate the visibility of the input points,



within a variational optimization framework. The output of the algorithm
are then three: the inpainted depth and reflectance (u and r, respectively),
and a binary image expressing the visibility at each point (v).
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Figure 2: General scheme of the proposed approach. The final outputs of the algorithm
are the inpainted reflectance and depth images, r and d respectively, and a binary visibility
image v. To represent v, we show the original depth values that finally get v ~ 0.

In the literature there is a variety of methods that aim at upscaling or
inpainting an original sparse depth image. Most of them are presented in the
context of ToF cameras; thus, a high quality color image is acquired at the
same time and can be exploited. We refer to this problem as image-guided
depth inpanting. The typical assumption, when exploiting the available im-
age, is that image edges are related to depth edges. Following this principle,
many approaches have been proposed, such as methods using different ver-
sions of multilateral filtering (Chan et al., 2008; Garcia et al., 2010; Yang
et al., 2013), methods based on Markov Random Fields (Diebel and Thrun,
2005), and methods using Non-Local Means (Huhle et al., 2010; Park et al.,
2011). Another family relates to recent methods that make use of opti-
mization (Ferstl et al., 2013; Harrison and Newman, 2010; Liu and Gong,
2013; Schwarz et al., 2012). Among these, in (Harrison and Newman, 2010),
a method to assign image pixel with a range value, using both image ap-
pearance and sparse laser data, is proposed. The problem is posed as an
optimization of a cost function encapsulating a spatially varying smoothness



cost and measurement, compatibility. Another optimization-based depth up-
sampling method is presented in Ferstl et al. (2013): an Anisotropic Total
Generalized Variation (ATGV) term is proposed to regularize the solution
while exploiting the color image information.

While presenting good results on “non-problematic images”, in none of
the mentioned methods the visibility issue is tackled, i.e. there is no estima-
tion of input depth measures to possibly remove, but all input depth measures
are assumed to be valid and equally contribute to the inpainting process. We
instead intend to estimate visibility, to be able to cope with realistic depth
images. To this end, we build on our previous work on lidar-based depth
inpainting (Bevilacqua et al., 2016). W.r.t. the latter, the model is signifi-
cantly modified to include a reflectance image as well into a new optimization
framework. We will show that depth and reflectance mutually benefit of each
other in the inpainting process, thus leading to better output results for both.
In the next section we present the novel model.

3. Model

Let © C R? be the “full” image support, and Qg C € the sparse im-
age support where the input images are defined (i.e., there is at least one
lidar point ending up there after projection). Given an input depth image
ug : 2¢ — R, an input reflectance image rg : ¢ — R, and the luminance
component of their corresponding color image w : ) — R (defined in the
complete domain), the goal is to fully inpaint the depth and reflectance in-
put images to obtain u : 2 — R and r : 2 — R, and concurrently estimate a
visibility attribute v : 0¢ — R. For each input point, v indicates whether it
is visible from the image view point and should thus be taken into account in
the inpainting process. Figure 3 reports an example of three possible input
images - depth (ug), reflectance (rg) and camera images - and their respective
gradient images.

We model our joint inpainting problem as an optimization problem with
three variables, u, r, and v, to be estimated. Lower and upper bounds for the
values of v and r are considered in the expression. The visibility attribute
v takes values in [0, 1], where v = 0 stands for “hidden” and v =1 means
that the point is visible from the considered image view point. The model



Depth Reflectance Color image

~380m.

~1m.

Figure 3: Example of input depth, reflectance and color images (top row), and their re-
spective gradient images (bottom row). Besides the input depth image, the color map used
to encode depth values is reported. Gradients of depth and reflectance are computed on
the interpolated versions of the input sparse images, initially obtained by nearest neighbor
interpolation.

considered consists of four terms:

[min ]F(u,v|us) + G(r,v|rs) + H(v|ug,rs) + R(u, r|w) . (1)
UE|Um ,U
7'6[7”1!177‘131{}

ve(0,1]

F(u,vlug) and G(r,v|rg) are two data-fidelity terms, for depth and re-
flectance respectively. In both of them the visibility attribute v intervenes.
H(v|ug,rs) is a term depending exclusively on v, which represents the total
cost of classifying input pixels as non-visible. Finally, R(u, r|w) is a regular-
ization term that penalizes the total variation of v and 7, by also taking into
account the color image w. In the next sections we will detail all the terms
composing (1).



3.1. Visibility-weighted data-fidelity terms

The data-fitting terms in (1) are meant to enforce fidelity with the original
values of depth and reflectance, ug and rg respectively. Deviations from
the original values are more penalized if the point are considered “trustful”;
conversely, for erroneous original measures (e.g., referring to hidden points)
larger deviations are allowed. Therefore we use the visibility attribute v to
weight the data terms. For the reflectance data-fidelity term G(r,v|rg) we
have the following expression:

G(r,v|rg) = 772/ vlr — rg|dzy day (2)

Qg

where 7, is a coefficient weighting the term within the model, and dz; and
dxy express the differential lengths in the two image directions. Note that in
(2) an ¢1-norm error is used. The ¢; norm is considered in substitution of the
classical £5 measure of the error for its effectiveness in implicitly removing
impulse noise with strong outliers (Nikolova, 2004) and its better contrast
preservation (Chan and Esedoglu, 2005). As said, weighting by v relaxes the
dependence on the input data for those points classified as hidden.

The depth data-fidelity term, weighted by the coefficient 7y, is further
divided into two terms, as follows:

Fluolus) =
Qs
= Fi(ulus) + Fy(u, vlug) .

max (0, u — ug) dey dzs + /
Qg

v(max(0, ug — u)) dzy dx2> (3)

The basic idea behind this separation is to treat differently over- and under-
estimated depths. Points for which the estimated depth is greater than the
original value (u > ug) most likely correspond to correct input measures,
where the over-estimation would be due to the surrounding presence of larger
erroneous depths. The expression max(0,u — ug) is meant to select this
kind of points (over-estimated depths). As they are considered reliable, an
unweighted data-fitting term, Fj(u|ug), is imposed. It is easy to see that
for these points the visibility attribute v tends to converge to 1, i.e. they
are the best candidates for being classified as visible points. Conversely, the
hidden points to remove are sought among depth values which undergo under-
estimation (u < ug). These points are taken into account in the second term
Fy(u,v|ug), where the ¢; error is weighted by the visibility attribute. Ideally,
a fraction of them, the most “problematic” ones, will be classified as hidden
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Figure 4: Depth data-fidelity cost F'(u,v|ug) as a function of u —ug for different values of
v (m =1 for simplicity). For over-estimated depths (u — ug > 0) the cost is independent
of v, whereas for u — ug < 0 we have different lines as v varies.

(v=0) and thus not considered in the data fitting cost. Figure 4 shows
graphically the depth data-fidelity cost as a function of © — ug. Depending
on the value of the visibility attribute v, the ¢1-type error |u — ug| is relaxed
for negative depth deviations (u < ug).

3.2. Removal cost

The second term of the model (1) is meant to penalize the total number
of hidden points.

H(vlug,rs) = /Q a(ug,rs)(l —v)de; dz, . (4)

The cost of a single pixel exclusion is proportional to 1 — v, i.e. we have the
highest cost for an input pixel when it is totally excluded in the data-fitting
cost (v =0). We individually weight each removal cost, in order to give
different importance to each decision visible/hidden. Individual weighting is
given by a coefficient dependent on the original depth and reflectance values,
a(ug,rs). We generally choose o = kjug + kors. The linear dependence of «
on the depth and the reflectance “balances” the three terms of (1) depending
on v, such that k; and ks appear to be constants. We will discuss their choice
later in this paper (Section 5.1).

3.3. Coupled Total Variation

Depth upsampling/inpainting methods that exploit corresponding camera
images often relate image edges to depth edges. This has been shown to
improve the quality of the reconstructed depth images.
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To couple two images in a total variation framework, we adopt the coupled
total variation (coupled TV) of (Pierre et al., 2015):

TV, (a,b) = / V0ma) + (Oop + N(D,0) 4 22(0p) 1 da . (5)
Q

where )\ is a coupling parameter. When \ # 0 the minimization of TV,
encourages the gradient “jumps” to occur at the same locations in a and b.
The coupled TV is then a way to align the edges of an image with those of
a given one.

In our problem we have three types of images: a color image w, a depth
image u, and a reflectance image r. Figure 3 reports in the bottom row
an example of gradient magnitudes related to three images. The gradients
of the input depth and reflectance images have been computed after initial
interpolation of the latter. As we can clearly see from the image, the color
image gradient particularly matches the reflectance one, while being rather
dissimilar to the depth gradient. In turn, the reflectance gradient share some
patterns, yet less prominently, with the depth one. See, e.g., the area at the
base of the column, where multiple layers mix and produce a similar effect in
the two gradient images. We therefore propose to match the three gradients
two by two: depth with reflectance, and the same reflectance with the fixed
color image. By using the previous definition of coupled TV (5), we express
the regularization term as follows:

R(u,r|w) =TV, (u,r) +TV,, (r,w) . (6)

After detailing all the terms, our model (1) can therefore be rewritten as
follows, the four terms being still distinct:

min m (/ max(0,u — ug) +/ v(max(0, ug — u))) + 772/ vlr —rg]
UE [t um] Qs Qs Qs

TE[rm,rMm]
vel0,1] F: Data-fidelity for Depth G: Data-fidelity for Reflectance (7)

+/ alug,rg) (1 —v) + TV, (u,r) + TV, (r,w)
Qs

R: TV regularization

H: Removal cost

In the next section we detail a primal-dual approach to solve (7).

4. Algorithm

The optimization problem (7) turns out to be convex, but not smooth,
due to ¢;-type data-fidelity terms, F'(u,v|ug) and G(r,v|rg), and the total
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variation regularization term R(u,r|w). Recently, in (Chambolle and Pock,
2011) a primal-dual first-order algorithm has been proposed to solve such
problems. In Section 4.1 we provide the necessary definitions for the algo-
rithm, which is subsequently described in Section 4.2.

4.1. Discrete setting and definitions

Images, considered in Section 3 as continuous functions in R2, are here
converted into real finite-dimensional vectors. Let M and N be the image
dimensions in this discrete setting, and (7, j) the indices denoting all possible
discrete locations in the Cartesian grid of size M x N (1 <i< M,1<j <
N). We then have u, ug, r, rs, v, w, and o € X = RMYN  where X is a finite
dimensional vector space equipped with a standard scalar product:

(u,v)x = Z Ui jVij, u,v€EX. (8)
1<i<M
1SN

The gradient of an image u € X, Vu, is a vector in the vector space X?
with two components per pixel:

(Vu)ij = ((Vau)ij, (Vvu)ij) - 9)

We compute the gradient components via standard finite differences with
Neumann boundary conditions, i.e.:

Y
.= 2
(Vi) { 0 i=M

Ui j4+1— Ui, 5 ;
o 5 J<N
(VV’UJ)L] { O ] — N

From the definition of gradient, it follows the expression of discrete cou-
pled total variation, which matches the continuous one (5):

(10)

TVa(a,0) = > \/ (Viaij)? + (Vvaij)? + 22 (Vb )2 + 22 (Vb )? . (11)

1<i<M

1<j<N
As first suggested by (Chan et al., 1999), a total variation optimization
problem can be recast into a primal-dual form that makes its solution eas-
ier, by rewriting the gradient norm by means of a vector-valued dual vari-
able. To this end, in our case we first define a “coupled gradient” operator
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Kyw : X =Y (Y =X%), which, applied to an image a € X, expand its
gradient to include the one of a reference image b according to a coupling
parameter A. Le., we have the following element-wise definition:

(Kava)ij = (Vua)ij, (Vva)ij, MVab)ij, A(Vyb)ij) . (12)

Thanks to the definition above, we can express alternatively the coupled total
variation (11), by introducing the dual variable p € Y:

TV (a,b) = max (Kxva, p)y — 0p(p) , (13)
where the scalar product in Y is defined as

11 2 2 3 3 4 4
(P, @)y = Z Pij%,; T Pij%,; + Pijdij + Pij,;
1<i<M
1<j<N ’
p=@"p"0°0"), ¢=(¢"¢ ¢ q¢")eY
dp denotes the indicator function of the set P

0 ifpe P

and the feasibility set P for the dual variable p, is defined as
P = {p ey | ||pi7j||2 <1, \V/’L,j} ) (15)

We can now finally express the regularization term of our model R(u, r|w)
(6) as the maximization over two dual variables. We then have:

R(u,r|w) = I;lg;{ r;g;( Kyrtt + Koy — 0p(p) — do(q) - (16)

This will let us formulate a discrete version of our joint inpainting problem
(7), which falls into the primal-dual optimization framework. As for the
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other terms in (7), rewritten in discrete notation, we have:

Fl(U|Us) =TT Z (I)i,j HlaX(O,Ui,j —Uus i,j)
1<i<M
1<j<N
FQ(U, ’U‘Us) =T Z (bi,jUiJ maX(O, us ij ui,j)
1<i<M
1<j<N
G(r,vlrs) = n Z D jvijlrig — sy
1<i<M
1<j<N
|uSarS Z (b’ljalj Uz’7j)

1<i<M
1<j<N

where @ is a binary mask indicating the initial known pixels, i.e. belonging
to the sparse image support (g.

4.2. A primal-dual algorithm

Thanks to the previous definitions, we can express our model (7) in the
form of the following saddle-point problem, which is an extension (including
two extra variables) of the one presented in (Pierre et al., 2015):

K Korlg) — Di(p) — D3
min min min max max {(Kyulp) + (Kxrlg) — Di(p) — D3(q)

+A(u) + B(r) + a(u,v) + b(r,v) + C(v)} . (18)

It is a primal-dual problem with three primal variables (u, r, and v) and
two dual variables (p and ¢) that evolve independently. Each dual variable
is particularly linked to the gradient of a primal variable, i.e. p to u, and ¢ to
r. DY, D5, A, B, and C are convex functions; a and b are convex w.r.t. each
of its respective variables. Globally, the functional is not convex w.r.t. the
triplet (u,r,v). By relating (7) and (18), we have the following equivalences:

o Kiu= Ky, u; o Kor = Kyl

e Di(p) = dp(p); e D3(q) = dq(q);

o Au) = Fi(ulus) + Ou ung (0); ® B(r) = 6y mg(r);
o a(u,v) = Fy(u,v|ug); o b(r,v) = G(r,v|rs);
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o C(v) = H(v|ug,rs) + 0p,1(v)-

An algorithm to solve (18) can be derived within the primal-dual opti-
mization framework of (Chambolle and Pock, 2011). It consists in a unique
loop, where all variables are alternatively updated via proximal operators
(see Algorithm 1). The algorithm takes as inputs the initial estimates of
the complete depth and reflectance images (ug and rg, respectively), and the
reference intensity image w. It also requires three parameters inherent to the
algorithm: ¢ and 7, which are related to each other by the relation 1670 <1
(Chambolle and Pock, 2011), and p, which is a parameter regulating the
update speed of v.

Algorithm 1 Primal-dual based algorithm for depth and reflectance joint
inpainting.
1: Inputs:
Ug, To, W, T, P, T
2: Initialize:
ul, 10’ = ug, 10,7 1o, v); < 0.5,
p° + (Vug, \1Vrg), ¢° < (Vrg, \aVw)
: forn=0,1,... do
P prox, p: (p" + 0 K6 T")

0

qn-‘rl — prOXUD; (qn + O-KQFTL)

3

4

5

6: v proxpa(ﬁ”,~)+pb(f”,~)+p0(Un)

7 ut prOXTA+Ta(',U"+1)(un - TKikanrl)
8 i prOX‘rB+7'b(-,v”+1)<rn - TK;anrl)
9 an—i—l — 2un+1 —un

10: Frtl ¢ Qpntl _ g

11: end for

Algorithm 1 involves the computation of the adjoints to the linear opera-
tors K and K> (the coupled gradient operators). It is known that the adjoint
of the gradient operator is the negative divergence operator (V* = —div).
In our case, the adjoint to the coupled gradient operator K; : X — Y is a
linear operator K7 : Y — X consisting in the negative divergence computed
only on the two first components of a four-component dual variable p € Y.
These components are in fact the ones related to the primal variable to which
the coupled gradient operator has been applied. We then have the following
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definition for K{p (the same definition stands for K;p):
Kip=—(Vu(p')+ Vv(p*) . (19)

Closed-form expressions for the update rules in Algorithm 1 can be easily
computed by applying the definition of proximal operator (see Appendix
A). The resulting expressions are reported here below, where P denotes
the projection operation over a given real interval, i.e. values are clipped if
exceeding the interval limits. While the proximal operators for the update of
the dual variables p and ¢ come straight from the definitions of the feasibility
sets P and (), we report details about the derivation of the other proximal
operators in Appendix A.

Dij

P =DproxX,p:(p) <= pij = —— "=~ 20
oilP) = P = LD (20)
? max(1, |G |)
PTOXpa(a, )+ pb(r,)+pC (V) =
Proy (2) if @, =0 (22)
Pioy (0 + por = T —rg) i D=1, Uy > usiy
Piog) (04 pa — pqi(us — @) — pmp|F —rgl) if i =1, 455 < ugi
P[“my“k{] (ﬂ) if q)i,j =0
~ Pum,u a—TT] if CI)@-:L ai,'>uSi,'+7’7’]
PIOX, 4 ra(.) (@) = [um, ] (~ 1) : j Uij j 1 (23)
Prugmaun) (@ +0rm) A @5 =1, G <ugij— o7
P[um,uM] (Us) otherwise
Plrora (7) if ®;;,=0
P r — if @i':].,Ni'> i
PIOX, 5 ¢ rp(..0) (7:) _ [Pm,7 s <7: UT"72) 1 J t J rsij + UTnN (24>
P[Tm,TM] (T + UT772> if cbi,j =1, 71 <rgij —vTn
P[T’m,T'M] <TS> Otherwise

The operations indicated in the proximal operators are pixel-wise, al-
though the pixel coordinates have not been made explicit for clearer read-
ing.
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5. Experimental results

The algorithm presented in Section 4 is evaluated with a realistic data
set acquired in an urban scenario, composed of lidar measures and camera-
originated images. We also assess the quality of the visibility estimation task,
which is a crucial characteristic of our algorithm. Before showing results and
comparisons, in Section 5.1 we motivate some critical choices in terms of
model and algorithmic parameters.

5.1. Parameters of the algorithm and model choices

Our finally resulting joint inpainting model (7) consists of four terms:
two data-fidelity terms, F'(u, v|ug) and G(r,v|rg), a “removal” cost depend-
ing solely on the variable v, H(v|ug,rs), and the two-fold regularization
term R(u,r|w). As discussed in Section 3.1, for the data-fidelity terms we
opt for an ¢, measure of the error, in order to promote more contrasted so-
lutions (Chan and Esedoglu, 2005). The visibility attribute v weights the
data matching cost of each single pixel (data matching is more and more
relaxed, as v tends to zero, i.e. when that particular point is considered to
be excluded). However, over-estimated depths (u > ug) are not weighted by
v but are fully penalized. These values relate to pixels where either there
is noise on a visible point that is slightly corrected (u — ug is small), or the
value ug represents an outlier (e.g. it is due to a mobile object). At present,
we do not have a way to handle the latter case.

In H(v|ug,rs) (4), each point removal cost is the product between (1 — v)
(the level of “invisibility” of the point) and a coefficient o depending on the
local input depth and reflectance: a = kyug + korg. This choice has been
made in order to balance all terms in (7) where v appears. Let us now
observe the “complete” update rule for v (last case of (22), i.e. for points
with under-estimated depth). According to it, we have that at each iteration
v is incremented /decremented by a quantity Av = p (v — 1 Au — o Ar). Let
us suppose that the fluctuations on depth are significantly larger than the
fluctuations on reflectance (the appearance of a hidden point can cause a big
“jump” in depth, while the reflectance values might still be similar. For the
sake of simplicity we can then adjust the value of o only on the basis of the
depth input value. The proposed simplified expression for « is then:

a = kug . (25)
With the assumptions made we therefore have Av o (kug —mAu). The

attribute v for a certain pixel increases (it gets a higher confidence as a
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visible point) if ﬁ—s < n%’ i.e. if the relative depth deviation is below a certain

threshold. k is an a-dimensional parameter that contributes determining this
threshold. Conversely, v decreases for relative depth deviations exceeding
the threshold. As for the update of v for points with over-estimated depths
(second case of (22)), if we hypothesize that «, adjusted on depth, is large
enough w.r.t. the reflectance deviation, we have that v progressively tends
to one (unless large absolute reflectance deviations occur).

As for the regularization term R(u,r|w), we proposed in Section 3.3 to
combine two distinct coupled total variation terms: TV, (u,r) (depth is
individually coupled with reflectance) and TV, (r, w) (reflectance is individ-
ually coupled with the color image). By having two separate coupled TV
terms, each one encoded by a dual variable that evolves independently from
the other one, the reflectance gradient is constantly brought back to the ref-
erence gradient of the color image. At the same time the “correct” gradient
information is transferred to the depth via the second term. Figure 5 shows
an example of results obtained with the algorithm for the same test case as
Figure 3.

For the example test of Figure 5, as well as for all the results reported
hereinafter, the following parameters, found with multiple tests, have been
used to characterize the model (7): m = 1.7, g = 50, k = 0.05 (the co-
efficient determining o according to (25)), A\; = 0.5, Ay = 1. These values
have been found empirically by letting them vary one by one and observing
the obtained visual results. The two data terms F(u,v|us) and G(r,v|rg)
are attributed different weights. The larger coefficient assigned to the re-
flectance data term (1, > ;) means that a greater data fidelity is imposed
on reflectance. Depth values have instead a greater “freedom” in deviating
from their original values. The two coupling parameters A; and Ay being
in the same order of magnitude, it shows that the two coupling terms have
a similar importance. As for the parameters, inherent to the primal-dual
optimization scheme (Algorithm 1), the following values have been set after
testing: p =10, 7 = 0.004, 0 = 14.

If we observe the input sparse depth image of Figure 3, we see that
the major problems come from the fact that depth values referring to the
building behind the column appear mixed with foreground depths. With
our algorithm we are able to resolve these conflicts, as we can see in the
inpainted depth image (Figure 5a). Part of the input points have in fact
been removed, i.e. classified as non-visible (v = 0). Figure 5c reports the
locations of such points in the original depth image. From the histogram of
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x10° Distribution of v

Figure 5: Output of the proposed algorithm for the image Columni: (a) Inpainted depth,
(b) Inpainted reflectance, (¢) Removed points (v = 0), (d) Final depth gradient, (e) Final
reflectance gradient, (f) Final histogram of v.

the values of v (Figure 5f) it is evident that the algorithm produces a bi-
partition of the points according to their visibility attribute. Figure 5 shows
also the inpainted reflectance and the final depth and reflectance gradients.
By comparing the latter to the original gradients (Figure 3), we can observe
that they end up incorporating elements of the color image gradient, while
removing erroneous edges. In the next section we will present more results
obtained with our algorithm, also in comparison to other inpainting methods.

5.2. Results with urban data

We consider a data set acquired by a MMS system (Paparoditis et al.,
2012) at Place de la Bastille, Paris, consisting of one lidar point cloud in the
order of one billion of points and hundreds of optical image simultaneously
acquired by 5 cameras mounted on the vehicle. Given a reference optical
image, we project onto it the available lidar points to form the initial depth
and reflectance incomplete images. Note that not all the points are effectively
visible from the image view point. The incomplete depth and reflectance
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images, along with the reference color image chosen, represent the input of
the algorithm (ug, rg, and w respectively).

Figures 6-9 present results for four images (cropped w.r.t. the full size)
of the data set: Columnl, Column?2, Buildingsl, Buildings2. For each ref-
erence image, the input sparse depth and reflectance images, obtained via
projection, are shown, as well as the inpainted depth and reflectance im-
ages, obtained with four different methods. For the output depth images of
Figure 8 and 9 we added some shading by modulating the color intensity
of each pixel based on the zenith angle of the normal vector, to emphasize
high-frequency changes. Moreover, for the inpainted depths, an alternative
view of the resulting 3-D point cloud is proposed, where the coordinates of
the points are retrieved thanks to the computed depths and color texture is
applied to enrich the points. A color box is overlaid to the first of these 3-D
views to highlight areas where the comparison between the different methods
is particularly significant.

Our algorithm, presented in Section 4, gives as output the two inpainted
images u and r. As for the produced depth image, our algorithm is vi-
sually compared with nearest neighbor (NN) interpolation, the anisotropic
total generalized variation (ATGV') method of Ferstl et al. (2013), and our
previous depth inpainting method (Bevilacqua et al., 2016), which does not
rely on reflectance information. We refer to the latter as Depth Inpainting
with Visibility Estimation (DIVE). The optimization problem of DIVE is
the following:

min 77/ (max(0,u — y))? dz; dog + 77/ v(max(0,y — u))* do; day
ue[um,uM] QS QS

ve(0,1]

+ / (kug)?(1 —v) dzy doy + TV, (u,w) . (26)

The DIVE problem can be related to our proposed model (7), if we consider
in the latter ny =n, no =0, A\ = A\, and we suppress the coupled TV term
related to the reflectance (depth is instead coupled directly with the color
image). Moreover, in (26) we have a fo-norm data fidelity term; as a conse-
quence of that, the coefficient of the removal cost term follows a quadratic
law (we have o = (kug)?, instead of o = kug, as in (7)).

As for the produced reflectance image, our algorithm is compared with
nearest neighbor (NN) interpolation, the ATGV method of Ferstl et al. (2013)
applied to reflectance, and a reduced version of our model (7) limited to
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reflectance. We refer to this method as Reflectance Inpainting with Visibility
Estimation (RIVE). The RIVE method is derived from the solution of the
following optimization problem:

min 17/ v|r — rg|dzy das + / (krs)(1 —v)dzy dzs + TV, (r,w) . (27)
Qg

TE€[rm,rM] Qs
ve[0,1]

Also in this case we can derive the considered problem (RIVE) as a simplified
version of our proposed model (7), where 7, =0, 79 =1, Ay = A, and the
coupled TV term related to depth is suppressed. Moreover, the coefficient of
the removal cost, while still following a linear law, here depends on the input
reflectance rg.

The four examples reported show the better performance of our algorithm
in generating complete depth and reflectance images from real lidar measures.
Results with the image Columnl1, reported in Figure 6, particularly prove the
effectiveness of our algorithm in detecting and removing hidden points ap-
pearing in the front, thus producing inpainted images correct from the image
view point. These points, in yellow/orange according to the color code used
for depth, appear mixed to visible points belonging to the column and the
fence. By looking at the depth images generated (row (b)), our algorithm
is the only one which is able to remove the misleading points and correctly
reconstruct the foreground depth plane. This is even more visible by ob-
serving the main marble pole highlighted in the 3-D views (row (c)). While
other methods are not able to reconstruct the pole, since “distracted” by the
interfering background depths, the reconstruction is better performed in our
case. Results on the reflectance image confirm the trend. By observing again
the main marble pole, we clearly see that the reflectance is better inpainted.
This is possible thanks to the joint use of depth information, which helps de-
tecting hidden points by leveraging depth over- and under-estimations, and
the coupling with the color image gradient, which helps correctly restoring
the edges. Similar considerations can be made for the image Column?2 (visual
results are reported in Figure 7). Here the box overlaid on the 3-D views indi-
cates an area where points, non-visible from the reference image view point,
should be removed. The removal of these points, as well as the inpainting of
depth and reflectance, is performed more efficiently by our method.

Figures 8 and 9 show results w.r.t. two other images taken peripherally to
the scene. For the image Buildings1, we can observe that with our algorithm
the inpainted depth and reflectance images looks more satisfactory, the pole
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Input depth 3-D zoom Input reflectance Color image

NN interp.

Proposed

NN interp. ATGV RIVE Proposed

Figure 6: Visual results for the image Columnl. Row (a) shows the related input images:
depth (with a 3-D zoom), reflectance, and reference color image. Rows (b) and (c) report
the results obtained in terms of inpainted depth images (with related 3-D zoomed-in view)
with the algorithms indicated below. Row (d) shows the inpainted reflectance images
obtained with different methods, our proposed method always reported as last.

on the left being completely unveiled as a foreground element. The box
overlaid on the 3-D views highlights a part of the scene where the depth
values of two trees interfere. Our proposed algorithm (as well as the DIVE
method (Bevilacqua et al., 2016)) makes a correct distinction between the
two depth layers. Figure 9, reporting results related to the image Buildings?2,
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Input depth 3-D zoom Input reflectance Color image

AL AL RL R

(b)

NN interp. Proposed

NN interp. ATGV RIVE Proposed

Figure 7: Visual results for the image Column2. Row (a) shows the related input images:
depth (with a 3-D zoom), reflectance, and reference color image. Rows (b) and (c) report
the results obtained in terms of inpainted depth images (with related 3-D zoomed-in view)
with the algorithms indicated below. Row (d) shows the inpainted reflectance images
obtained with different methods, our proposed method always reported as last.

presents the problem of wrong lidar measures appearing in the front. Our
method turns out to be the most effective in clearing out these points, as
also shown in the area highlighted by the box.
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Input depth 3-D zoom Input reflectance Color image

NN interp. ATGV

Proposed
NN interp. ATGV RIVE Proposed

Figure 8: Visual results for the image Buildingsl. Row (a) shows the related input images:
depth (with a 3-D zoom), reflectance, and reference color image. Rows (b) and (c) report
the results obtained in terms of inpainted depth images (with related 3-D zoomed-in view)
with the algorithms indicated below. Row (d) shows the inpainted reflectance images
obtained with different methods, our proposed method always reported as last.

5.3. Performance on wvisibility estimation

While in the previous section we evaluated the performance of the algo-
rithm in terms of produced inpainted images v and r, we now want to assess
the quality of the third output of the algorithm, i.e. v, the visibility attribute

As visibility is estimated while performing the depth and reflectance es-
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Input reflectance

NN interp. ATGV DIVE Proposed

NN interp. ATGV RIVE Proposed

Figure 9: Visual results for the image Buildings2. Row (a) shows the related input images:
depth (with a 3-D zoom), reflectance, and reference color image. Rows (b) and (c) report
the results obtained in terms of inpainted depth images (with related 3-D zoomed-in view)
with the algorithms indicated below. Row (d) shows the inpainted reflectance images
obtained with different methods, our proposed method always reported as last.

timation, we can say that our algorithm fuses two problems: hidden point
removal (HPR) and inpainting. Typically HPR is, instead, possibly per-
formed as a preliminary operation. For HPR “stand-alone” the state of the
art is represented by variations of (Katz et al., 2007) that relate the visible
point set to the convex hull of a viewpoint-dependent transformation of it,
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discarding points based on a concavity threshold as seen from the view point.
While this approach is effective, there is in general no globally satisfactory
concavity threshold that would both correctly detect hidden surfaces and
keep background points close to foreground silhouettes. To compare the two
strategies for estimating visibility (the dedicated operation of (Katz et al.,
2007) and our “soft” estimation), we show an example in Figure 10, related
to the image Columnli. In our case, we consider hidden points those depth
values that are assigned v =0 at the end of the algorithm. As for (Katz
et al., 2007), a concavity parameter equal to 4 has been chosen after tuning.

_
E
E
&
-

(a) Intensity image  (b) (Katz et al., 2007)  (c) Proposed method

Figure 10: Detected hidden points in the case of the image Columnli, by the state-of-the-
art method of (Katz et al., 2007) and our method. The three patches below each image
represent zoomed-in areas of the images themselves at same locations.

The images obtained shows that the “quality” of the visibility estimation
process is comparable, if not higher with our method. If we observe closely
the zoomed-in areas in Figure 10, in fact, we can see that the HPR method
wrongly selects points around the silhouettes (see first patch), while some-
times missing the detection of actual hidden points (see last two patches).

6. Conclusion

In this paper we presented a novel strategy to jointly inpaint depth and
reflectance images with the guidance of a co-registered color image, and by
simultaneously estimating a visibility attribute for each pixel. The problem
studied and the proposed approach are particularly suited for data sets ac-
quired by Mobile Mapping Systems (MMS): vehicles that can easily image
urban scenes by means of optical cameras and lidar sensors. By projecting
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the 3D lidar points onto a chosen reference image, we obtain depth and re-
flectance images, which suffer of practical issues due to the big diversity of
the lidar an optical sensor acquisitions. By estimating visibility, we aim at
solving one of these issues, i.e. the appearance (in depth and reflectance)
of parts of objects non-visible from the image view point, but captured by
the lidar sensor. Those points are meant to be detected by our algorithm
and thus discarded in the inpainting process. The proposed approach con-
sists in a variational optimization problem, where three variables (depth,
reflectance, and visibility) are simultaneously estimated. As a regularization
term, a two-fold coupled total variation (TV) term is proposed, where the
gradients of depth, reflectance and color image are matched two by two, by
leveraging the inherent correlation between them. The proposed algorithm
is compared, in terms of inpainted images, to other inpainting algorithms,
which do not take into account the simultaneous detection of possibly erro-
neous measures. The clear superiority of the proposed method w.r.t. the
latter proves that the visibility estimation is a necessary step. Another com-
parison is made with a simplified version of the algorithm, which accounts for
visibility but considers alternatively either depth or reflectance. The worse
performance of the simplified algorithm indicates that the joint exploitation
of depth and reflectance is a key aspect for the success of the algorithm. The
mutual benefit comes from the fact that depth is particularly important for
the visibility estimation task; in turn, reflectance is crucial in restoring the
correct edges, via coupling with the color image. Future work will continue
in the direction of solving practical issues with lidar-based images to inpaint.
Notably, another problem is related to disocclusions: the detection of mobile
objects is in this case necessary to prevent occlusions in the produced depth
and reflectance images.

Appendix A. Derivation of the proximal operators in Algorithm 1

In this section we detail the derivation of the closed-form expressions
of the proximal operators for the update of three primal variables (v, u,
and r) in Algorithm 1, as listed in Section 4.2. Let f:R" — RU {400}
be a closed proper convex function. The proximal operator or mapping
prox,; : R" — R" of f (Parikh and Boyd, 2013) is defined by:

) 1
prox(v) = arg min flx)+ 5 |z — |3 . (A1)
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Broadly speaking, the proximal operator of a function is a mathematical
tool that allows to make an approximation to a certain value, while making
a compromise between the accuracy of the approximation and a cost given
by the function itself.

Given the general definition (A.1), we can derive the expressions for the
proximal operators of the functions considered in our algorithm. We have
that the operations involved are independent for each coordinate of the pro-
cessed images. Therefore, the expressions reported below are to be intended
per coordinate, although the spatial indices indicating a particular pixel lo-
cation are not specified for brevity.

® | prox; = PTOXpa(a,-)erb(f,-Hpc(17)

o

1
prox; = arg min 5(1} — ) + pnPvmax(0, ug — @)

+ pna®u|T — rg| + pa®(l —v) + o 1(v) (A.2)
+ If &, ; = 0 (point out of the sparse domain), we trivially have:

1
prox; = argmin (v —9)* + djo,1(v)

o 2 (A.3)
= P () -

+ If q)i,j =1 and Q_Li’j Z Uusij, We have:

1
prox; = argmin o (v —8)” + prpolr = 1| + pa(l = v) + dp1(v)

o1
= arg min 51)2 — 00 + ppu|T — rg| — pav + K + 691 (v)

v 1 i
= arg min 51)2 — v (0 + pa — pna|T —rg|) + K 4 dj9,1)(v) (A.4)

! - _
— argmlni [v— (04 pa— pno|T — rs|)]2 + K+ 0,11(v)

= Plo1) (0 + pa — pna|T —715]) .
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+ If®,; =1and 4, <ug;,;, wehave:

1 2 _ _
prox, = argmin 5(@ —0)° + pmo(us — ) + pnpu|T — rg]

+pa(l —v) + 6,1y (v)

= argmin 51)2 — 00+ pmu(ug — @) + pno|T — rs| — pav

+K +15[0,1] (U)

= argmin 2v* — v (0 + pa — pi(us — @) = pra|7 = 75)

+K + 6j0,1)(v)

= argmin 5 [v— (7 + pa — p (us — @) = prp|7 = rs|)]?
+K'+ 5[071] (v)
= Py (0 + pa — pm(us — ) — pna|7 —rs]) .

4 Summing up, we have:

P (7)
prox; = § Pp ) (04 pa — pip|T — 75])
Proa (0 + pa— pni(ug — @) — pna|F —rg]) i @i =1, @5 > ugy

PIOXy = PIOX, 4 rq(.0) (%)

o

1

if @, =0

if (I)z',j = 17 ’litz',]' S uSi,j .

prox, = arg min §(u — @)% 4+ 7 @ max (0, u — ug)

+ If &, ; =0, we trivially have:

prox, = argmin

- P[um,uM]

(A.5)

(A.6)

+ 1 Pv max (0, us — u) + Oy, un(v) (A7)

u
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+ If®,; =1and u;; > ug;,;, wehave:

Prox,

1

arg min §(u — ﬂ)2 + 7 (u — us) + 5[um,um(u)
|
al"g IIllIl 5?]12 - Uﬂ/ + T,r]lu + K + 6[um7UM} <U)
Y
arg min §u2 —u(t—71m)+ K+ 5[um,uM](U) (A.9)

1
arg min 5 [u— (@ —7m)] + K+ Ot uns] ()

u

P[um,uM] (ﬁ“ - 7_771) :

By substituting the optimal value found for w in the splitting
condition, we have:

Uj, > Uug i = ai,j > Uug i + 71N .

+ If®,; =1and u;; <ug;;, wehave:

Prox,

1 .
arg min i(u - U)2 + 7110 (us — 1) + Oy ung] (1)
o
arg min §u2 —ullt = TNVU + K+ Oy, ) (1)

(A.10)

arg min §u2 —w(t + v1m) + K+ Oy ) ()
u
1
arg min 3 [u— (@+vrm)] + K+ Ofuum unr) (1)

P[umﬂl«k[] (a + UT771) .

By substituting the optimal value found for w in the splitting
condition, we have:

(% < Ug i, = ﬂ@j < Ug ij — VTN -

4 The remaining case is: ®;; = 1 and u;; = ug,;. This directly
implies the solution for the proximal operator:

Proxy = Pl un (Us) - (A.11)

From the previous cases, we can derive the related validity condi-
tion on the calculation point ; ;, i.e.:

—uTn < 'L~Li7j —Ug;; < TN -
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4 Summing up, we have:

prox, =

Pl unr) (@) if ®,;=0

Plumurg) (@ =7m) i @iy =1, Gy > usij +7m (A.12)
Plumung] (@ +v1m) if &5 =1, @ < ugij —vrm
Pluguns) (1) otherwise

proxs = prOXTB"rTb(',’l))(f)

=

1
prox; = arg min 5(7‘ — ) 4+ 1@ — 1| + 8 (1) (AL13)

+ If D,

; = 0, we trivially have:

1

prox; = argmin —(r — f)Q + O rar) ()

g , (A.14)
= P[T'm:TM] (7:) .

4+ If®,; =1andr;; >rg,;, we have:

proxs

1
arg min 5(7’ — 7:)2 + TT]ZU(T - TS) + 5[Tm,7"1\/[]<r)
1
arg min 57"2 =17+ vt + K+ 6, 0 (1)
1, _ (A.15)

arg min 57’ —r(F —vrne) + K + Ol ai] (r)

1
arg min 5 [r— (7 — o)) + K’ + Ol rar) (7))

T

Plrrar) (T —v7102)

By substituting the optimal value found for r in the splitting con-
dition, we have:

Tij >Tg i, = f@j >Tg i + ot .
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+ If®,;=1andr; <rg,;, we have:

1 .
proxs; = argmin 5(7" — 7")2 +Tpu(rs — 1) + 6[7’m77']\/1](r)
!
= argmin 57‘2 — 77 —vTner + K + 0y 0] (7)

1
= argmin 572 _ T(f+1}7‘772) +K+5[rm,rM}(T) (A16)

1 .
= argmin 5 [r— (7 + m‘ng)]2 + K+ e ] (1)
= ,P[Tmﬂ"M] (f + UT772) .

By substituting the optimal value found for r in the splitting con-
dition, we have:

Tij <TSij = ,Fi,j <Tgij; —UTNL .

4 The remaining case is: ®;; = 1 and r;; = rg;;. This directly
implies the solution for the proximal operator:

proxg = P[rm,rM] (TS) . (Al?)

From the previous cases, we can derive the related validity condi-
tion on the calculation point 7; ;, i.e.:

’fi,j —Tg i,j| < UTT)y .

4 Summing up, we have:

P[rm,TM] (F) if CI)M =0

prox, = Plemr) (7? —uTI) ?f ®i; =1, Tju > Tsij VT (A.18)
P[Tmﬂ“M] (T + UT772) if CI)i,j =1, Tij <Tsij — VT
P[T‘m,TM] (TS) otherwise
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