
HAL Id: hal-01348303
https://hal.science/hal-01348303

Submitted on 30 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Normalizing Chemical Reaction Networks by Confluent
Structural Simplification

Guillaume Madelaine, Elisa Tonello, Cédric Lhoussaine, Joachim Niehren

To cite this version:
Guillaume Madelaine, Elisa Tonello, Cédric Lhoussaine, Joachim Niehren. Normalizing Chemical
Reaction Networks by Confluent Structural Simplification. 14th International Conference on Compu-
tational Methods in Systems Biology (CMSB 2016), Ezio Bartocci; Pietro Lio; Nicola Paoletti, Sep
2016, Cambridge, United Kingdom. �hal-01348303�

https://hal.science/hal-01348303
https://hal.archives-ouvertes.fr

Normalizing Chemical Reaction Networks by
Confluent Structural Simplification

Guillaume Madelaine1,2, Elisa Tonello3, Cédric Lhoussaine1,2, and
Joachim Niehren2,4

1 University of Lille, France
2 Cristal, Cnrs Umr 9189, Lille, France

3 University of Nottingham, United Kingdom
4 Inria, Lille, France

Abstract. Reaction networks can be simplified by eliminating linear
intermediate species in partial steady states. In this paper, we study the
question whether this rewrite procedure is confluent, so that for any given
reaction network, a unique normal form will be obtained independently
of the elimination order. We first contribute a counter example which
shows that different normal forms of the same network may indeed have
different structures. The problem is that different “dependent reactions”
may be introduced in different elimination orders. We then propose a
rewrite rule that eliminates such dependent reactions and prove that the
extended rewrite system is confluent up to kinetic rates, i.e., all normal
forms of the same network will have the same structure. However, their
kinetic rates may still not be unique, even modulo the usual axioms of
arithmetics. This might seem surprising given that the ODEs of these
normal forms are equal modulo these axioms.

1 Introduction

Chemical reaction networks are widely used in systems biology for modeling the
dynamics of biochemical molecular systems [4,6,1,11]. A chemical reaction net-
work has a graph structure that can be identified with a Petri net [2]. Beside of
this, it assigns to each of its reactions a kinetic rate that models the reaction’s
speed. Chemical reaction networks can either be given a deterministic semantics
in terms of ordinary differential equations (ODEs), which describes the evolu-
tion of the average concentrations of the species of the network over time, or a
stochastic semantics in terms of continuous time Markov chains, which defines
the evolution of molecule distributions of the different species over time. In this
paper, we focus on the deterministic semantics.

Reaction networks may become very large when modeling molecular biologi-
cal systems in sufficient detail, see e.g. the examples in the BioModels database
[8]. Therefore much effort has been spent on their simplification (see [18] for an
overview). The traditional approach is by reducing the ODEs of the network by
symbolic rewriting techniques [9,10]. While clearly beneficial, such approaches
have the disadvantage that the simplified ODEs cannot always be translated

back to a reaction network [3], so that these simplifications cannot be under-
stood directly as simplifications of biological systems.

Another major problem with large biological reaction networks is that precise
kinetic rates are rarely available [14,16]. In the worst case, no kinetic information
is available, so that no ODEs can be derived. The only simplifications that are
possible in this case rely purely on the graph structure of the reaction network
[12,17]. In a less extreme setting, the kinetic rates are given by arithmetic ex-
pressions with unknown parameters. In this case, the purely structural methods
must be lifted so that they can properly account for the kinetic rates.

The common objective of the structural simplification methods is to elim-
inate intermediate species that are irrelevant to the external behaviour of the
system. This can be done in an exact manner – when assuming partial steady
states – so that the solutions of the ODEs of reaction networks are preserved
[19,13,22]. It should be noticed that any structural reduction algorithm preserv-
ing the ODE’s solutions necessarily induces an exact reduction method on the
underlying ODE level. Indeed the above methods are based on the same idea,
which is to resolve the partial steady state equation of some intermediate species
along its concentration variable, so that this variable can be eliminated from the
ODEs. The restriction that makes this possible is that the kinetic rates of the
network’s reactions are linear in the concentration of the intermediate species.

The structural reduction method for intermediate elimination from [13] re-
moves the intermediates stepwise one by one. The approach of [22] is similar
with an extension to rapid equilibrium assumption. The alternative method of
[19] removes several intermediates simultaneously. We verified that both meth-
ods perform the same reductions when restricted to a single intermediate, even
though these are computed by quite differently algorithms. The yet independent
method from [17,18] also performs simultaneous elimination of intermediates,
but not necessarily in a unique manner. The intermediates are eliminated from
the reaction graph by computing elementary modes in a first step, and in a sec-
ond, appropriate kinetic rates are assigned to reduced graph. Their method can
also be applied in the nonlinear case, but then with some approximations.

In this paper, we study the question of whether the stepwise elimination
of linear intermediates is confluent, so that for any given reaction network, a
unique normal form will be obtained independently of the elimination order. If
confluence would hold, one could compare reaction networks for equivalence, by
computing and comparing their normal forms. Furthermore, the unique normal
form would be the natural target for simultaneous reduction methods such as
[18,19]. Indeed, a confluence statement was claimed in Section 5 of [19] (for the
case without conservation laws), but without proof.

We first contribute a counter example which shows that the elimination of
linear intermediates on the same network may lead to normal forms with dif-
ferent graph structure. This example contradicts the confluence statement from
[19]. The problem is that different “dependent reactions” may be introduced in
different elimination orders. We then propose a rewrite rule that eliminates such
dependent reactions and prove that the extended rewrite system is confluent up

to kinetic rates, so that all normal forms of a same network will have the same
structure. This yields a method to eliminate linear intermediates from a reac-
tion graph in a unique manner, while no uniqueness result was stated in [17,18].
However, the kinetic rates may still not be unique, even not modulo the usual
axioms of arithmetics. This might seem surprising given that the ODEs of these
normal forms are equal modulo these axioms. Finally, we present an example
reaction network from systems biology for the failure of confluence with respect
to kinetic rates, that we found in the BioModels SBML database [8] with an
implementation of our rewrite rules.

Our positive confluence result shows that the graph structure of reaction
networks after intermediate and dependency reduction is unique, and thus po-
tentially meaningful biologically. The two negative confluence results show that
the situation may be different without dependency reduction, and also for the
kinetic rates that can be assigned to the reactions of the reduced network.

All proofs and missing parts are available in the Appendix of the long version.

2 Confluence notions

We recall confluence notions and their relationships from the literature.
Let (S,∼) be a set with an equivalence relation and → ⊆ S × S a binary

relation. We define →0 = ∼ and →k = → ◦ →k−1 for all k > 0. The relation
→∗ = ∪k≥0 →k is called the reflexive transitive closure of →. We write →ε =
→1 ∪ →0, and ← = {(s, s′) | s′ → s}.

Definition 1 (Confluence modulo). We say that a binary relation → on
(S,∼) is confluent if ←∗ ◦ →∗ ⊆ →∗ ◦ ∗←, locally confluent if ← ◦ → ⊆ →∗
◦ ∗←, strongly confluent if ← ◦ → ⊆ →ε ◦ ∼ ◦ ε←, and uniformly confluent if
← ◦ → ⊆ ∼ ∪ (→ ◦ ∼ ◦ ←).

Clearly, uniform confluence implies strong confluence, and strong confluence
implies local confluence. It is also folklore that there exist locally confluent re-
lations that are not confluent, while strong confluence implies confluence [7].
Uniform confluence implies for any s ∈ S that all complete reduction sequences
starting with s have the same length [15], which may be ∞ though.

In this paper, we will always use binary relations that are terminating, i.e.,
for any s ∈ S there exists a k ≥ 0 such that {s′ | s →k s′} = ∅, i.e., the length
reduction sequences starting with s is bounded. It is well known that locally
confluent and terminating relations are confluent (Newman’s lemma).

We say that ∼ commutes with → if ∼ ◦ → ⊆ → ◦ ∼.

Lemma 1. If → is confluent for (S,∼) and commutes with ∼, then the relation
∼ ◦ → ◦ ∼ is confluent for (S,=S).

3 Simplification of systems of equations

In this section, we recall the definition of arithmetic expressions and ordinary
differential equations. It is well known that such systems can be inferred from

reaction networks with deterministic semantics and partial steady state assump-
tions. We will then show how to simplify such systems in a confluent manner by
eliminating intermediate variables.
Systems of equations. Let R+ be the set of non-negative real numbers, and
N0 ⊆ R+ the set of natural numbers including 0. Denote by Vars a countable set
of variables for functions of type R+ → R+, and by Param a set of parameters.
We define the set of arithmetic expression as the terms e, e′ ∈ Expr with the
following abstract syntax:

e, e′ ∈ Expr ::= x | k | n | e+ e′ | e ∗ e′ | 1/e | −e

where x ∈ Vars, k ∈ Param, n ∈ R. In the following, the expression 1/e is
permitted only if e can never become zero, as explained below. For convenience,
we will write ee′ for e ∗ e′; e/e′ for e ∗ (1/e′), e − e′ for e + (−e′) and en for
e ∗ . . . ∗ e with n repetitions of e.

We map variables to functions on non-negative real numbers, and parameters
to positive (different from 0), which are identified with positive constant func-
tions on non-negative real numbers. Given an assignment α : (Vars → (R+ →
R+))∪ (Param→ R∗+), any expression e ∈ Expr can be interpreted as a function
JeKα : R+ → R+ in the usual way.

A system of equations S is a combination of equations and constraints, with
some existential variables, defined as follows:

S ::= dx/dt = e | x = e | nzero(e) | cst(e) | S ∧ S′ | ∃x. S.

dx/dt = e is an ordinary differential equation (ODE), and x = e an arithmetic
equation, for the variable x and with an expression e ∈ Expr. The non-zero
constraint nzero(e) is satisfied by an assignment α if e is never equal to zero,
that is ∀t. JeKα(t) 6= 0. The positive constant constraint cst(e) is satisfied by a
variable assignment α if JeKα is a positive constant function. And ∃x.S allows
us to existentially quantify some variables, that we actually want to remove to
simplify S. We denote by Vars(e) the set of variables of an expression e and by
Vars(S) the set of free variables of a system S. The set of solutions of a system
of equations S is the set of assignments on the free variables of S that make S
true, that is sol(S) = {α | JSKα = true}.

Example 1. The system of equations in Fig. 1 contains 4 ODEs for the variables
{xA, xB, xC, xD}, and two arithmetic equations and positive constant constraints
for the existentially quantified variables x̃ = {xY, xZ}.

Similar systems. We now define a syntactic notion of similarity between sys-
tems of equations, so that similar systems will have the same solutions. The
similarity relation ∼ on arithmetic expressions is the least congruence that in-
cludes the usual arithmetic axioms of a field: commutativity and associativity of
+ and ∗, removal of neutral elements 0 in sums and 1 in products, uniqueness
and laws of inverses for −, distributivity, and simplification of real numbers.
Similarity is decidable, by rewriting expressions to a fraction of polynomials,
with the same denominator, and comparing the numerators.

∃xY , xZ .


dxA

dt
= −(k1 + k2)xA ∧

dxB

dt
= k3xY ∧ xY =

k1

k3 + k5
xA +

k6

k3 + k5
xZ ∧

dxC

dt
= (k4 + k5)xY ∧ dxD

dt
= k6xZ ∧ xZ =

k2

k6
xA +

k5

k6
xY ∧

cst(xY) ∧ cst(xZ)

Fig. 1. The system of equations S(NX).

We always identify arithmetic expressions up to similarity (rather than syn-
tactic equality), i.e., we rewrite modulo ∼. Given an assignment α, two similar
expressions e ∼ e′ have trivially the same interpretation JeKα = Je′Kα. The simi-
larity relation is lifted to systems of equations in the obvious manner.
Safe linear systems. We will consider only valid systems of equations in which
there is exactly one arithmetic equation per quantified variable and at most one
ODE for all others. We also assume that the systems are linear in the existentially
quantified variables as defined below, but not necessarily in the others:

Definition 2. Given a sequence of variables x̃ = x1, . . . , xn, an expression e′ is
called x̃-linear if e′ is similar to some expression e+

∑
1≤i≤n xiei, where e and

ei do not contain any variables from x̃. We call a system ∃x̃.S linear (in the
quantified variables) if for any quantified variable x ∈ Vars(x̃), the system S is
similar to some system x = e ∧ S′ where e is an x̃-linear expression.

In order to always avoid division by zero during the repeated elimination of
quantified variables to come (see Lemmas 2 and 3), we introduce the following
safety restriction of linear systems, which will be satisfied most of the time in
the applications. Without this restriction, the simplification procedure could be
shown to be only partially correct, similarly to [19].

Definition 3. Let S be a system ∃x1, . . . , xn. S′ that is linear in the quantified
variables, such that S′ has the form

∧
1≤i≤n xi = ei+

∑
1≤j≤n xje

i
j ∧ S′′. We

define a set expression LS′ in which x and y are fresh variables:

LS′ =df { (x, y) |
∨

1≤i,j≤n

x = xi ∧ y = xj ∧ nzero(eji) }.

For any assignment of the free variables in the subexpressions eij, the set expres-
sion LS′ denotes a binary relation, that we call the linking relation of S′. We
call the system S safe if S′ entails the following formula:

S′ |=
n∧
i=1

n∨
k=1

L∗S′(xi, xk) ∧ nzero(ek) ∧ (ei ≥ 0 ∧
n∧
j=1

eij ≥ 0).

We denote by SafeLin the set of safe linear systems of equations.

Simplifying safe linear systems. We want to simplify safe linear systems
of equations by removing existentially quantified variables, while preserving the

x 6∈ Vars(e) (Quantified
variable)∃x. (S ∧ x = e) ⇒ S[x := e]l

Fig. 2. Elimination of an existentially quantified variable x in a system of equations.

solutions. To do that, given an expression x = e for a quantified variable x, we
will substitute x by e, as described in the simplification rule in Fig. 2.

A substitution [x1 := e] is the replacement of any occurrences of x1 by the
expression e. Additionally, we also want to preserve the linearity and safety.
Therefore, we define a linear substitution, that rewrites arithmetic expressions
into linear ones after the substitution. Formally, given a x̃-linear expression e ∼
e1 +x2e

1
2 +

∑
3≤i≤n xie

1
i and an equation E2 = (x2 = e2 +x1e

2
1 +

∑
3≤i≤n xie

2
i),

with x̃ = {x1, . . . , xn}, the linear substitution of x1 by e in E2 is:

E2[x1 := e]l = (x2 =
e1e21 + e2

1− e21e12
+

∑
3≤i≤n

xi
e1i e

2
1 + e2i

1− e21e12
) ∧ nzero(1− e21e12)

The idea is to a) substitute x1 by e in the equation of x2, b) bring the factor
e21e

1
2x2 from the right to the left, c) factorize the x2, and d) divide by the factor

1− e21e12 of x2 we obtained.

Lemma 2. If S is safe and with the above equations then S |= nzero(1− e21e12).

We define S[x1 := e]l by replacing x1 by e in the ODEs and the constraints of
S and by performing the linear substitution as above to all nondifferential equa-
tions of S. The relation S ⇒ S′ defined in Fig. 2 simplifies a safe linear system
S to S′: a quantified variable is eliminated by applying a linear substitution.

Lemma 3. The simplification of a safe linear system is a safe linear system.

Lemma 4. The simplification preserves the solutions of safe linear systems: if
S ⇒ S′, then sol(S) = sol(S′).

Example 2. For instance, in the system from Example 1, we can substitute the

intermediate variable xY by e =
k1

k3 + k5
xA +

k6
k3 + k5

xZ. Since we still have the

constraint cst(xZ), the constraint cst(e) can be simplified into cst(xA). The never-

zero constraint nzero(1− k5k6
(k3 + k5)k6

) is similar to nzero((k3+k5)k6−k5k6) and

then nzero(k3k6), and therefore is always true, and can be removed. We obtain
the system depicted in Fig. 3 (left). By doing the same with the variable xZ, we
obtain the system in Fig. 3 (right). Note that we used the fact that k6/k6 ∼ 1,
that is always true, since parameters are assigned to positive numbers.

For safe linear systems, this simplification modulo similarity is confluent,
implying that whatever the order adopted for the elimination of quantified vari-
ables, it is always possible to find the same fully simplified system, modulo simi-
larity. We actually establish uniform confluence, implying that any simplification
leading to the fully simplified system will have the same number of steps.

∃xZ .



dxA

dt
= −(k1 + k2)xA

dxD

dt
= k6xZ

dxB

dt
=

k1k3

k3 + k5
xA +

k3k6

k3 + k5
xZ

dxC

dt
=

k1(k4 + k5)

k3 + k5
xA +

k6(k4 + k5)

k3 + k5
xZ

xZ =
k1k5 + k2k3 + k2k5

k3k6
xA

cst(xA) ∧ cst(xZ)



dxA

dt
= −(k1 + k2)xA

dxB

dt
= (k1 + k2)xA

dxC

dt
=

(k1 + k2)(k4 + k5)

k3
xA

dxD

dt
=

k1k5 + k2k3 + k2k5

k3
xA

cst(xA)

Fig. 3. Simplifications of S(NX).

Theorem 1. The binary relation ⇒ on (SafeLin,∼) is uniformly confluent.

4 Reaction networks

In this section, we introduce reaction networks, intermediate species, and the
interpretation of a network as a system of equations.

Let Spec be a countable set of molecular species ranged over by A. We asso-
ciate to each species A a concentration variable xA, and denote the set of these
variables by Vars = {xA | A ∈ Spec}. A kinetic expression is a non-negative
arithmetic expression on variables Vars, i.e. for any non-negative assignment α
for the concentrations, JeKα(t) ≥ 0 for all t.

We define a (chemical) solution s ∈ Sol : Spec→ N0 as a multiset of molecular
species, i.e. a function from species to natural numbers, with finite support. Given
numbers n1, . . . , nk, we denote by n1A1 + · · ·+ nkAk the solution that contains
ni molecules of species Ai for 1 ≤ i ≤ k, and 0 molecules of others species. Given
s1, s2 ∈ Solutions, their intersection is defined for any A by (s1 ∩ s2)(A) =
min(s1(A), s2(A)). A kinetic reaction r = (s1 As2; e) is a pair composed of a
reaction s1 As2 and a kinetic expression e ∈ Expr. The reaction transforms the
solution s1, called reactants, into the solution s2, called products. The reaction
vector vrr of the reaction r is defined for any A ∈ Spec by vrr(A) = s2(A)−s1(A).
We denote by kin(r) = e the kinetic expression of r.

Given a reaction r = (s1 As2; e) and the solution s = s1∩s2, the normaliza-
tion of r is the reaction (s1 − sAs2 − s; e). In the following, we always assume
that every reaction is normalized, and normalization is implicitly applied after
every simplification. A reaction network N is composed of normalized kinetic
reactions, constraints, and bound species (that we want to remove):

N ::= r | cst(e) | N ∧N ′ | ∃X. N

We assume the usual structural congruence rules for conjunction and existential
quantification. We denote by C(N) the set of constraints of N.

Once again, we need to add some conditions on the bound species, called
intermediate species, in order to be able to fully remove them in a confluent way.
We usually denote by U the intermediate species, and by Ū the other species.

∃x̃.

[
dxA
dt

=
∑
r∈N

vrr(A)kin(r)

]
A∈Ū

∧

xX =

∑
{r∈N|X∈Prod(r)}

kin(r)

∑
{r∈N|X∈Cons(r)}

kin(r)/xX


X∈U

∧C(N)

Fig. 4. Definition of the system of equations S(N), for the network N , with interme-
diate species U and with x̃ = {xX | X ∈ U}.

Given a set U of molecules, and a reaction r = (s1 As2; e), we define the
consumption ConsU (r) = s1 ∩U (resp. production ProdU (r) = s2 ∩U) of r with
respect to U as the molecules of U that are consumed (resp. produced) by r.

A molecule X ∈ U is output-connected (resp. input-connected) in N with re-
spect to U if ∃r ∈ N with ConsU (r) = {X} (resp. ProdU (r) = {X}) and either
ProdU (r) = ∅ (resp. ConsU (r) = ∅), or ProdU (r) = {Y } (resp. ConsU (r) =
{Y }) with Y output-connected (resp. input-connected). This property will cor-
respond to the safety property of quantified variables in linear systems of equa-
tions.

A reaction network ∃U . N is linear if the following properties hold:

– connectivity: for any X ∈ U , X is output and input-connected in N,
– U-stoichiometry: ∀r ∈ N, |ConsU (r)| ≤ 1 and |ProdU (r)| ≤ 1,
– U-linearity: ∀r ∈ N. ConsU (r) = {X} ⇒ kin(r) = xXe, with ∀Y ∈ U .xY /∈ e,
– kinetic non-interaction: ∀r ∈ N, ConsU (r) = ∅ and ProdU (r) 6= ∅ implies
xX /∈ kin(r) for any X ∈ U ,

– partial steady-state: ∀X ∈ U , cst(xX) ∈ C(N).

In the following, we will only consider linear networks, and denote by Nets the
set of linear reaction networks.

Given a linear network N ∈ Nets, we can define the interpretation of N in
terms of a system of equations S(N), as described in Fig. 4.

Lemma 5. For any N ∈ Nets, the interpretation S(N) is a (valid) safe linear
system.

Example 3. We consider the reaction network NX in Fig. 5, with the reac-
tions on the left and the reaction graph on the right. The set of species is
{A,B,C,D,Y,Z}, where Y and Z are considered intermediates, and the set of
reactions is {r1, . . . , r6}. The parameters in the rates are some positive reals
k1, . . . , k6. All reactions have mass action kinetics, except for reaction r4 which
is activated by Y. Its associated system is S(NX), described in Example 1.

Given a network N, we can compute its system of equations S(N), and then
simplify it in a confluent way, as explained in Section 3. But we might sometimes
be more interested in the network itself, rather than its system of equations. And
unfortunately, rebuilding a reaction network from the equations can be difficult,
and the network obtained is not unique [3] It seems then more appropriate to
proceed with the simplification directly on the reaction network.

∃Y,Z. cst(xY) ∧ cst(xZ)

r1 = (AAY; k1xA) r4 = (0AC; k4xY)

r2 = (AAZ; k2xA) r5 = (YAZ + C; k5xY)

r3 = (YAB; k3xY) r6 = (ZAY +D; k6xZ)

A

B

C

D

Y

Z

r1

k1xA

r2

k2xA

r3

k3xY

r4
k4xY

r5

k5xY

r6

k6xZ

Fig. 5. The reaction network NX .

e =
∑

{r∈N|X∈Prod(r)}

kin(r) e′ =
∑

{r∈N|X∈Cons(r)}

kin(r) e′ = xXe′′

(Intermediate)

∃X. N VInter

∧
{r,r′∈N|X∈Prod(r)∩Cons(r′)} r �e′ r

′

∧
{r∈N|X 6∈Prod(r)∪Cons(r)} r[xX :=

e

e′′
]∧

C(N)[xX :=
e

e′′
]

Fig. 6. Intermediate simplification rule, with C(N) the constraints of N .

5 Elimination of intermediate species

In this section, we introduce the Intermediate simplification rule for reaction
networks, and apply it to an example.

The (intermediate) rule presented in Fig. 6 aims at removing an interme-
diate species X ∈ U : any reaction rprod that produces X is combined with any
reaction rcons that consumes X, and xX is replaced by its value at steady state
in the other reactions. This merging operation is achieved by the operator �e:

(s1 As2; e) �e′′ (s′1 As′2; e′) = (s1 + s′1 As2 + s′2;
ee′

e′′
).

Since we only consider normalized reactions, in merged reactions the intermedi-
ate molecule is implicitly discarded.

The interpretation S(N) is a simulation from (Nets,VInter) to (SafeLin,⇒):

Lemma 6. Given a network N ∈ Nets, if N VInter N ′, then S(N)⇒ S(N ′).

This implies as expected that both a network and its simplification have the
same deterministic dynamics.

The next example shows that the rewriting system given by the elimination
of intermediate species alone is not confluent, given that different dependent
reactions may be produced for different elimination orders.

Example 4. Starting from network NX from Fig. 5, we can either remove Y or Z
and obtain the networks depicted in Fig. 7. If we first remove Z, then we obtain
the reaction network NXZ . From NXZ we can eliminate the intermediate Y and
obtain NXZY . This network cannot be simplified any further. Alternatively, we

A

B

C

D

Yr1
k1xA

r26

k2xA

r3

k3xY

r4
k4xY

r56

k5xY

A

B

C

D

r13k1xA

r236k2xA

r4 k4(k1+k2)
k3

xA

r56
k5(k1+k2)

k3
xA

(NXZ) (NXZY)

A

B

C

DZ

r13
k1k3
K1

xA

r2
k2xA

r36
k3k6
K1

xZ

r4

k4(
k1
K1

xA+
k6
K1

xZ)

r15

k1k5
K1

xA

r56
k5k6
K1

xZ

A

B

C

D

r13
k1k3
K1

xA

r236

k2xA

r4 k4(k1+k2)
k3

xA

r56
k5K2
k3K1

xA

r1356

k1k5
K1

xA

(NXY) (NXY Z)

Fig. 7. Two elimination strategies to simplify NX of Fig. 5: either first eliminate Z
to obtain the network NXZ and then Y to obtain NXZY , or swap the elimination
order to obtain first NXY and then NXY Z . Simplified networks NXZY and NXY Z

are structurally different since the latter has the additional reaction r1356. The new
parameters are K1 = k3 + k5 and K2 = k1k5 + k2K1.

can eliminate Y from NX in a first step, obtain NXY , and then remove Z and
obtain the network NXY Z .

Unfortunately,NXY Z andNXZY do not have the same structure, sinceNXY Z
has an additional reaction r1356, which is a combination of r13 and r56. Such
dependent reactions can be removed, as we will show in the next section.

6 Elimination of dependent reactions

In this section we clarify the notion of dependency between reactions, and in-
troduce an additional simplification rule based on this notion. The addition of
this rule is sufficient to establish confluence for the structure of simplified net-
works. However, we will show that this modification is not enough, in general,
to guarantee full confluence.

We formalize the notion of dependency with respect to an initial set of reac-
tions with the notion of flux. Flux vectors at steady state are a standard tool for
computing elementary modes [5], that correspond to the unique set of reactions
in the network normal form that we obtain with the techniques of this paper.
Our simplification method, unlike the elementary modes approach, deals with
the impact of the simplification on kinetic rates as well as the network structure.

Given an ordered set of m reactions R = {r1, . . . , rm} called reaction basis, a
flux is a pair w = (v; e) of a flux vector v ∈ Rm and an expression e ∈ Expr. The

e =
∑

{w∈W |X∈ProdR(w)}

kin(w) e′ =
∑

{w∈W |X∈ConsR(w)}

kin(w) e′ = xXe′′

(Intermediate)

∃X. W VInter
R

∧
{w,w′∈W |X∈ProdR(w)∩ConsR(w′)} w �e′ w

′

∧
{w∈W |X 6∈ProdR(w)∪ConsR(w)} w[xX :=

e

e′′
]

∧ C(W)[xX :=
e

e′′
]

(Dependent)
W

∧
1≤i≤k(vi, ei) ∧ (

∑
1≤i≤k

nivi, e) VDep
R W

∧
1≤i≤k(vi, ei + nie)

Fig. 8. Simplification rules of flux networks.

function reactR maps fluxes to reactions w.r.t. a reaction basis R as follows:

reactR(v; e) = (
∑

1≤i≤m

visiA
∑

1≤i≤m

vis
′
i; e).

Consequently, the i-th vector ui of the standard basis is mapped to the i-th
reaction ri of the reaction basisR. Now, instead of simplifying reaction networks,
we directly simplify flux networks W defined as reaction networks but with fluxes
in place of reactions:

W ::= w | cst(e) |W ∧W ′ | ∃X. W.

We lift reactR to map flux networks to reaction networks as follows:

reactR(cst(e)) = cst(e), reactR(W ∧W ′) = reactR(W) ∧ reactR(W ′),

reactR(∃X. W) = ∃X. reactR(W).

We denote FNetsR the set of flux networks W such that reactR(W) is a linear
reaction network for U . The interpretation of W ∈ FNetsR in terms of system
of equations is defined as SR(W) = S(reactR(W)). Finally, we translate some
previous definitions to the context of flux networks:

ProdR(w) = Prod(reactR(w)), ConsR(w) = Cons(reactR(w)),

kin(v; e) = e, (v; e) �e′′ (v′; e′) = (v + v′; ee
′

e′′).

We then define two simplification rules for flux networks in Fig. 8. First,
(Intermediate) is simply a reformulation of the one in Fig. 6 but in the termi-
nology of flux networks. The new rule (Dependent) removes a dependent flux,
that is one whose flux vector can be written as a positive linear combination
of the flux vectors of some other fluxes. The rate of the removed flux is added
to the rate of the fluxes that it depends on. This guarantees that the system of
ordinary differential equations associated to the reaction network is unchanged:

Lemma 7. Given W ∈ FNetsR, if W VDep
R W ′, then SR(W) ∼ SR(W ′).

Two fluxes are structurally similar, denoted (v, e) ∼struc (v′, e′), if they have
the same flux vector, that is v = v′. Two vector networks are structurally similar,
denoted W ∼struc W ′ if they have structurally similar fluxes.

We can now state the Theorem on the structural confluence for this simplifi-
cation system. We denote by VR= (VInter

R ∪ VDep
R) the simplification of vector

networks with the rules of Fig. 8.

Theorem 2. The relation VR on (FNetsR,∼struc) is confluent.

Proof (Scetch). The outline of the proof is as follows:

1. the simplification relation VR preserves the set of intermediate species,
2. the local confluence holds for VR,
3. the binary relation is terminating, so by Newman’s lemma, it is confluent.

Note that adding a rule that eliminates reactions whose reaction vectors
can be written as sums of the reaction vectors of other reactions in the same
network (instead of using a reaction basis) does not guarantee the confluence for
the network structure.

Example 5. In Example 4, the elimination of the intermediates Y and Z in
two different orders was shown to generate two different networks NXZY and
NXY Z the latter having the additional reaction r1356. Let us take {r1, . . . , r6}
as a reaction basis. If we translate the simplifications to flux networks, the flux
vector associated to reaction rij is ui + uj . Also, the flux vector associated to
r1356 is u1 +u3 +u5 +u6, that is the sum of the flux vectors of r13 and r56. Thus,
the application of the (Dependent) rule to the flux associated to r1356 results
in a flux networkW such that reactR(W) = N ′XY Z . Since r1356 is eliminated, the
networks NXZY and N ′XY Z have the same structure. The rate of reaction r13 in
N ′XY Z is given by the rate of r13 in NXY Z , plus the rate of r1356 in NXY Z , and
is therefore equal to k1k3

K1
xA + k1k5

K1
xA ∼ k1xA, that is the rate of r13 in NXZY .

Similarly, one can show that the rates of r56 in the two networks also coincide,
and both networks have the same kinetics.

The following variation on the same example shows that confluence of the
kinetics is not in general guaranteed.

Example 6. Now we shall examine again the simplifications performed in Exam-
ple 4, but this time we look at the reaction networks as simplifications of the
larger network Nε in Fig. 9 from which NX results after elimination of X. The
reaction basis is now R′ = {r1′ , r2′ , r3, r4′ , r5′ , r6} and the reaction r1 in NX
is obtained from Nε by merging r1′ and r2′ (that, following our convention, we
denote r1′2′) and is thus associated to the flux (u1 + u2, k1xA) w.r.t. R′. Sim-
ilarly, r2 = r1′4′ is associated to (u1 + u4, k2xA), r4 = r2′5′ to (u2 + u5, k4xY),
and r5 = r4′5′ to (u4 + u5, k5xY).

The eliminations of Z first and Y after, represented in Fig. 7, generate the
reactions r26, r56, r13 and r236 (with flux vectors respectively u1 + u4 + u6,

A

X

B

C

D

Y

Z

r1′

k
1′xA

r2′

k
2′xX

r4′

k
4′xX

r3

k3xY

r5′

k
5′xY

r6

k6xZ

A

B

C

D

r13
k1k3
K1

xA

r236(k2+
k1k5
K1

)xA

r4

(
k4(k1+k2)

k3
+

k1k5
K1

)xA

r56
k5
k3

(k2+
k1k5
K1

)xA

(Nε) (N ′XY Z)

Fig. 9. Initial network (Nε) and network (N ′XY Z) obtained after elimination of X, Y ,
dependent rule r15 and then Z. We have K1 = k3 + k5.

u4 + u5 + u6, u1 + u2 + u3 and u1 + u3 + u4 + u6), with no dependent re-
actions. Consider now the elimination of Y from NX . Reaction r15 has flux
(u1 + u2 + u4 + u5,

k1k5
K1

xA) in network NXY and is dependent on reactions r2
and r4. If we choose to eliminate reaction r15 using the (dependent) rule and
apply the (intermediate) rule on Z we obtain the network N ′XY Z in Fig. 9.
No further simplification rule can be applied. Notice that this network is struc-
turally the same as network NXZY in Fig. 7, but all reactions have different
kinetic rates.

7 Normalization modulo kinetic rates

We now present the principal result of this paper, about confluence of the sim-
plification system modulo the kinetic rates. In other words, whatever the order
of simplification, we can always obtain a fully simplified network with the same
structure and with similar system of equations, but the kinetic rates associated
to the fluxes can be different, as illustrated before in the example 6.

Given a fixed set of intermediate species U and an initial reaction basis R,
two networks are similar, denoted W ∼R W ′, if they are structurally similar
(W ∼struc W ′), and their systems of equations are similar (SR(W) ∼ SR(W ′)).

Theorem 3. The relation VR on (FNetsR,∼R) is confluent.

8 An example from the BioModels database

We have shown that the simplification system that we presented can exhibit non-
confluence of the rates, even in a simple scenario with a small number of interme-
diates. To find if such a situation occurs in practice, we investigated the SBML
models in the curated BioModels database [8]. For each mass-action model, we
created the graph of complexes and searched it for cycles of intermediates, to
identify possible candidates for non-confluence. Then, with an implementation

of the simplification rules, we considered the elimination of triples or quadruples
of intermediates in different orders, and compared the resulting networks.

We were thus able to identify two different reduced networks for model
BIOMD0000000173. This is a model of the Smad-based signal transduction
mechanisms from the cell membrane to the nucleus, presented in [21]. A sub-
network of this model is represented in Fig. 10. It includes all reactions involv-
ing cytoplasmic and nuclear Smad4 and Smad2/Smad4 complexes (abbreviated
S4c, S4n, S24c and S24n): shuttling of Smad4, formation of Smad2/Smad4
complex, import of Smad2/Smad4 into the nucleus, and formation of EGFP-
Smad2/Smad4 complex. This network is linear for the four intermediate species
S4c, S4n, S24c, S24n. The different orders of elimination yield simplified net-
works with the same structure but different kinetics. This confirms that the or
of simplifying a biological network may indeed affect the result.

G4c pGc S4c pS2c S24c

G4n pGn S4n pS2n S24n

r22

CkonxpGc
xS4c

r22′Ckoff xG4c

r5

CkonxS4c
xpS2c

r5′Ckoff xS24c

r23NkonxpGn
xS4n

r23′ Nkoff xG4n

r6 konNxS4n
xpS2n

r6′ koff NxS24n

r1kinxS4c r1′ koutxS4n r7 kinCIFxS24c

Fig. 10. Subnetwork of the Smad signal transduction network in [21].

9 Related work

In this section, we compare our work to two other simplification methods.
Radulescu et. al. [17] propose a simplification method for eliminate interme-

diate species at steady-state, while preserving the ODEs semantics. Compared
to the method presented in this paper, their simplification removes may inter-
mediate species in a single big step. Rather than imposing restrictions such as
linearity with respect to intermediates, they rely on approximations for the ki-
netic rates in the general case. In a first step, they simplify the graph structure
by using the elementary modes [5]. Then, they resolve approximately the steady-
state equations after the concentration of the intermediates, and therefore obtain
a simplified ODEs system. They finally assign the kinetic rates to the reactions,
to obtain a reduced network corresponding to the simplified ODEs system.

The computation of the elementary modes in their method produces an
unique network structure. Since our elimination of the dependent reactions is

based on similar methods, the network structures obtained with our simplifi-
cation or with their method are the same. Since they use approximations, the
kinetic rates are however not the same. With an exact simplification, we could
expect to find the same underlying ODEs system. And, similarly to our simpli-
fication, the assignment of the rates to the reactions is not unique with their
simplification.

Note that in [18], they proposed an additional step to their method, after
computing the simplified graph structure, that can remove reactions if their
reaction vectors are dependent, instead of the flux vectors. After this step, the
assignment of the kinetic rates can be done in an unique manner. However,
this elimination based on reaction vectors is not confluent, even for the graph
structure, and so this method will still not be confluent.

Saez et. al. [20] improved their simplification procedure from [19], while pro-
ducing some overlapping results but independently to the best of our knowledge.
As before, their producere removes many intermediate species in steady state in
one big step. Their conditions for the simplification are similar to us (linearity,
stoichiometry, etc.). If applied to a single intermediate species, their method
actually gives exactly the same result that the rule (Intermediate). However,
their method applied in one step on a set of intermediates is not similar to ap-
plying it sequentially on one intermediate. It seems that their one-step method
directly removes the dependent reactions. Since they obtain an unique simplified
reaction network, with an unique assignment of the rates, it would be interesting
to understand in more detail how they distinguish their unique result from the
many others that are possible with our method.

Conclusion

We have shown that the elimination of linear intermediate species is not confluent
in general. We provided a new simplification rule to remove dependent reactions,
and proved that the extended rewrite system is confluent up to kinetic rates, that
is, all normal forms of the same network will have the same structure and similar
systems of equations, but can have different kinetic rates. Future research efforts
is needed to characterize networks that possess a unique normal form.

References

1. L. Calzone, F. Fages, and S. Soliman. BIOCHAM: an environment for model-
ing biological systems and formalizing experimental knowledge. Bioinformatics,
22(14):1805–1807, July 2006.

2. C. Chaouiya. Petri net modelling of biological networks. Briefings in bioinformat-
ics, 8(4):210–219, 2007.

3. F. Fages, S. Gay, and S. Soliman. Inferring reaction systems from ordinary differ-
ential equations. Theoretical Computer Science, 599:64–78, 2015.

4. M. Feinberg. Chemical reaction network structure and the stability of complex
isothermal reactors—i. the deficiency zero and deficiency one theorems. Chemical
Engineering Science, 42(10):2229 – 2268, 1987.

5. J. Gagneur and S. Klamt. Computation of elementary modes: a unifying framework
and the new binary approach. BMC bioinformatics, 5(1):175, 2004.

6. M. Hucka, et. al. The systems biology markup language (SBML): a medium
for representation and exchange of biochemical network models. Bioinformatics,
19(4):524–531, 2003.

7. G. P. Huet. Confluent reductions: Abstract properties and applications to term
rewriting systems. Journal of the ACM, 27(4):797–821, 1980.

8. N. Juty et. al. BioModels: Content, Features, Functionality and Use. CPT: Phar-
macometrics & Systems Pharmacology, 2015.

9. E. L. King and C. Altman. A schematic method of deriving the rate laws for
enzyme-catalyzed reactions. Journal of physical chemistry, 60(10):1375–1378, 1956.

10. C. Kuo-Chen and S. Forsen. Graphical rules of steady-state reaction systems.
Canadian Journal of Chemistry, 59(4):737–755, 1981.

11. C. Kuttler, C. Lhoussaine, and M. Nebut. Rule-based modeling of transcriptional
attenuation at the tryptophan operon. Transactions on Computational Systems
Biology, XII:199–228, 2010.

12. G. Madelaine, C. Lhoussaine, and J. Niehren. Attractor equivalence: An obser-
vational semantics for reaction networks. In Formal Methods in Macro-Biology,
pages 82–101. Springer, 2014.

13. G. Madelaine, C. Lhoussaine, J. Niehren, E. Tonello. Structural simplification of
chemical reaction networks in partial steady states. Journal extension of CMSB’15.

14. U. Mäder, A. G. Schmeisky, L. A. Flórez, and J. Stülke. Subtiwiki—a comprehen-
sive community resource for the model organism bacillus subtilis. Nucleic acids
research, 2011.

15. J. Niehren. Uniform confluence in concurrent computation. Journal of Functional
Programming, 10(5):453–499, Sept. 2000.

16. J. Niehren, M. John, C. Versari, F. Coutte, and P. Jacques. Qualitative reasoning
for reaction networks with partial kinetic information. In CMSB. 2015.

17. O. Radulescu, A. Gorban, A. Zinovyev and A. Lilienbaum. Robust simplifications
of multiscale biochemical networks. BMC systems biology, 2(1):86, 2008.

18. O. Radulescu, A. N. Gorban, A. Zinovyev, V. Noel. Reduction of dynamical bio-
chemical reactions networks in computational biology. Frontiers in Genetics, 2012.

19. M. Sáez, C. Wiuf, and E. Feliu. Graphical reduction of reaction networks by linear
elimination of species. arXiv preprint arXiv:1509.03153, 2015.

20. M. Sáez, C. Wiuf, and E. Feliu. Graphical reduction of reaction networks by linear
elimination of species. Journal of Mathematical Biology, pages 1–43, 2016.

21. B. Schmierer, A. L. Tournier, P. A. Bates, and C. S. Hill. Mathematical modeling
identifies smad nucleocytoplasmic shuttling as a dynamic signal-interpreting sys-
tem. Proceedings of the National Academy of Sciences, 105(18):6608–6613, 2008.

22. E. Tonello, M. R. Owen, and E. Farcot. On the elimination of intermediate species
in chemical reaction networks. In preparation, 2016.

	Normalizing Chemical Reaction Networks by Confluent Structural Simplification

