N
N

N

HAL

open science

The Python user interface of the elsA CFD software: a
coupling framework for external steering layers

Marc Lazareff

» To cite this version:

Marc Lazareff. The Python user interface of the elsA CFD software: a coupling framework for external

steering layers. 2016. hal-01348159v3

HAL Id: hal-01348159
https://hal.science/hal-01348159v3

Preprint submitted on 10 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01348159v3
https://hal.archives-ouvertes.fr

The Python user interface of the elsA CFD software:
a coupling framework for external steering layers

Marc Lazareff®

*ONERA BP72 - 29 avenue de la Division Leclerc FR-92322 CHATILLON CEDEX

Abstract

The Python—elsA user interface of the elsA cFD (Computational Fluid Dynamics) software has been devel-
oped to allow users to specify simulations with confidence, through a global context of description objects
grouped inside scripts. The software main features are generated documentation, context checking and
completion, and helpful error management. Further developments have used this foundation as a coupling
framework, allowing (thanks to the descriptive approach) the coupling of external algorithms with the CFD
solver in a simple and abstract way, leading to more success in complex simulations. Along with the descrip-
tion of the technical part of the interface, we try to gather the salient points pertaining to the psychological
viewpoint of user experience (UX). We point out the differences between user interfaces and pure data

management systems such as CGNS.
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1. Introduction

elsA (http://elsa.onera.fr/) is a large CFD
software for research and industry, mainly used in
aerospace design, for both internal and external
flow. It has been described before (Gazaix et al.,
2002; Cambier et al., 2011).

Here we will be interested in the extension of
the Python—elsA user interface to additional soft-
ware, for performing simulations not only at a few
discrete specified workflow conditions (e.g. given
Mach, Reynolds ...) but on a domain of variation,
i.e. a Design of Experiment space (DoE), with sev-
eral algorithmic layers added above the CFD solver.

The first step is to automate the spanning of a
(given) large number of specified points covering the
DoE. The second one is to add a stabilization layer
for prolongation through unstable DOE zones (e.g.
when the flow conditions lead to separation). The
third one is to use the resulting “stabilized span-
ning” algorithm as a provider of observable quan-
tities for a sparse polynomial interpolator, driving
the simulation and selecting the DoE points to com-
pute. If successful, this composite algorithm pro-
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vides (for the chosen observable) an efficient global
representation (response surface) allowing further
studies on the DoOE, at low cost; for example stochas-
tic analysis using the Monte-Carlo method on the
response surface would be a fourth step.

The specific point of interest of our approach
is that, for this complex composite algorithm, we
manage to keep the user interface simple and uni-
form, using the same concepts as for the base inter-
face. Sections 2-4 explain these concepts; sections
5&6 deal with documentation, error messages, and
the qur (Graphical User Interface); finally, sections
7-9 deal with high-level operations and how we use
them for DoE spanning and analysis.

This paper includes a number of elements from
the CFD application domain, and software consid-
erations, along with user interface concepts; these
concepts (and most of the software implementation)
would be applicable to many different domains. Not
included here are considerations for field-like data,
for which the CFD General Notation System stan-
dard (CcGNs) is better suited!.

1But caNs is not a user interface system, lacking even
basic user-oriented checks



2. Interface development orientation

2.1. User interaction model

In the development of the Python—elsA user in-
terface, we strived to reach an equilibrium between
power and usability, both on the user side (run-
ning simulations) and on the developer side (adding
functionality); also, we have tried to avoid a steep
user learning curve.

The Python—elsA user interface has been used
since June 2000 with no change in its base princi-
ples (see section 2.2), and thus maybe it is not too
far off its target demography. The basic interface
is readily extended with additional classes allowing
external algorithmic layers, see 8.1, to complement
the CFD solver coded in the elsA kernel.

The Python—elsA interface is built on a declarative
user interaction model (Wikipedia, 2016a), whereas
similar software (Gerhold, 2008) uses an impera-
tive model (Wikipedia, 2016¢). The scripts describ-
ing the elsA CFD simulations use context sharing to
avoid data duplication; and all the tedious details
which are possibly automated are kept hidden in
the behaviour of the description classes.

The Python language has been a great help in
building successive abstract layers. We generally
try to go with the Principle of Least Astonish-
ment (Seebach, 2001; Ronacher, 2011), and to facil-
itate an object-oriented and functional (Wikipedia,
2016b; Backus, 1978a; Hudak, 1989) programming
style, here in user scripts.

The (functional) Reverse Polish Lisp (RPL) lan-
guage of some Hewlett-Packard handheld calcula-
tors, with its three language levels (User RPL, Sys-
tem RPL, compiled code) (Wikipedia, 2016d), has
been the inspiration for an intermediate language
where, as for System RPL, a faster checks-less inter-
preted code — usually generated on the fly from the
User level — may be directly accessed by experts.

In Python—elsA, wuser interaction is mainly
through argument-less method calls; this is possible
because the would-be arguments are already known
as attribute values of the method’s owner object;
these values may originate:

a) from user specification, using the owner object’s
set () method, see 3.4.1;

b) from context rules —set () terminator in context-
dependent default rules for the owner object —
possibly involving dependencies on objects other
than the method’s owner, see 4.2.1;

c¢) using the set() method in the behaviour logic
of other objects, possibly also involving context
rules (e.g. in coupled problems), see 9.2.

The user interaction model thus includes an ex-
plicit part (method calls in the user script) and an
implicit part (context rules and other class-specific
object behaviour), providing automatically-defined
values. The latter part is essential, allowing for a
lighter work burden and thus better efficiency and
security in problem solving. The potential danger,
regarding user confidence, of automatically-defined
attribute values is alleviated by the display (view
method, see 3.4.2) and introspection features of the
interface (show_origin method, see 4.2.4).

2.2. Base principles, user & developer sides

The base elements and principles used in the de-
velopment of this interface are:

For the user (U) side:

Ul. declarative model: the problem definition is
made up of definitions of the simulation pa-
rameters; building the adequate solver (acting)
is left to a factory, lower down in the C++ elsA
kernel; this separation of roles shields the in-
terface from modifications in the kernel imple-
mentation details;

U2. object-oriented model: the simulation parame-
ters (elements of the mathematical model) are
here represented as attributes of description
classes; the whole simulation script (a descrip-
tions container) is also a class instance; scripts
include no data, only description creations and
a few operations, like <desc>.set (<attribute>,
<value>), <desc>.check() or <desc>.compute();

U3. implicit hierarchy: the whole simulation data
structure is a shallow (four-level) tree of scripts
(possibly nested), descriptions, attributes, and
values (see 3.3); this tree is not explicitly ref-
erenced in interface use?;

U4. static checks (attribute name and value
type/definition domain) are performed by de-
fault on attributes , see 4.1;

U5. dynamic (contextual) checks are performed on
demand to ensure the coherency of the problem

2Unlike a cans tree — managed in elsA through pyceNs —
which large depth is especially apparent when it is accessed
through the ceNsview graphical interface.



description; a context? is an instance of either a
description class or a script class, both owning
a check() method.

U6. context-dependent (contextual) default values
allow tailoring the software to different trades,
see 4.2.4; the origin rule for default values
may be traced back through the show_origin()
method,;

U7. keep the user in charge: no automatic modifi-
cation of his/her input; conflicts may only be
resolved by the user, upon notification by the
interface;

US. the interface may be used as a standalone
checking tool, with no CFD kernel needed;

U9. the user interface scope is limited to scalar
data: mesh and field data (e.g. files) is ref-
erenced without contents checking.

For the developer (D) side:

D1. the API (Application Programming Interface)
between the user interface and the elsA kernel
is based on three basic types — float (floating-
point), int (integer) and string — and a few
methods and functions, see 3.4;

D2. the evolving part of the interface is mainly de-
scribed through resource files, see section 4,
from which the documentation skeleton (WTEX
commands, see 5.2) is automatically generated
in a coherent way;

D3. functionality may be added through “prod-
ucts”, see 8.1, the Python code for which is
simply dropped in the adequate place, defin-
ing additional description classes;

D4. obsolete elements of the interface, see 4.1.3,
may be re-activated for version comparison.

2.83. Naming things

One important aspect of the interface — for which
there are no exact rules and only a few general prin-
ciples — is the naming of the various interface ele-
ments (especially attributes and their values), see
2.3. This aspect is more in the realm of linguistics,
and must take into account the culture of the users.

Naming is recognized as a hard problem in soft-
ware (Deissenboeck and Pizka, 2006), and is all

3Contextual (influence/dependence) relations introduce
a different graph than the above shallow tree; this second
graph, traversed by the check() method, see 3.4.2, may
be deep (have a large number of levels), see 4.2, and is not
always a tree, see 4.2.1.

the more important when dealing with user inter-
action. In programming, users better understand
long, self-explanatory, names (Krikhaar et al.,
2009), but “The nonsense words did surprisingly
well ...distinctive names are helpful even when
they are not meaningful” (Shneiderman, 1997).

It seems then that there is no symmetry be-
tween understanding which concept is behind a
name and, inversely, remembering which name cor-
responds to the sought concept. It is probably
better not to use long names which may differ
only by one or two characters — better use shorter
names where the differences stands out — or to
use names with easily confused characters (Kupfer-
schmid, 2009). Also, we have chosen the underscore
style, e.g. global_timestep, for the user interface
rather than “camel casing”, e.g. GlobalTimestep,
although the latter seems more popular with pro-
grammers (Binkley et al., 2009).

A balance must somehow be found, for users to be
able both to read and write scripts without reaching
for the documentation at every step. This part of
the interface management is probably the most in-
volved with language considerations, and the most
dependent on user cultural background (e.g. when
reusing variable names from equations).

3. Python—elsA description language

Python—elsA is built upon the Python language
to create a standard of creation and modification
of description (attributes container) and script (de-
scriptions container) objects. Only the main ele-
ments of the language will be described here, hop-
ing they give a taste of the chosen user interaction
model. Both for the text-mode and graphical-mode
interfaces, we have tried to respect the design prin-
ciples of (Shneiderman, 1997), with (Clarke, 1986)
also as a (more abstract) background.

From then on, the <> brackets will be used with
general meaning of “realization” (instance, value,

..) of the enclosed symbol (class, attribute, ...).

3.1. Description object creation

Creating an instance of the <desc> description
class is performed by:

<name> = <desc>(name=’<name>’)

where <name> (without quotes) is the canonical
Python reference to the created object and ’<name>?
a text identifier using the same characters. This



identifier is used both for allowing forward refer-
ences (to not yet created objects) and for out-of-
memory references, either between computational
nodes without shared memory or in databases (for
accessing objects directly, not through property
search), see 7.1.

Notice: simple test scripts may forgo the <name>=
argument, thanks to an automatic canonical name
search feature, but this is very costly for large
scripts and is precluded in industrial cases.

3.2. Script object creation

The script class is derived from the Python
module class, to which context-oriented behaviour
is added.

A <script> (script instance) is automatically
created in-memory when loading a script file (con-
taining Python code) from the elsA command-line;
this is the most common way a <script> object is
created.

Internally, this creation is performed through the
Python—elsA 10ad () function, of which the simplest
call form is:

<script> = load(<script_file_name>)

More scripts may be loaded from the main (root)
script, script objects may thus be nested.

3.3. Global tree structure

Building a problem description in Python—elsA
implicitly creates a tree, with the enclosing (top-
level) script object as root:

e scripts reference (include) description con-
structors (and other method, or function, calls),
but own no attributes;

e a script may reference (include) other scripts,
through load () calls;

e a description may reference other descriptions,
through attach() calls, e.g. cfdl.attach(modl,
numl);

e descriptions own (contain) attributes;
e attributes have values;

e values may be <float>, <int>, <string>, or
None (meaning “no value”, for all types).

Calls to the check() method of scripts and de-
scriptions (both being contexts, see 3.4.2) will tran-
sitively traverse the referenced objects (included
scripts, included or attached descriptions).

3.4. Methods and functions

We describe below a few methods of description
classes, see 3.4.1, and of contexts, see 3.4.2; addi-
tionally, the close() function call will end the pro-
cessing of a script.

3.4.1. Specific methods of description classes
e <desc>.set(<attr>, <valu>): define valu as
the value of the attr attribute of the <desc>
description class instance;

e <desc>.get(<attr>): return the value of the
attr attribute of the <desc> description class
instance;

e <desc>.compute(): start the algorithm man-
aged by the desc description class.

3.4.2. Methods of contexts (descriptions and
scripts)

Description classes and script classes are both
contexts: they all inherit from the context class,
and thus share a number of methods, which are
shown here (in the simplest syntax).

e <context>.check(): perform contextual check-
ing (using influence, dependency and contex-
tual default rules) on the <context> instance;
this method is the defining feature of a context;

display a compact (us-
ing macro-attributes) representation of the
<context> instance, masking all non-coherent
attribute values;

® <context>.view():

e <context>.copy(name=<name>): return a copy of
the <context> instance, with the <name> iden-
tifier;

e <context>.dump(): dump a compact represen-
tation of the <context> instance to a file;
dumped scripts may not include explicit con-
trol structures (loops and tests), which should
be managed by description classes.

3.5. Abstraction € flexibility: redirections

For better abstraction and flexibility, some func-
tions and methods are redirections to lower levels:

e function to root script method;
e script method to rootboot description method.
as explained below in 3.5.1, 3.5.2. These redirec-

tions are most powerful when coupling with exter-
nal layers, see 8.1.



3.5.1. Functions redirected to root script methods

The compute, extract, check and dump functions
are indirections to the same-named methods of the
top-level root script object. Moreover, the --check
and --dump command-line options (CLO) trigger the
corresponding function call on an explicit close()
call or on natural termination of the root script,
while the --strict option triggers a check() call be-
fore the compute() call.

3.5.2. Script methods redirected to the boot descrip-
tion
The compute (start solver) and extract (build
the specified output representation) methods of the
current, script object are indirections to the same-
named methods of the current boot description ob-
ject, see 8.2.

4. Static and dynamic behaviour

New description classes do appear from time to
time, but the main mechanism for the evolution of
the Python—elsA interface is the addition of new at-
tributes to existing classes. This is performed by
augmenting two resource files, one for static defini-
tions and the other for dynamic (context-related)
ones.

All resource files (data defining the class at-
tributes and various contextual rules) are struc-
tured using varying combinations of the dictionary
and list Python types; these warying combina-
tions are allowed (without additional coding) be-
cause Python is a dynamically typed language.

Rather than using a uniform formal schema, dif-
ferent ad hoc grammars are used here for each kind
of definition, abusing the expert (if dated) advice:
“As far as we were aware, we simply made up the
language as we went along.” - John Backus, Devel-
oper of Fortran (1957) and inventor of BNF (1959)
(Backus, 1978b).

We thus conveniently “forget” the invention of
the more formal Backus Normal (later Naur) Form
(BNF), and use a homebrewed grammar; this non-
formal character introduces a degree of incomplete-
ness, which has not introduced problems so far for
the CFD target application field; a few special cases
of rule definitions are treated using lambda expres-
sions (anonymous functions for in-lining rule code),
with also some regular expression matching in lieu
of plain comparison on <string> values.

Using only the basic dictionary and list Python
types for these homebrewed grammar definitions

makes the corresponding resource files compact and
readable, so that developers may actually augment
them; they are also very fast to parse. Again ref-
erencing (albeit indirectly) John Backus: “Because
the customers of the 704 were primarily scientists
and mathematicians, the language would focus on
allowing programmers to write their formulas in a
reasonably natural notation.” (Aiken, 2007).

4.1. Definitions for static behaviour

The definitions for static behaviour (i.e. exclud-
ing contextual checks) are centralized in a global
file, as a Python module. They include for each
attribute:

e a short descriptive text;

e atype (float, integer or string) for the attribute
value;

e one or several checking methods, further re-
stricting the definition domain (e.g. <float>
type but further restricted to R**);

e a list of default value mechanisms, among:
static (value), dynamic (reference to rule),
None;

e optionally, restrictions to modifications of the
attribute value, e.g. interface only (not user).

Example:

’phymod’: ["""fluid model""",[’S’,°I’],
{’euler’:0,’nslam’:1, ’nstur’:2},
[CNTX_DEFV,None]]

These definitions are rendered in plain English
(along with the context-related items, see 4.2) by
the man() function of the interface, see 5.1. More-
over, a number of entries may be defined for each
class, defining additional metadata, see 4.1.3.

Part of the attributes definitions (for example in-
heritance, see 4.1.3) is only finalized at runtime. It
is then used to define class singletons, managing
the attribute definitions for all the instances of a
given class. This allows caching (across same-class
instances) the internal representation of the defini-
tions.

4.1.1. Attribute definition details

Description chain. The description chain for each
attribute is used by the man() function, the popups
in the PyGelsA GUI, see section 6, and for generating
the skeleton of the User’s Reference Manual, see
section 5.



Type and definition domain method(s). The basic
type (float, integer or string) of the values of each
attribute is complemented with a list of allowed of
values, a (registered) checking method for the defi-
nition domain (e.g. “strictly positive” or more com-
plex), or a combination of both. When the type
changes between the interface and the kernel, the
list of allowed values is replaced with a conversion
dictionary.

Default values. The “default values” item may be
an explicit value, a reference to the (possibly con-
verted) kernel default value, a reference to a (pos-
sibly non-existent) context-dependent (contextual)
default value, or a list of such items (e.g. contex-
tual, then “static” safe value). The single None de-
fault value means that the attribute has no default
value; if moreover the attribute is defined as always
required, context checks will return False unless it
has been defined by the user.

4.1.2. Macro-attributes

To give structure to the large number of at-
tributes of some classes, they may be grouped
into “macro-attributes”, meaning named lists of at-
tributes. Macro-attributes are list-valued and may
be managed through set (), get (), view() and gen-
erally all methods of the description classes meant
for plain attributes (their “atoms”).

A macro-attribute may have several versions
with differing lengths, e.g.
ways the name of the list of the attributes for
the conservative variables, whatever the current
number of equations. Specific versions (as de-
clared in the resource file) are internally named e.g.
conservative*05, conservative*06 ...but on the
user side, for input and output, plain conservative
is used. This feature is not guaranteed to always
provide as easy a grouping of related attributes, but
it is quite useful.

In the qul, see section 6, the widgets for
macro-attributes appear as foldable groups of
“atom” widgets. Folding is automatic on failed
influence/dependency rules (meaningless macro-
attribute).

conservative is al-

4.1.8. Attributes metadata
Additional attributes metadata are structured in
class-wide lists for:

e always-required attributes (whose value must
be defined);

e obsolete attribute and values, and possibly
their current replacement
(——allow_obsolete CLO);

e attribute and values which may be filtered out
(--filter CLO);

e not yet documented attributes and values (-
unlock CLO);

e inheritance (with possible modifications) of at-
tribute definitions from other classes.

4.2. Definitions for dynamic behaviour

The definitions for dynamic behaviour are the
most important part of the base interface, allow-
ing for context management and thus more abstract
problem specification. Context management allows
the software to behave differently, according either
to a few trade-specific indications, see 4.2.4, or to
the current global solving operator (in case of cou-
pling), see 9.2.

4.2.1. Context management

The definitions for dynamic behaviour (i.e. rules
for context management) are centralized in a global
resource file, as a Python module; the inference en-
gine (for applying these rules) is defined in a sep-
arate module. Dynamic behaviour is represented
here by the context-dependent features of the in-
terface: influence and dependency rules, and con-
textual default rules, completed by the traversal of
relations created through attach() calls and possi-
bly by the hierarchical structure of scripts (through
inclusion).

Each problem description thus introduces a re-
alization of a dynamic structure, whose nodes are
linked by contextual influence and dependence re-
lations; this structure is a Directed Acyclic Graph
(DAG), and not a true tree, because a node may have
more than one parent (several influence rules may
lead to the same attribute being required). The
“Acyclic” word is important (also valid for a tree,
of course), because we need to ensure that no rules
in the grammar lead to circular checking. The “dy-
namic” qualifier comes both from the influence and
dependence rules and from the context-dependent
default values, leading to (possibly) different graph
realizations for different user inputs, contrary to the
static layout of a CGNS tree.

Default values are sought when a rules termi-
nator (an end rule) specifies that an attribute
value must be defined, and no such value ex-
ists; contextual default rules, see 4.2.4, depend



on the current state of the descriptions context.
The <desc>.get_or_deft(<attr>) method call re-
turns the best-effort result for the value of the
<desc>.<attr> attribute — using available context
state (attribute values) and rules — or Nome if no
default value may be computed.

dependence dependence

target target ‘ ’

target
influence

target

’ ‘ target
‘ influence

y
[

Fig. 1: Contextual pac information flow, through influence
and dependency.

owns
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o —
- dependence value of -
,
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Fig. 2: Local rules evaluation (one attribute).

Each rule is centered on one attribute, Fig. 2,
ignoring for the moment the potential complexity
which results from traversing all the rules, Fig. 3.
When this traversal is performed for a specific case
(with user-specified values as initial conditions), a
dynamic DAG based on contextual relations (con-
text DAG) is realized. This DAG typically has many
levels, quite differently from the flat and static one
defined by the class structure, which is used for data
storage (and documentation).

numl=<numerics>
owns

." dependence

rules target

o

global_timestep

:
—

‘inactive'
cfl

S
local_timestep

value of

<float>

Fig. 3: Global rules traversal (more than one attribute).

Optionally,  meaningless values may be
“pruned”  from the context (using the
<desc>.check(prune=True) call), hopefully mak-
ing it both complete (computable) — using
default values — and coherent (here meaning
minimal).A simple pruning example would be
removing the choice of turbulence model if the
simulation is declared laminar, as opposed to a
plain <desc>.check() which would only flag the
combination as non-coherent.

Pruning may not be fully automated, because the
rules system cannot decide on which side of the rule
the error lies. Thus, in the spirit below, we will not
make a decision to remove the value: "In the face of
ambiguity, refuse the temptation to guess." (Peters,
2004).

For example, the user may have kept the tur-
bulent model definition from a previous case, or
forgotten to change the flow model from laminar
to turbulent when choosing the turbulence model;
in this occurrence, a check() call on the involved
model object would lead to a Warning-level message,
see 5.4.

When performing pruning, the decision is made
according to dependency rules, this is why in the
above example the turbulent model choice would
be removed while the flow model (higher up the
context DAG) is left unchanged. On the other hand,
if unneeded values are defined and the --strict CLO
is used (or if the corresponding internal option is
set from the script), the simulation will be aborted
because in this condition all Warnings are bumped
to the Error level.

In propagating an initial context of user-defined



values using the various contextual rules, we will
call “down-propagation” context flow that is cen-
trifugal (propagating away from the root of the
context DAG), and “up-propagation” context flow
that is centripetal, see Fig. 1. A context check
may start at any point in the DAG, performing
both up-propagation (for dependency) and down-
propagation (for influence); this is useful for the
Gul and for interactive user help (what if).

Example rules will be provided for the model class
of Python—elsA, which gathers (as attributes) pa-
rameters related to the physical model.

4.2.2. Dependency rules

A dependency rule defines the up-propagation of
an attribute, and specify that other (source) at-
tributes must have specified values for coherency,
see Fig. 1, e.g.:
{’phymod’ :
meaning that the visclaw attribute has meaning
only for the ’nslam’ and ’nstur’ (laminar and
Navier-Stokes respectively) fluid models, and not
for the remaining ’euler’ model, see 4.1.

‘visclaw’: [’nslam’, ’nstur’]}

4.2.8. Influence rules

An influence rule defines the down-propagation
of an attribute value, and specify that other
(target) attributes must be defined for coherency,
see Fig. 1, e.g.:
{’sutherland’:
[?’suth_muref’, ’suth_muref_fct’],

*suth_tref’]}

meaning that the ’sutherland’ value of the
visclaw attribute requires that the suth_const and
suth_tref attributes be defined, together with one
of suth_muref and suth_muref_fct.

So-called “strong” influence rules specify more-
over that the value of the target attribute must
belong to a specified list, depending on the value
of the origin attribute, e.g.:

‘user_config’: {’limited’:

[{’turbmod’: [*keps’, ’komega’]}, ’easy’]l}
would be a strong rule specifying that when
user_config=’limited’ the only possible choices
of turbulence model are ’keps’ and ’komega’, and
that the ’easy attribute value is required.

‘visclaw’: [?’suth_const’,

4.2.4. Contextual default rules
Contextual default rules provide a mechanism for
defining default values of attributes when neither
user-defined nor static defaults are provided, e.g.:
{1.78938e-5:

’suth_muref’: {’mixture’:

[’air’],’cfdpb.units’: [?si’]}}

meaning that the default value of the suth_muref
attribute is 1.78938e-5 (in SI units), provided that
the fluid composition is defined as ’air’ (from
the single-element [’air’] list) and the problem is
specified in SI units.

The DAG may be dynamically extended through
contextual default rules, which are applied itera-
tively on a check() call until no new values are
defined (or until the maximal iteration count is
reached). For each descriptions context state —
user-defined values, “static” default values, and cur-
rent contextual defaults — influence and dependency
rules, together with “always required” rules, define
which remaining attribute values must be defined
to render the context complete. Fach newly de-
fined value corresponds to a state transition of this
checking automaton.

For all description classes, trade-specific rules
(possibly using regular expressions) may be trig-
gered using the user_config attribute with arbi-
trary <string> values.

All attribute values may be traced to their cre-
ator (kernel, user, static default, contextual rule)
using the show_origin method. If the creator is a
contextual rule, it is listed.

4.2.5. “Horizon” mechanism

An original “horizon” mechanism has been devel-
oped (Lazareff, 2009), replacing the definition of
various user skill levels with a movable by-attribute
boundary across the context-defined DAG; it still
has to be documented and user-tested.

5. Documentation & error management

5.1. Integrated documentation

The man() function of the interface provides, for
any element of the Python—elsA interface (function,
class, method, attribute), a compact (and always
up-to-date) documentation suitable for a returning
user:

man (check)
Name : check
Type : function

Description: Check status of root script object

man (view)
Name : view
Type : function

Description: Facade for current script’s method



man (model.view)

Name : view

Type : instancemethod

Description: Filtering view for a description

man (> phymod?)
1) Attribute name: phymod
2) Class(es) : model

3) Description : fluid model
4) Allowed values: ’euler’, ’nslam’, nstur’
5) Rules :
5b) influence rules:
phymod = ’nslam’ requires:

value(s) for visclaw & prandtl & trans_mod & ...

phymod = ’euler’ requires:
phymod = ’nstur’ requires:
value(s) for visclaw & cv & prandtl &
5c) context-dependent default values:
phymod = ’nstur’ IF:
user_config = ’test::wing’ | ’test::body’
5d) absolute rules:
attribute value is always required
6) Default value(s): ’euler’
context-dependent default values in
’6c)?, if any, are applied first

Notice: some output lines have been truncated.

When the same attribute name is shared by sev-
eral classes, the output of man() is factorized across
identical definitions.

5.2. User’s Reference Manual updating

A pDF version of the User’s Reference Manual
(URM) is built using the BTEX typographical soft-
ware (IBTEX project, 2016). For each new version
of the elsA software, the URM must be updated with
new attribute descriptions (and possibly new func-
tions, classes, methods, and additions to the spe-
cialized appendices).

The updating process is partly automated, but
requires some human intervention: the CheckDefs
tool included in the Python interface code provides
automatic generation of the BTEX source code for
the description of the attributes missing in the cur-
rent URM version, based on the contents of the re-
source files. Merging in the new KTEX source is
done manually — using the ediff tool in the emacs
editor — and coherency of the manual with the in-
terface definitions checked, still using CheckDefs.

5.3. Exceptions (error management)

The Python—elsA interface defines its own excep-
tion classes, which use two severity levels:

e WARNING: non-fatal error;
e ERROR: fatal error.

Notice: the --strict CLO upgrades all WARNINGS
to ERRORs.

5.4. Error messages
The structure of Python—elsA error messages is:
o first line: general information about the error,
including the severity level,

e a few lines describing in more detail the prob-
lem leading to the error;

e last line: the suggested correction.

It has to be noted that, although these messages

_on their own appear to be quite explicit, users of

our software will sometimes not read the message,
instead ringing up elsA software support.

This does not appear to be uncommon (UX User
Experience, 2011), and could be linked to user
stress, which is what we tried to avoid in the first
place, or to a desire not to do a mental “context
change” by trying to actually solve the problem
themselves: “What they want is to pick up the
phone, make a call, and have someone tell them
what to do.” (Slashdot, 2010).

6. The PyGelsA cul

The PyGelsA cui (Graphical User Interface) is
built on-the-fly using the “static” interface defini-
tions, see 4.1; this means that no modification of the
PyGelsA code is needed when updating the user in-
terface for new versions. When loaded with a script,
the GUI then uses the “dynamic” definitions, see 4.2,
for coherency in the display of the description ob-
jects.

This display stays coherent thanks to on-the-fly
application of context checks. As shown on Fig. 4,
attributes with missing required values are labeled
in red, while meaningful but user-folded macro-
attributes are labeled in green.

The cul includes (bottom part) a console for
text-driven interaction, which is synchronized with
the graphical window above. The interface state
may later be re-built, either from the logfile or from
the file dumped from a dump () call performed at any
time during the GUI use.



PyGelsA offline editor/checker for Python-elsA scripts

File View Help

Choose class

| cfdpb
model HEmE l'ﬂi [2)| o
numerics ||| [ @ |[ check |[ prune |[ auto |[ clear |
block n m B
mesh
window [Main tab | pimensions |
state 3]
user config easy reuse
region \ s 3] [one |
bndphys
harmenic_balance cfd_motion load_balance_algo
L | None 2| | none 2| | None &l
automatic_block gen use_tuning S
i | None 2| [ vone ]
function [config_params
config axi_formul
mask
None 2| | Nene zil
extractor 1
exbract units adim S |
extract_group | None 2| | none &
lac_params;

[Jefd_axis_ang
cfd_axis_ang_1

cfd_axis_ang_2

<cfdpb> object ‘cfd1' created
Python console

Welcome to the elsh Python interface ; type ""D° or ‘close()’ to exit
>>> cfdl = cfdpb( name="cfdl’)

Fig. 4: The PyGelsA cul.

7. Database and network operations

Script (and description) objects may be serialized
(transformed into bytecode) and either dumped
to/loaded from a database, or accessed through the
network.

7.1. Database operations

The script database feature of the interface is
built upon a standard underlying database imple-
mentation, which may be as simple as a “dictionary
on disk”.

A script is an in-memory structure of description
objects — and usually some operations— built either
from an explicit script file or from code. These op-
erations may be kept “pending” (not executed) if
the script is to be stored in a database.

Script databases provide the basic dump /load op-
erations, through the dump() and load() methods.
A dumped and re-loaded script will re-create its
description objects, and will execute its pending
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operations, if the environment (mesh files ...) is

adequate.

w @
S
latabase
R U A
_—— _‘_ _—)
bytecode bytecode
Python Python Python
interpretation interpretation |1 fast|  Girect load
Python objects Python objects
1
\4
system memory system memory
system memory (D local (@ distant

elsA kernel elsA kernel

"straight" path

"bytecode" path

Fig. 5: Database and network use.

These basic operations are complemented by a
search() method. For the search to be useful and
efficient, the user has to declare a view, defin-
ing which parameters (out of possibly several hun-
dred) are of interest for the current study. The
<scri>.catalog() method is then called — using this
view — at each dump () to update the database’s cata-
log. The catalog() call may also be used for tagging
the output data for the corresponding simulation,
providing an authentic traceability (e.g. for plots).

Adequate locking allows the database to be
shared in read/write mode between several pro-
cesses, possibly on different machines, allowing nat-
ural parallelism. The default behaviour is to use
separate databases for script definition (read-only)
and for job execution metadata (read/write) for
better efficiency.

The database keeps track of not yet started (NYS),
running (RUN), and completed (CMP) state of compu-
tational jobs, which helps recovering from crashes,
generally using a global <database>.clean() call
(resetting all RUN jobs to NYS state) before restart.
This partial restarting has been very efficient to
reduce user stress, especially when running simu-
lations with more jobs than computing nodes and
(clock) execution times counted in days.

7.2. Network operations

Methods for the network class include a sim-
ple server/client (sockets) pair, the dump()/load()
pair, and the popen() (get command output) and
db_search() (find in database) commands.



This functionality allows to access a script
database through the network, which is useful when
no shared filesystem is available and the underlying
database is not networked, see Fig. 5.

8. Extensibility

8.1. Products

So-called “products” are additional (Python) soft-
ware packages which couple with Python—elsA (and
possibly with other products) through description
classes. A developer may build a new product
(based on the provided skeleton) and simply drop it
in the Products directory. Communication between
elsA and the added software is performed through
an instance of this product-based description class,
which contributes to the global context and may
get to steer the simulation in lieu of the CFD solver,
see section 9.

The algorithm associated with the product may
be coded in Python (possibly referencing external
packages with compiled libraries) and/or use elsA
kernel functionality.

8.2. root and boot objects

If a description class declares a compute()
method, an instance of this class may grab control
of the simulation from the CFD algorithm, using the
global context to gather all the required data. This
instance is then called the boot object.

Scripts define a compute() method — invoked in
the (top-level root) script through the compute()
function — which is an indirection to that of the
current boot object; a script with a compute () state-
ment will thus execute differently — without explicit
tests — depending on the current boot object, or on
the explicit <desc>.compute() call, e.g. (see 9.3):

cfdl = cfdpb(name=’cfdl’)
cfdl.set(’sfd’, ’active’)

dmd1 dmd (name=>dmd1’)
sprl = sparse_poly(name=’sprl’)

# cfdl.compute() # single-point SFD simulation

# dmdl.compute() # single-point SFD/DMD simulation
compute() # SFD/DMD/SPI coupling on DoE, using spril

where # starts a comment, and compute() is redi-
rected to spri.compute() because spri is the last-
created bootable object.

This logic provides for testing a complex coupling
script at different levels with minimal modification;
it can also be implemented as:

slvrs = {0:cfdl, 1:dmdl, 2:spri}
slvr_lev = 1 # use dmdl
slvrs[slvr_lev].compute()

The coupling level may thus be specified as an
integer value, without any test in the user script.

Lastly, the
above may be replaced by set_boot_objt(<desc>);
compute (), where the first statement may be seen as
passing a token to <desc>, giving it specific rights.
This token may be moved during the simulation,
i.e. for collaborating coupling algorithms.

slvrs[slvr_lev].compute() call

8.3. provide () method for blind creation

When several product-like description objects
(e.g. prdl, prd2) use a common description ob-
ject (e.g. slave), it may occur that it is built
by one of them, which should be the first appear-
ing in the script. If for example slave is built by
prdl.compute (), built first, and then used by prd2,
all is well. But if the boot object is switched from
prdl to prd2, slave will not be built and will miss to
both prd1l and prd2, as prdl.compute() is not called
anymore.

The solution we use, to avoid here an explicit test
on the existence (with possible creation) of slave
before each reference, is the use of the provide()
method, which wraps the conditional creation, and
may be “blindly” called to always return the (new
or pre-existent) object.

8.4. target_lift class for target lift computations

The “target lift” functionality allows to replace a
standard lifting-body computation, at fixed angle-
of-attack (AoA), with the computation of the list of
AoAs corresponding to the given list of lift values
(within convergence bounds).

This is performed by replacing the standard
compute() call with one directed to a new
<target_lift> boot object, as in:

tcll = target_lift(name=’tcll’)
tcll.attach(lift)
alphas = compute([0.05, .10, .15])

where 1ift is an <extractor> defining the com-
putation of the body’s lift and alphas is the AoA
output for the specified lift coefficients.

This was the first example of an extension to be
finally coded as a product.



8.5. variator class for parametric studies

The variator class allows building script varia-
tions from a base version and a list of parameter
perturbations, dumping them to a database. Later
on this database will be spanned, meaning that all
the database scripts will be loaded and pending
operations, see 7.1, executed. This is performed
in sub-directories of a user-chosen base directory,
with all file paths automatically shifted as required.
Spanning thus provides the database with an iter-
ator.

A step further, this iterator is made into a more
general automaton: during spanning, a simulation
may be restarted (chained) from a source simula-
tion, chosen using a user-defined non-isotropic DoE
distance (in parameter space), possibly with addi-
tional rules for restricting the source/target pair-
ing. When chaining simulations, the automaton
may also add intermediate points (linearization) to
the iteration list, to respect a user-specified maxi-
mal jump size in parametric space (Lazareff, 2014).

An external algorithm may also add arbitrary
points to the list, see 9.3.

8.6. swarm class for operational efficiency

The swarm class provides an abstraction for a
group of spanning simulations. For operational ef-
ficiency, automated load management on a compu-
tational node is provided either as a maximal count
of swarm job instances or as a fraction of the node’s
power.

The values of the selected observable quantity,
for all the simulations in a swarm, are returned as
<valu_list> = <swarm>.compute(), as used for the
SPI algorithm, 9.3.

9. Design of Experiment studies

Studies in Design of Experiment (DoE) space in-
volve at least two levels: the basic automaton per-
forming the space spanning, and the mathematical
tools, applied both to each DoE point and to the
global space. These tools may be passive (using
specified DOE points in a given order), or they may
use observable quantities to steer the spanning au-
tomaton, possibly creating new DoOE points on-the-
fly.

In 9.2 and 9.3 we will give two examples in the
field of differentiable dynamical systems (the geo-
metrical study of complex systems and their stabil-
ity) (Smale, 1967) applied to CFD, first as a local
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study and then on a DoE. Usually the system is
defined by an equation like # = v(z). Here how-
ever the operator of the system is unknown, and
only accessible through CFD observable quantities
at computed points of the DoE, so that as a first
step we have to address the problem of DoE discov-
ery, see 9.1, to ensure that the main features of the
operator are accounted for.

9.1. DoE spanning and discovery

DOE discovery is an extended parametric study,
see 8.5, where the aim is to describe (find the main
features of) the space inside a closed boundary in
parametric space, with possible refinement of the
initial set of DoE points (Lazareff, 2014). Contin-
uation techniques (e.g. stabilization to cross DoE
areas with separated flow) may be needed, see 9.2.
As a first approach, DoE refinement may be manual,
but in 9.3 we introduce an automatic refinement al-
gorithm through the sp1 algorithm (Chkifa et al.,
2014), which greatly simplifies user interaction.

The observable quantity here may be the aerody-
namic lift or drag, the spectral radius of the global
(physical + numerical) operator, or any other quan-
tity of interest.

9.2. Coupling with the SFD and DMD algorithms

Coupling between elsA, the SFD and DMD algo-
rithms has been performed to provide stabilized
CFD solutions, initially at a single DoE point for
the flow around a cylinder (Cunha et al., 2015).
The SFD algorithm may be either part of the CFD
solver or treated as a wrapper in the encapsulated
version (Jordi et al., 2014), with an sfd description
class. The DMD algorithm is coded in Python, with
a dmd description class. Some parameters of the CFD
algorithm (numerics class attribute values) are de-
pendent on the SFD and DMD algorithms through
contextual rules.

This work has since been extended to a (Mach,
Reynolds) DoE using the variator class. Success
is still dependent on the adequate adjustment of
some parameters, at this time taken to be constant
across the DoE. For the time being, this aspect is
fully dependent on user expertise.

9.8. Coupling with the SFD, DMD, and SPI algo-
rithms

The most complex application to date of the ex-
tensibility of elsA through the Python—elsA interface



is the algorithm described above in 9.2, comple-
mented by Sparse Polynomial Interpolation (SPI)
(Chkifa et al., 2014) for DoE discovery (to be pub-
lished).

Here the spanning automaton is managed by the
SPI algorithm, starting with nodes only at the DoE
summits and progressively enriching the represen-
tation with inner points according to a Clenshaw-
Curtis distribution.

The CFD results for the chosen observable quan-
tity at each refinement level of the spI algorithm
are computed as a swarm, see 8.6.

With a reasonable degree of convergence of the
SPI algorithm, we hope that this algorithm will lead
to an adequate automatic discovery of the DoE fea-
tures.

Conclusion

The basic foundation of the Python—elsA inter-
face, which has been used since the creation of the
elsA software, has long been used for the target lift
extension, see 8.4. Recently more complex exten-
sions have been introduced for DoE studies.

This descriptive interface and associated func-
tionality provides a high level of abstraction for cou-
pling mathematical algorithmic layers with the CFD
solver, reducing the tedious part of user’s work and
augmenting efficiency in research and applications.

This approach, allowing for collaborative com-
puting, seems to be well suited for projects coupling
several simulation kernels.

Perspectives

A rule-based implementation of the currently
kernel-side factory, see 2.2 would remove the po-
tential fragility of the current one, where tests are
sometimes nested for several levels. A rule only has
to be written once, while inner tests may have to
be repeated for each branch of the upper level(s).
This would benefit to user-side checking by ensur-
ing completeness and coherency of the rules with
the actual solver implementation.

The more immediate new development will be
stochastic analysis, using the Monte-Carlo method
on the response surface of 9.3, introducing the first
4th-level layer algorithm above the elsA interface
(5th-level above the CFD kernel).
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