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A Neural Network Approach of the Control of Dynamic

Biped Equilibrium.

Patrick HENAFF, Holger SCHWENK and Maurice MILGRAM

Laboratoire de Robotique de Paris - UPMC-UVSQ-CNRS
10-12, av de I’Europe 78140 Vélizy- FRANCE.

Abstract :

In this paper, we propose a Neural Network learning architecture for the reflex-control of complex systems.
The multi-layer-network is trained by a new learning algorithm which does not need a desired output, but
directly minimizes a criterion which spezify the control objective. We propose two learning concepts: off-
line learning and on-line learning (similar to adaptive control). We have tested our method for a simplified
dynamic problem: the dynamic stability of a simulated planar biped. To obtain dynamic equilibrium during
the single-support-phase, the robot trunk is controlled such that a zero-moment-point (ZMP) criterion is
satisfied. We show that although no gait-specific knowledge is used during off-line learning, dynamic walk-
ing for different step lengths and heights could be realized and controled. The capability of the proposed
learning algorithm to adapt the trunk control on-line to the actually performed leg trajectories allows further
improvements and adaptation to real environment conditions or perturbations.

Keywords : Neural network, Learning control, Robotic, Adaptive control, Biped locomotion

1. INTRODUCTION

Many scientists are currently working on the design
and control of autonomous, mobile robots. In par-
ticular, there is a growing interest in walking robots.
They have good mobility, and therefore, they could
replace human beings in dangerous environments.
On the other hand, the large mechanical complexity
of walking robots, and the necessary of dynamic con-
trol imply some very difficult control algorithms. The
main problem is the require inversion of the dynamic
model. This model can not, in general, be obtained
analytically and it is even often not uniquely deter-
minable. The choice of a solution of this inversion is
usualy based on criterion optimization (energy, ma-
noeuvrability, equilibrium, ...) which makes on-line
control very difficult. For this reason, most of re-
cent walking robots use off-line calculated walking-
patterns (e.g. [5]). Several improvements of this ba-
sic sheme have been proposed in recent papers (adap-
tation to the actual measured ZMP (zero-moment-
point) [4], on-line consideration of unknown external
force [6]).

To solve these difficulties, some new methods have
been developed, such as Neural Networks and Fuzzy
Logic. In the case of Neural networks, multi-layer-
networks trained with the well known backpropaga-
tion learning algorithm are frequently used. How-
ever, this algorithm requires the a priori knowledge
of the desired output (e.g. the desired command)

corresponding to the net input (e.g. the actual state
of the system). To calculate this desired output, it
is necessary to invert a model (geometric, kinematic
or dynamic).

Lee and El Maraghy for instance, use a multi-layer-
network to control a simplified planar biped walk-
ing robot [2]. Since the exact solution is difficult to
derive, they generate examples using three different
linear controllers with different parameters. In this
case, the learning data does not represent the opti-
mal solution, so that the neural net can not perform
the task perfectly. Therefore we propose a new learn-
ing method that doesn’t need the desired output, but
only a criterion specifying directly the goal.

Here, this learning algorithm is applied to control
the dynamic equilibrium of a biped walking robot.
The neural network provides, (on-line), the optimal
trunk acceleration to compensate for an imposed leg-
movement. As this is the first time we test our
method for a dynamic problem, we have used a simu-
lated planar biped, but we believe it can be extended
to the general case, i.e. a 3-dimensional real biped
robot.

2. LEARNING ALGORITHM

We use standard multi-layer-networks in our ap-
proach, so that we omit the description of the net-
work architecture. These networks are normally
trained with well known backpropagation learning
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algorithm ([1] and [3]). It uses a cost function E,
which compares the net ouput vector o, with the de-
d

sired output vector op:

1
E, = 3 Z(Ogj = Opj)2
J

The goal of the learning is to minimize E, for every
input pattern p by a gradient descent method. Since
the output vector depends only on the weights w;
(weight from neuron i to neuron j), the following
gradient must be calculated:

VE - 0E, _ OB, Onety _ _0E, =
Bwji 3netpj Bwﬂ Bnetpj 2
We set 6, := —%—5’;—] and then we have:
it = fi(nety;) (05 — 0p;) (1)
Gt = fi(nety;) D" Sppwy (2)
k

where equation (1) is applied for an output neuron
and (2) for hidden ones. In the above equations
net,; = 3 ; w;;0p; denotes the activation of neuron j
and f; its function (sigmoide). Using this notations,
we get the following update rule :
1 ok k+1
'U)z-j-i- = wi_;i + Awu
where
0E,

k
A’LU +1 — *Aa—k
1

5 + nA'wfj

A € [0, 1] denotes the learning rate. The last term an-
ticipes the old weight change. This technique, known
as momentum, speeds up learning and reduces oscil-
lations in valleys of the energy landscape.

Although the inherent robustness to real noisy data
and the strong generalization capability of multi-
layer-networks make them very suitable for control
applications in robotics, the need for the desired out-
puts presents some problems. This is particularly
true for dynamic applications. In this case it is of-
ten not possible to determine the exact solution and
frequently linearized models are used.

On the other hand, it is often easy to formulate
a quality function to minimize, e.g. the movement
of the tool-center-point of a manipulator to a point
corresponds to the minimization of the euclidean dis-
tance.

The basic idea of the proposed learning algorithm
is to mimimize directly an arbitrary criterion Jp spec-
ifying the goal and the constraints of the problem,
instead of the error E, between the net- and the de-
sired output. In order to minimize this criterion we

use also a gradient descent method:

_ 8, 8J, Onmet,;  J,

VJ = = =
Jwj; Onety; dwj; Onety;

Opi

In similar manner to what was done above, we define

84, .
R .
Bz = Het and obtain for a ouptut neuron:

aJP 801-"5 _ aJP t ;
~ oy; Onet,; oy, fi(netys)

out
Jpj

In place of the difference between actual and desired
output we backpropagate the gradient of the crite-
rion related to the corresponding output. Therefore,
the partial derivates of the criterion must be analyt-
ically calculable. The computation of 6:};‘1 remains
unchanged. Figure 1 compares the the two learning
algorithms. The advantage of learning with criterion

desired
state

of the robot
a)
Ve l/
weight upadte by ,
i . inverse
gradient descent L
the robot
T outputs error 7
possible € é_fde:-lred
inputs cutput
b)
weight upadte by
gradient descent
a6t of neural |outputs | model of new state
pogalbly network the robot of the robot
inputs

y

Figure 1: standard backpropagation (a) and learning
with a criterion (b)

is that we need not any desired output, and only a
cost function is required. The neural network deter-
mines itself the way to achieve this goal. This also
allows for training the network on-line.

3. MODELING AND STABILITY OF THE
BIPED

The dynamics of human-like walking is very compli-
cated and up to now, it is not possible to formulate
its complete dynamic equations. Accordingly, the
study of the feasibility of a neural network approach
to dynamic stability control of biped walking must
be based on a simplified model. In order to obtain
a model for a simulated biped walking robot which
can be handled mathematically, we made the follow-
ing assumptions (see also fig. 2):
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e The model is constrained to the sagittal plane.

¢ To allow full manoeuvrability two active degrees
of freedom (DOF) are assumed, i.e. a rotatory
articulation at the hip and at the knee.

o The trunk, the head and the arms are modeled
as one particle.

® The mass is considered to be concentrated in the
articulations, at the end of the trunk and at the
feet respectively.

¢ The feets are considered as point contact.

The parameters of the robot model are:

mg = 2.0 k'g
Ll =1.0m my1 = 3.0 kg‘
Li=L=07m m;=m, =1.0kg

L2:L2:0.6m m;z:mg:()f)k‘g

Figure 2: Model of the biped walking robot

In fact, we used a two-dimensional version of the
model of the WL-12 walking robot built at Waseda-
University [5]. On the other hand, the punctate feet
of our model require a very exact stability control
method.

3.1 Stability criterion

In this study we use a zero-moment-point (ZMP)
criterion [7] to control dynamic stability during the
single-support-phase, when only one foot is in con-
tact with the ground. Stability control during the
double-support-phase is not considered since the two
dimensional structure makes it easy to control.
Using the above model, equations for the ZMP ex-
pressed in the fixed coordinate system K can be de-

rived as follows:

2l + 9y)T: — 5y mi(E: 4 90T

T = =
e 2imi(Yi + 9y) — Xop Fik
+Ej M+ 31 (Farsk — FyrZsr) 3)
Yimi 4 gy) — Sp Fyr
where
(2, g}i)T : coordinates of mass m; in K
(@5, gsk)T position vector where external
force F}. acts
(Frk, Fyk)T external forces Fj
M; : external moment
(9zy 9)7 gravitational acceleration
(a?zmp,OJT coordinates of the ZMP

An additional moving coordinate system K is defined
at the hip in order to obtain a symmetric study of
the legs. Coordinates of the origin of K are (Z,1, 7,;)7
measured relative to the fixed coordinate system K.
In this study we don’t consider any external forces
and moments. So, the'particle coordinates, equation
(3),come:
Fy, — F
Temp = “nyy 2 (4)

with Fe, = > mi(&; + £ + 02)(i + 9p1)

I

Fy, D maliii + Gt + gy) (i + £y0)
i ;

Fy = Y mi(iii + i + gy)

Zmp is a function of the articular variables ¢;, ¢; and
Gi- (2p1, yp1)T and the second derivates are provided
by the simulation, or by sensors for a real biped.

A system is dynamically stable, if the ZMP falls al-
ways into the supporting surface. During the single-
support-phase this corresponds to a single point, so
that dynamic stability is garanteed when the ZMP is
equal to zero.

3.2 Control structure

High adaptibility of a biped walking robot to dif-
ferent environment conditions can only be obtained
when the stability and the movement functions are
separated: legs perform the displacement while the
trunk is controlled such that dynamic stability is
guaranteed. In this paper we propose a neural net-
work approach to calculate the compensating trunk
movement. The walking patterns of the legs are gen-
erated analytically.
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In order to obtain a system which is able to main-
tain equilibrium independently of the movement of
the legs, and which tolerates consequent perturba-
tions of the leg-trajectories, the compensating trunk
movement must be calculated on-line.

In the general case however, i.e. a 3-dimensional
robot, the ZMP equations can not be solved analyti-
cally and the numerical resolution is time-consuming,.
To solve this problem, Takanishi et al. have proposed
to plan a ZMP-trajectory for a given fixed gait, and
to solve the resulting equations by using FF'T and
modifying the fourier coefficients [5]. All these calcu-
lations are performed before walking takes place. Af-
terwards, the biped walking robot uses only the saved
walking patterns to control its joints on-line. We

weight update

actual by gradient descent| g7
robot state: E -4—'\
[
qo’ qo 2 i+1 new
i ? qo = rabit robot state:
a4, i ;
17 _E—_ neur nal - mj qi‘l']- : gt+1
netywork simplified
P14 model
S
Qz f

leg pattern
t -f generator "i+1
;- 4 4

__feedback

Figure 3: Neural control structure. The lower part
shows the combination of analytical leg and neural
trunk control. Additionally, on-line learning can be
activated. During off-line learning only the upper
part is present and the net inpuls come from an ex-
ample set.

have decided to control the simulated planar biped
by accelerations in order to have full dynamic con-
trol. In this case, an analytical solution of the second
order differential equation 4 (Z.m, = 0) can be ob-
tained by solving in respect to go. Since this solution
is not a function of the new trunk velocity q'ré'*'l and
position g5t which result from this g5, the ZMP is
in general not exactly zero after a simulation step.

Several simulation have shown that, because of the
punctate feet, these effects have siginficant influence
on the quality of the control, such that a dynamically
stable gait couldn’t be obtained (see section 4.2 for
more details).

Therefore, we propose a neural network architec-
ture which calculates, on-line, the trunk motion as
a function of the actual state of the biped walking
robot (g%, ') and the next walking pattern of the
legs (%). The last ones are provided by an analytical
walking pattern generator. Figure 3 shows schemat-

ically this control structure.

It is worthwhile noting that the above mentioned
problems of the analytical solution are solved by us-
ing a simplified model of the biped robot during off-
line learning (see fig. 1b).

4. OFF-LINE LEARNING

For dynamic stability during the single-support-
phase, the ZMP must fall exactly in the point sup-
porting area. Thus, the criterion J, and the partial
derivate with respect to the net output §y can be
stated as follows:

=2

Jp = Eerap
dJ, Fy, — Fz
—= = 2, Li| ==
6(']'0 T mpml 1 ( Fy2 SII1 g

4 (1 + §nt) cosgo — (21 + Zpr) sin qO)
Fy
with Fz,, F'y, and Fy given by equation 4. This
gradient is the only information used by the learning
algorithm to find the optimal solution.

4.1 Example generation

The goal of off-line learning is to obtain a neural net-
work able to perform (almost) stable dynamic biped
walking. In this phase it is more important to obtain
good trunk control for a great varity of leg move-
ments than a perfect one for few special trajecto-
ries since the network can be improved afterwards
by learning on-line.

In order to obtain this behavior, the neural net-
work must have ‘seen’ a representative subset of the
possible configurations of the biped. This can nor-
mally be achieved by generating random examples
that span the whole input data space. However, the
14 inputs, a space R4, would lead to a very large
example set.

On the other hand, some general constraints can be
formulated which are true for any reasonable biped
walking gait:

1. The ranges of the joints are limited (trunk +7,
hip £% and knee —x...0).

2. Geometric constraints on the swinging leg are:

(a) The foot is always located between the
ground and the height of the hip.

(b) Foot-trajectories with large step heights
can be discarded.

(¢) The foot is neither on the opposite side of
the contact point from the hip, nor between
these two points.
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Unfortunatly it is not easy to formulate similar qual-
itative conditions for the greater number of the kine-
matic inputs, i.e. the velocity and acceleration in-
formation, although there exists many dependencies
between these measures for each joint.

For this reason, we have solved this problem on a
higher level: for every complete input vector we test
if a solution of Z,,,, = 0 exists in the output range
of the neural network. Since the ZMP is a continous
function of §o, this is the case if the ZMP lies on
different sides of the contact point for the minimal
and maximal net output respectively. The condition
‘ZMP is reachable’ rejects dynamically unfavorable
situations, and thus, for a natural gait, uninteresting
examples.

To respect these geometric and kinematic con-
ditions we have developed two example generation
methods. They are described in the following.

Example generation in the robot configuration
space

The basic idea of this method is to generate every
component of the input vector randomly in their spe-
cific range of values. Afterwards, we verify if this
input vector represents a valid robot configuration.
We obtain the following procedure (see also fig. 4a):

1. Generate randomly g¢{ and ¢ until the hip
is located in the rectangle with the corners
(_hﬂ“,ypf — dypi) and (Lmiuv Ypi + dypi)-

2. Generate randomly ¢ and ¢} until the foot
2 is located in the rectangle with the corners
(Zpt — tmaz 2 ,0) and (z, + iﬂjf‘ﬂ,hnmz).

3. If condition 2c is not satisfied, go to 2)

4. Generate random values for the kinematic in-
puts until the ZMP is reachable.

Experiments have shown that generation of random
values for angles often implied an inharmonious dis-
tribution of the foot end points in the rectangle
hmaz X lpez. To fix it, we have developed a second
method.

Example generation in the problem space

Now, we generate directly potential geometric robot
configurations and calculate afterwards the corre-
sponding angles by using the inverse geometric
model. Note that this doesn’t correspond to an in-
version of the whole problem, which would be a dy-
namic one. The kinematic components of the input

= lhmﬂ.ﬁﬂ
FEFFET Ly

- lmﬂ,x;——’

Figure 4: Erample generation in the robot configu-
ration space (a) and in the problem space (b). I,z
is the mazimal step length, hy,, the mazimal step
height.

vectors are still generated randomly using the condi-
tion ‘ZMP is reachable’.

The hip positions lie on the line with the end points
(—imiﬂl,ypg) and (L"%fl,yp;). For each of these posi-
tions a small rectangle was introduced, in which foot
positions of the leg 2 were distributed linearly. The
position of these rectangles varies with the hip posi-
tion, whereby overlapping has been foreseen (see fig.
4b).

Remember that the first method uses no a-priori
knowledge of the later performed leg-trajectories,
and that the second one only assumes different foot
heights as a function of the hip position.

4.2 Simulation results

The two example generation methods were used to
build two learning sets of 800 examples used to train
a neural network off-line. The maximum step length
in both cases was 0.3 m and the maximum step height
was 0.1 m. The neural networks had 14 inputs, one
hidden layer with 12 neurons and one output neu-
ron. Both networks converged very quickly and after
10,000 learning cycles a very low final value of the
total-criterion J =} J, was obtained.

Figure 5 shows the ZMP-trajectory for a step of
length 25 cm and height 7.5 cm. For the analytical
leg movement we have used a parametrized cycloid
function in order to obtain zero impact forces. The
trunk was controlled by a neural network trained off-
line with an example set generated in the robot con-
figuration space (curve 1) and in the problem space
(curve 2) respectively. For comparison the ZMP-
trajectory for the analytic trunk control is also given.
Although no leg-trajectories information was used
during off-line learning, both neural networks were
able to control the dynamic equilibrium. The ZMP
was maximal 0.5 cm beside the contact point.
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Figure 5: ZMP-trajectories with neural trunk control
(curves 1, 2) and with analytical solution (curve 3)

The ZMP-trajectory for the analytical trunk con-
trol has almost the same amplitude as neural control,
but has a bad position. This stem from the not re-
spected new trunk velocities and positions, and leads
to a destabilization, which is in the same direction.
The whole biped walking robot begins to turn around
the contact point. Table 1 shows the influences of
this rotation on the final distances of the swinging
leg from the ground, after a complete step. As ex-

trunk controled by | net 1 | net 2 | analyt.
error in [cm] | 0.18 | 0.11 | 0.61

Table 1: Final distances of the swinging leg to the
ground (step length 25 cm, step height 7.5 em)

pected, the errors are very small for the neural trunk
control, while a dynamic stable gait with an ana-
lytically controlled trunk is not possible. The final
distance in this case is greater than 0.6 cm and hence
the foot can not be placed correctly on the ground.

The rotation of the whole biped around the waist
during one step is shown in figure 6.

We have made simulation experiments with five
representative cycloid leg-trajectories inside the rect-
angle lyaz X Mg, in figure 6. It can be easily seen
that the network is able to control the equilibrium of
the biped robot for every leg-trajectory. In the begin-
ning of the movement, the biped robot begins slowly
to rotate, but afterwards the network provides the
optimal control, so that the waist doesn’t continue to
rotate. At the end, rotations lay in the range 0.005
- 0.01 rad. This corresponds to maximal ground dis-
tances at the end of the step between 0.06 and 0.16
cm.

0.015 T T , .
0.01
0.005
rotat.
[rad]
-0.005 -
-0.01 o
-0.015 1 | 1 1
0 1 2 3 4 5
time [sec]

Figure 6: Rotation of the biped around the waist for
different leg-trajectories (trunk controlled by net 2).

5. ON-LINE LEARNING

The goal of on-line learning is to adapt the general
neural network to the actual leg movement. This is
only possible if the network is able to control the
equilibrium such that the movement can be achieved
without large errors (can cause the robot to fall over).
Unlearning should also be prohibited. On the other
hand, we expect a good generalization by the net-
work, i.e. the control of (similar) leg-trajectories
that have not been learned on-line should also be
improved.

To demonstrate this, the neural network 2 was
trained with only one representative leg trajectory
in the middle of the rectangle l,,00 X Amag. Weights
were changed after each complete step. The network
converged very fast and after only 17 iterations the fi-
nal distance between the swinging leg and the ground
was smaller than 0.006 cm. Figure 7 shows the ro-
tation of the whole robot around the waist during
the control of the five different test-trajectories (com-
pares with figure 6). The neural network is now able

0.015 T T T T
0.01
0.005

rotat.
[rad]
-0.005

-0.01 =

-0.015 1 1 1 |
0 1 2 3 4 5
time [sec]
Figure 7: Rotation of the whole biped for the control
of the test-trajectories after learning on-line.

T
1

to control perfectly the on-line learned leg-trajectory.
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The corresponding curve of the hiped rotation is well
centered and has a zero value at the end. More
over, the control of the not learned on-line trajecto-
ries could also be considerably improved. Distances

trajectory 1 2 3 4 5

distance | -0.014 | -0.030 | 0.006 | 0.030 | 0.009

Table 2: Final distances in cm of the swinging leg to
the ground after learning on-line of trajectory 3.

are now smaller than 0.5 mm for every leg-trajectory
(see table 2). Further tests with random step length
and heights have shown that this is also true for any
cycloid leg-trajectory falling inside the rectangle.

6. CONCLUSION

The proposed learning algorithm was accurated for
the control of dynamic problem we studied. After off-
line learning, the neural net was able to provide the
necessary trunk acceleration to maintain dynamic
equilibrium. Since no gait specific a-priori knowl-
edge was used for the generation of learning exam-
ples, the neural net should also be able to control
noncycloidleg-movements. This is currently investi-
gated.

Additionally, the learning algorithm can be used
to adapt the network, on-line, to a specific leg-
trajectory. The network used has only 182 weights,
so it can be easily applied on-line, in contrast to a
numerical approach. The significance of control ap-
proach is:

e It is a learning control method without a need
for a desired output.

e Its neural controler outputs are simply the com-
mand parameters.

e [t can be adaptive.

o [ts control objective depends on the command
parameters.

Perspective

We are now working on dynamic equilibrium control
of a quadruped robot. We are studying reflex behav-
ior when unexped situations make lost the legged-
ground contact and throw off balance the robot. The
3-dimensional dynamic model of the robot exists and
classical control algorithm have been tested.
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