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where

F x t F x l t ( , ) ( / ) ( ) = - 0 3 δ
cos Ω is the periodic transverse force, ρ is the density of the material, E is the elastic modulus, A and J are the area and moment of inertia of the cross section, and δ( ) is the delta function.

Introduce the following dimensionless parameters and variables:
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where ε << 1and r is the radius of inertia of the cross section.

Omitting the asterisks in (2), we rearrange [START_REF] Avramov | Forced nonlinear vibrations of flexible beams at combination resonance[END_REF] in terms of the new variables:
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where

f x t f x t ( , ) ( / ) ( ). = - 0 1 3 δ cos Ω Represent the vibrations in the form W t nx n n = ∑ 2 η π ( ) (
). sin Applying the Bubnov-Galerkin method to (3), we obtain the following system of ordinary differential equations:
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Consider a combination resonance: 2 4), we will apply the multiple-scale method [START_REF] Nayfeh | Perturbation Methods[END_REF] based on the following change of variables:

1 2 Ω = + + ω ω εσ. To analyze Eqs. (
η π β ε k k k k a t k t t t O = + + + ( ) ( ( )) ( ) cos cos 2 2 2Λ Ω , (5) 
where

Λ k k h k = - 4 4 25 4 4 π ( ) .
As a result, we obtain the system of modulation equations
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where . . m m [START_REF] Agalovyan | Solution asymptotics of classical and nonclassical static and dynamic boundary-value problems for thin bodies[END_REF] The transition from (4) to [START_REF] Nayfeh | Perturbation Methods[END_REF] through the change of variables ( 5) is based on rigorous mathematical considerations. This procedure is fully described in [START_REF] Nayfeh | Perturbation Methods[END_REF]. The stability of the periodic motions of (6) corresponds to the stability of the periodic motions of (4). System (6) can be written in terms of the variables ( , , ) ( , , )
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To analyze the nonlinear vibrations of flexible beams, we will represent the solution of Eq. ( 3) in the form
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2. Bifurcations of Fixed Points. It is easy to verify that the dynamic system (6) has a fixed point ( , ) ( , ) a a
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0 0 = and fixed points that satisfy the system of equations

a a f a f 1 2 2 0 2 6 2 1 2 2 0 4 1 2 12 2 4 6 5 8 16 = + -+         = , . µ χ π σ π χ π (10) 
The solutions of Eqs. [START_REF] Evensen | Nonlinear vibrations of beams with various boundary conditions[END_REF] have the form
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)
where p f Equality [START_REF] Nayfeh | Nonlinear Oscillations[END_REF] defines two groups of fixed points, denoted by the superscripts A and B. These points correspond to two groups of equilibrium states of the dynamic system (8):
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Let the above fixed points be associated with an amplitude surface (see Fig. 1) that represents the dependence a a f To analyze the fixed points for stability, let us determine the eigenvalues λ i of the Jacobian matrix of the vector field [START_REF] Avramov | Bifurcation analysis of a vibropercussion system by the method of amplitude surfaces[END_REF]. The stability of the fixed points r A B , is defined by quantities λ i A B ( , ) as follows:
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To describe the stability of the fixed point (a 1 , a 2 ) = (0, 0), we will use the quantities
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Note that the nonhyperbolic fixed points of the sheet C satisfy the equation λ 2 = 0. Therefore, we have
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To analyze Eq. ( 15), we introduce new variables ( ~, ~/ ) σ π f 0 2 6 . Then this equation rearranges to
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Equation ( 16) describes the hyperbole L in Fig. 1. The domains of stable and unstable states of the dynamic system (8) on the amplitude surface are labeled by S and U, respectively. The line L represents supercritical pitchfork bifurcation on the section GC 1 and subcritical bifurcation on the section C 1 B. The codimension-two bifurcation point C 1 separates the lines of supercritical and subcritical bifurcation. The amplitude surface contains a saddle-node bifurcation line L 1 , which connects the fixed points of the sheets A and B.

To analyze the dynamics of system (8) at C 1 , we will take advantage of the central-manifold method [START_REF] Bryuno | Analytical form of differential equations[END_REF][START_REF] Wiggins | Introduction to Applied Nonlinear Dynamical Systems and Chaos[END_REF], which allows reducing the dimension of a dynamic system. Note that it is central manifolds on which bifurcation phenomena occur. In the neighborhood of the fixed point x = y = z = 0, Eqs. ( 10) can be represented as 
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where ν π µ χ
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Note that the bifurcation point C 1 is observed when ν δ 1 = = 0. Write system (17) in terms of the new variables ( , , ) ( , / , / ): ,,),( ,,, ), ( χ ν δ
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The equation ν = 0describes a saddle-node bifurcation line. The behavior of trajectories near the bifurcation point C 1 is shown in Fig. 2 as a bifurcational diagram [START_REF] Nayfeh | Nonlinear Oscillations[END_REF].

3. Quasiperiodic Vibrations of a Flexible Beam. The steady vibrations of a flexible beam that correspond to the fixed points of the dynamic system (8) are defined by
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where γ µ π χ
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Thus, the vibrations of the beam are represented by the sum of three functions of time with frequencies ν 1 , ν 2 , and Ω , As follows from (34), vibrations (32) occur at two frequencies ν 1 and ν 2 and their combination Ω . It is well known that if the frequencies ν 1 and ν 2 are not related as integers, then the vibrations are quasiperiodic. Minor changes in ν 1 or ν 2 may turn quasiperiodic vibrations into periodic. This phenomenon is called synchronization. Note that based on the results presented in this paper we may demonstrate that vibrations (32) are always quasiperiodic.
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The central manifold of the dynamic system (18) can be represented as power series with undetermined coefficients. After determining these coefficients by the method described in [START_REF] Wiggins | Introduction to Applied Nonlinear Dynamical Systems and Chaos[END_REF], we represent the central manifold in the form

where O(4) denotes terms of orders v v v v The motions of the dynamic system (8) on the central manifold are described by the equation

where a O a O µχ ν δ = . This equation approximates the curve L at C 1 (Fig. 1). The equation

describes the motions of the dynamic system (8) on the central manifolds of the fixed points of the line L. This manifold is stable when δ < 0 and unstable when δ > 0. The motion of system (8) on the central manifold of the point C 1 is described by the equation

It follows from this equation that the point C 1 is stable. Consider saddle-node bifurcation L 1 (Fig. 1) at C 1 . To this end, let us introduce the variables
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Rearranged in terms of the new variables, system (8) has the form

We do not present the expressions of the functions f x y z
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The functions F 1 , F 2 , and F 3 are also unwieldy and, thus, are not presented. The central manifold is

where

, ν, ν , and ν 3 . The motion of system (8) on the central manifold is described by the differential equation The stability of the fixed points v 1 2 , is determined by the characteristic numbers λ 1 2 ,