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1 Introduction

One of the outstanding issues in string theory is the problem of finding realistic string

compactifications and connecting them to cosmological observations. It requires several

steps such as (i) choosing an appropriate setup for moduli stabilization, (ii) obtaining a

meta-stable vacuum with a positive cosmological constant, and (iii) producing an inflation-

ary model. Each of these steps is highly non-trivial and has its own obstructions. Despite
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of many years of research and the extensive literature on the subject, meta-stable de Sitter

(dS) vacua still appear to be very difficult to get in string theory. There are no robust

predictions about inflation, and no nice inflationary model from string theory was found

yet. And both, dS vacua and inflation, are usually obtained in string theory at the price

of adding effects which can spoil moduli stabilization (see [1] for a recent review).

Furthermore, most of the scenarios in string theory cannot be considered as those

derived from the first principles, because of at least one of the following reasons:

• the lack of precise knowledge about quantum corrections,

• splitting the procedure of moduli stabilization into several steps which may result in

ignorance of tachyonic directions spoiling meta-stability,

• the necessity to introduce additional uplifting mechanisms,

• disregarding back reaction effects.

The first of these issues is particularly important. While it is possible to stabilize all

moduli at the classical level [2], several no-go theorems forbid dS vacua in such simplest

supergravity compactifications [3, 4]. To avoid them, it is necessary to include either

quantum corrections, both perturbative and non-perturbative, or non-geometric fluxes (see,

for instance, [5–13]).

The significance of explicit examples of truly “quantum” calculations in string theory

goes well beyond the problem of the cosmological constant. It is just about the string theory

based computations of quantum gravity corrections that are usually put “out of brackets”

in modern phenomenologically based theoretical cosmology. Taking into account non-

perturbative corrections is necessary to stabilise all moduli, provide resolution of unphysical

singularities in moduli spaces, and ensure string dualities. The very possibility of explicit

(or exact) non-perturbative calculations is highly non-trivial in string theory, and the known

examples are very rare.

One example, where such calculations have become possible, is the case of type II string

compactifications on Calabi-Yau (CY) threefolds. In this case the low energy effective

action (LEEA) in four dimensions preserves N = 2 local supersymmetry (8 supercharges)

and is completely determined by the geometry of its moduli space spanned by the scalar

fields of N = 2 vector and hypermultiplets. While the vector multiplet moduli space

was described in full detail using mirror symmetry long ago (see, e.g., [14] for a review),

understanding of the quantum corrected hypermultiplet moduli space was very limited

until recently. The advance of twistorial techniques drastically changed the situation and

allowed us to get an exact description of the most of quantum effects — at present, amongst

all quantum corrections, only the so-called NS5-brane instantons remain out of control

(see [15, 16] and references therein).

Thus, it is natural to apply these exact results in a more general context of moduli

stabilization. Of course, this requires extending them beyond the class of compactifications

where they were initially derived. In particular, the phenomenologically interesting com-

pactifications include fluxes, localized sources such as D-branes and orientifold planes, and
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preserve only N = 1 local supersymmetry (4 supercharges) in four dimensions. However,

at present, quantum corrections are beyond control in such cases.

On the other hand, it is possible to generate a non-trivial scalar potential for moduli

stabilization in a unique way already in N = 2 supergravity. This can be achieved by adding

NS- and RR-fluxes leading to the gauging of some of the isometries of the moduli space

of the original fluxless compactification. In fact, the integrated Bianchi identities give rise

to certain tadpole cancellation conditions, which in the presence of fluxes generically can

be satisfied only by adding orientifolds reducing supersymmetry to N = 1 [17]. However,

in type IIA string theory it is possible to choose such fluxes that the tadpole cancellation

condition holds automatically.

This motivates us to consider N = 2 gauge supergravity, which results from the type

IIA CY compactifications with the NS H-fluxes and the RR F4- and F6-fluxes provided

one ignores their back reaction. Such setup was already studied in [18]. We go beyond the

earlier studies, and compute the quantum corrected scalar potential in the gauged super-

gravity including the non-perturbative terms, which come from the instanton corrections

to the geometry of the moduli space known exactly in the absence of fluxes. The idea be-

yond this computation is that the preserved N = 2 supersymmetry protects the quantum

corrections so that the exact non-perturbative potential, where the back reaction effects

are taken into account, should not differ too much from the one obtained here.

In this paper we restrict ourselves to the case of a rigid CY threefold Y. Such manifold

has the vanishing Hodge number h2,1(Y) = 0, so that the LEEA is described by N = 2

supergravity interacting with a single hypermultiplet, called the universal hypermultiplet

(UH), and some number h1,1(Y) > 0 of vector multiplets. This leads to various simplifica-

tions, such as the absence of complex structure moduli, which allow to make our analysis

very explicit. Actually, one of our original motivations was to find a setup for flux com-

pactifications which takes into account quantum corrections and, at the same time, can be

treated as explicitly as possible.

It should be mentioned that several attempts to take into account instanton corrections

in compactifications on rigid CY already appeared in the literature, most notably, in [19].

However, the analysis of [19] did not include contributions of vector multiplets and, as

it turned out later, was based on a misleading ansatz for D-instantons. In contrast, we

consider here the full scalar potential including all moduli. Moreover, we do not assume

that there exists a hierarchy allowing us to perform moduli stabilization in a step-by-step

procedure, but analyze all equations on critical points on the same footing.

One of our results is a simple condition on the flux parameters (see (3.1)) which allows

us to find a set of exact solutions to the quantum corrected equations for all axion fields,

i.e. the periods of the B-field and the RR 3-form potential along 2 and 3-cycles of Y,

respectively. The role of the worldsheet and D-instanton corrections for the existence of

these solutions is pivotal.

Unfortunately, the equations we get on the remaining scalars, namely, dilaton and

Kähler moduli, are too complicated to be treated in full generality. Therefore, in the

beginning we restrict our attention to the perturbative approximation where all instanton

contributions are neglected, but perturbative α′ and gs-corrections, controlled by the Euler
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characteristic of Y, are retained. We obtain bounds on the values of the dilaton and the

CY volume, which admit the existence of critical points. In particular, we find that this

class of compactifications does not allow critical points with both large volume and small

string coupling, i.e. in the only region where all quantum corrections can be neglected.

This can be contrasted with the result of [2] that a more general choice of fluxes provides

the moduli stabilization at classical level, but this choice must be supplemented by an

orientifold projection to satisfy the tadpole cancellation condition mentioned above and

leads to AdS vacua.

To further analyze the critical points, we first restrict ourselves to the case with one

Kähler modulus, i.e. to a CY with h1,1 = 1. Since up to now no CY was found with such

Hodge numbers, this case should only be viewed as a model convenient to test the moduli

stabilization, but not having a string theory realization. In this special case we find two

critical points, which both lead to a positive potential, but both turn out to be unstable.

Then we turn to the general case, where we directly address the problem of stability of

critical points, without trying to find them explicitly. To this end, we analyse the matrix of

the second derivatives and show that it cannot be positive definite, which means that there

are no meta-stable vacua. Thus, in the perturbative approximation, these simple models

cannot provide stabilization of all moduli.

Finally, we attempt to take into account the contributions of worldsheet and

D-instantons in the simplest case of h1,1 = 1. As before, we perform a numerical anal-

ysis of the second derivative matrix, which shows us again that in the physical region the

matrix is never positive definite on mass shell. This result appears to be extremely non-

trivial, given a very complicated analytical form of the second derivatives. The effect of

instantons on the perturbative analysis for h1,1 > 1 will be investigated elsewhere.

The paper is organized as follows. In the next section we review some basic infor-

mation about CY string compactifications, their moduli spaces, the effect of fluxes, and

provide a formula for the scalar potential induced by the gauging in N = 2 supergrav-

ity. We also compute this potential explicitly, including perturbative and non-perturbative

quantum corrections, in the gauged supergravity inspired by the class of compactifications

we concentrate on. In section 3 we discuss equations on critical points and find a solution

for all axion fields. In section 4 we study the perturbative approximation. First, we derive

general bounds on critical points, then analyze in detail the case with one Kähler modulus,

and finally perform a stability analysis in a generic case with arbitrary number of moduli.

In section 5 we present the results of our numerical analysis of the one-modulus case in

the presence of instantons. Section 6 is devoted to a discussion of our results. Several ap-

pendices contain details about special and quaternionic geometries, the metrics on N = 2

vector and hypermultiplet moduli spaces, and our stability analysis of critical points.

2 Scalar potential from gauging

2.1 N = 2 gauged supergravity and its scalar potential

The four-dimensional LEEA of type II strings compactified on a Calabi-Yau threefold Y

is given by N = 2 supergravity coupled to N = 2 vector and hypermultiplets. In the
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two-derivative approximation, where one ignores the higher curvature terms appearing as

α′-corrections, the bosonic part of the action comprises only kinetic terms for the metric,

vector and scalar fields arising after compactification. The couplings of these kinetic terms

are, however, non-trivial, being restricted by N = 2 supersymmetry in terms of the metrics

on the vector and hypermultiplet moduli spaces,MV andMH , parametrized by the scalars

of the corresponding multiplets. Furthermore, N = 2 supersymmetry restricts MV to be

a special Kähler manifold, with a Kähler potential K(zi, z̄ ı̄) (with i = 1, . . . , h1,1 in type

IIA) determined by a holomorphic prepotential F (XI) (with I = (0, i) = 0, . . . , h1,1 and

zi = Xi/X0), a homogeneous function of degree 2. Similarly, MH must be a quaternion-

Kähler (QK) manifold of dimension 4(h2,1 + 1) [20]. We denote the metrics on the two

moduli spaces by Kī and guv, respectively.

The resulting theory is, however, not appropriate from the phenomenological point of

view since it does not have a scalar potential, so that all moduli remain unspecified. This

gives rise to the problem of moduli stabilization, i.e. generating a potential for the moduli

with a local minimum and no flat directions. Local N = 2 supersymmetry does allow a

non-trivial scalar potential, but this requires to consider N = 2 gauged supergravity. The

latter can be constructed from the usual ungauged supergravity when the moduli space

MV ×MH has some isometries, which are to be gauged with respect to the vector fields

AI comprising, besides those of vector multiplets, the gravi-photon A0 of the gravitational

multiplet. Physically, this means that the scalar fields affected by the isometries acquire

charges under the vector fields used in the gauging. The charges are proportional to the

components of the Killing vectors kα corresponding to the gauged isometries. In general,

the gauge group must be a subgroup of the isometry group, but in this paper we deal only

with abelian gaugings of isometries of the hypermultiplet moduli space MH . Then the

charges are characterized by the vectors kI = Θα
I kα ∈ TMH where Θα

I is known as the

embedding tensor.

It is remarkable that in N = 2 gauged supergravity the geometry of the moduli space

together with the charge vectors completely fix the scalar potential. Explicitly, it is given

by [21–23]1

V = 4eKkuIk
v
JguvX

IX̄J + eK
(
KīDiX

ID̄X̄
J − 3XIX̄J

)
(~µI · ~µJ) , (2.1)

where DiX
I = (∂i + ∂iK)XI and ~µI is the triplet of moment maps which quaternionic

geometry of MH assigns to each isometry kI [24]. This result gives us an opportunity to

search for the potentials ensuring moduli stabilization, using the geometric data from the

ungauged theory as an input. In particular, here we employ the exact results about the

non-perturbative description of MV and MH in type II CY compactifications, described

below in subsection 2.3, to infer the impact of quantum corrections on the potential (2.1)

and stabilization of moduli.

1Our conventions and normalizations are explained in appendix A. Note that the potential appears in

the literature in the two possible forms, which are both given in (A.13) and are simply related by eq. (A.8b).

In the presence of non-abelian gaugings the potential acquires additional terms which we, however, omit.
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2.2 Flux compactifications

In string theory, N = 2 gauge supergravity can be obtained by adding closed string fluxes to

a CY compactification (see [25] for a review). In fact, fluxes back react on the background

geometry so that the simple direct product M4 × Y is not a solution of the (classical)

equations of motion anymore. To get a solution, one has to add a warp factor and to

consider internal manifolds with torsion [26–28]. Although such backgrounds are nicely

described in the framework of generalized geometry [29], the corresponding effective actions

are poorly understood. Due to this reason, we accept the common strategy (see, for

instance, [2, 18, 30, 31]) and ignore the back reaction, assuming that the compactification

manifold is still a Calabi-Yau.2

The LEEA for flux compactifications on CY was found in [30], and was shown to

perfectly fit the framework of N = 2 gauged supergravity.3 In particular, given the LEEA,

one can read off the embedding tensor Θα
I providing a map between the fluxes and the

gauged isometries. Let us briefly review these results.

First, we recall the field content of the moduli spaces. In type IIA, the vector multiplet

moduli space MV describes the complexified Kähler moduli of Y parametrizing deforma-

tions of the Kähler structure and the periods of the B-field along two-dimensional cycles,

zi = bi + iti. The hypermultiplet moduli space MH consists of

• ua — complex structure moduli of Y (a = 1, . . . , h2,1),

• ζΛ, ζ̃Λ — RR-scalars given by periods of the RR 3-form potential along three-

dimensional cycles of Y (Λ = (0, a) = 0, . . . , h2,1),

• σ — NS-axion, dual to the 2-form B-field in four dimensions,

• φ — dilaton, determining the value of the four-dimensional string coupling,

g−2
s = eφ ≡ r.

The Kaluza-Klein reduction from ten dimensions, performed in [30], leads to the clas-

sical metrics on MV and MH . The former is the special Kähler metric Kī given by the

derivatives of the Kähler potential

K = − log
[
i
(
X̄IF cl

I −XI F̄ cl
I

)]
, (2.2)

where F cl
I = ∂XIF cl are the derivatives of the classical holomorphic prepotential

F cl(X) = −κijk
XiXjXk

6X0
, (2.3)

2It should be mentioned that in the type IIA theory under consideration in this paper, it is the less

justified assumption than in type IIB. In the latter case, some choices of fluxes allow the vacua where the

internal manifold is a conformal Calabi-Yau space, which is not too much different from the usual Calabi-

Yau manifolds. In contrast, in the type IIA case the equations of motion require the compactification

manifold to be either non-Kähler, or even non-complex.
3More precisely, in the presence of the so-called magnetic fluxes, it should be generalized to incorporate

massive tensors. In the absence of fluxes, these tensor fields are massless and can be dualized to the scalars

contributing to the hypermultiplet moduli space. After receiving a mass, they are rather dual to massive

vector fields.
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which is determined by the triple intersection numbers κijk of Y. The hypermultiplet metric

is given by the so-called c-map [32] which produces a QK metric out of another holomorphic

prepotential characterizing the complex structure moduli. We omit its explicit expression,

but mention the crucial fact that it carries a Heisenberg group of continuous isometries

acting by shifts on the RR-scalars and the NS-axion. The corresponding Killing vectors are

kΛ = ∂ζ̃Λ − ζ
Λ∂σ, k̃Λ = ∂ζΛ + ζ̃Λ∂σ, kσ = 2∂σ. (2.4)

It is these isometries that are gauged by adding fluxes.

In general, type IIA strings on CY admit NS-fluxes incorporated by the following field

strength of the B-field:

Hflux
3 = hΛα̃Λ − h̃Λα

Λ, (2.5)

where (αΛ, α̃Λ) is a symplectic basis of harmonic 3-forms, and RR-fluxes given by the 2-

and 4-form field strengths

F flux
2 = −miω̃i, F flux

4 = eiω
i, (2.6)

where ω̃i and ωi are bases of H2(Y) and H4(Y), respectively. Besides, there are two

additional parameters, m0 and e0. The first one is Romans mass which gives a consistent

deformation of ten-dimensional type IIA supergravity [33], and the second one is a constant

arising after dualization of the 3-form RR potential [30]. They can be viewed as the fluxes

F flux
0 and F flux

6 , and also lead to a gauging in the effective action.

Although the effective action was found in [30] in the presence of all these flux parame-

ters, we set the “magnetic” fluxes mI to zero in what follows. The reason is twofold. First,

this allows to avoid complications with the simultaneous appearance of electric and mag-

netic charges of the NS-axion as well as massive vector fields (see footnote 3). Second, the

vanishing of Romans mass m0 allows to avoid adding orientifold planes, otherwise, needed

to satisfy the D6-brane tadpole cancellation condition [18]. This also allows us to keep

N = 2 supersymmetry unbroken, which partially justifies our use of the results obtained

for fluxless CY compactifications.

With this restriction, the gauging induced by the fluxes is characterized by the following

charges [30]:

k0 = hΛk̃Λ + h̃Λk
Λ + e0kσ, ki = eikσ, (2.7)

written down here as linear combinations of the Killing vectors (2.4).

2.3 Quantum corrections

The scalar potential obtained in [30] was found by the Kaluza-Klein reduction and, there-

fore, resulted from gauging of the isometries of the classical moduli space. However, both

MV and MH are known to receive quantum corrections. Unfortunately, one has a very

limited understanding of the impact of fluxes on these corrections. On the other hand, for

fluxless CY compactifications the situation is much better, as we now describe.
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We have full control over the metric on MV : it receives the α′-corrections which are

all captured by a modification of the holomorphic prepotential (2.3) [34, 35]

F (X) = F cl(X) + χY
iζ(3)(X0)2

16π3
− i(X0)2

8π3

∑
kiγi∈H+

2 (Y)

n
(0)
k Li3

(
e2πikiX

i/X0
)
, (2.8)

where χY = 2(h1,1−h2,1) is Euler characteristic of CY, n
(0)
k are the genus-zero Gopakumar-

Vafa invariants, and the sum goes over the effective homology classes, i.e. ki ≥ 0 for all i,

with not all of them vanishing simultaneously. The two additional terms correspond to a

perturbative correction and a contribution of worldsheet instantons, respectively.

As regardsMH , though its complete non-perturbative description is still beyond reach,

a significant progress in this direction was recently achieved by using twistorial methods

(see [15, 16] for reviews). In contrast to MV , the hypermultiplet metric is exact in α′, but

receives gs-corrections. At the perturbative level, it is known explicitly [36] and is given by

a one-parameter deformation of the classical c-map metric, whose deformation parameter

is controlled by χY [37–39]. At the non-perturbative level, the metric gets the instanton

contributions coming from D2-branes wrapping 3-cycles (and, hence, parametrized by a

charge γ = (pΛ, qΛ)) and NS5-branes wrapping the whole CY. The D-instantons were in-

corporated to all orders using the twistor description of QK manifolds [40–43], so that

only NS5-instanton contributions still remain unknown (see, however, [44–46] for a recent

progress on the type IIB side). Though the twistor description is rather implicit via en-

coding the metric into the holomorphic data on the twistor space of MH , in the case when

only the D-instantons with “mutually local charges” 〈γ, γ′〉 = 0,4 are taken into account,

the metric was explicitly computed in [47].

Thus, it is natural to use these exact results for analyzing the scalar potential (2.1).

Of course, it would be naive to expect that they are not going to be affected by fluxes

and, eventually, their back reaction via torsion, and it is an open question whether in such

situation one can trust the quantum corrections computed before the fluxes were switched

on. However, the presence of N = 2 supersymmetry allows us to think that the back

reaction effects should not be too strong. Indeed, most of the results mentioned above

were obtained by using only requirements of supersymmetry and a few discrete symmetries

expected to survive at the non-perturbative level. Besides, this expectation is supported

by the recent results about perturbative α′ and gs-corrections for compactifications on

manifolds with the SU(3) structure [48]. In the worst case, if our expectation does turn

out to be wrong, the gauged supergravity obtained in this approximation and studied in

this paper should only be considered as inspired by string theory.

It should be noticed that instanton corrections break the continuous isometries of

the classical hypermultiplet moduli space: a D-instanton of charge γ comes with a factor

e2πi(pΛζ̃Λ−qΛζΛ) and, therefore, breaks a linear combination of kΛ and k̃Λ, whereas NS-brane

instantons break all isometries of (2.4). This raises the question, how such instantons can

be consistent with the gauging induced by fluxes, since the latter can be only performed in

4We use the skew symmetric product defined by 〈γ, γ′〉 = qΛp
′Λ−q′ΛpΛ. The mutual locality is equivalent

to the condition that there is a symplectic frame where all charges are purely electric, i.e. pΛ = 0.
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the presence of continuous isometries? This problem was solved in [49] where it was shown

that fluxes protect from the instanton corrections precisely those isometries that are to be

gauged. Applying this result to type IIA string theory on CY with H3, F4 and F6 fluxes,

one concludes from (2.7) that it excludes NS5-instantons and allows only D-instantons with

charges satisfying hΛqΛ − h̃Λp
Λ = 0.

2.4 Scalar potential from fluxes on rigid CY

In this paper we restrict our attention to the flux compactifications on a rigid Calabi-

Yau manifold, i.e. when Y has vanishing h2,1 and thus does not have complex structure

deformations. As a result, the capital Greek indices Λ,Σ, . . . take only one value and,

therefore, can be safely dropped.

In the case of rigid CY, MH has the lowest possible dimension and thus this case

represents a nice laboratory to study quantum corrections, gaugings, fluxes, etc. (see, for

instance, [18, 38, 50–55]). Moreover, the metric on four-dimensional QK spaces allows an

explicit parametrization [56, 57], which reduces it to a solution of an integrable system. In

particular, in the presence of one continuous isometry, it is encoded in a solution of the

integrable Toda equation. This fact was extensively used in several studies of instantons

and their impact on moduli stabilization [19, 58–62].

Here we use the explicit results of [47] providing the exact metric on MH corrected

by D-instantons with mutually local charges, which was shown to be consistent with the

description based on the Toda equation. As explained in the end of the previous subsection,

the H-fluxes protect one linear combination of the isometries k and k̃. Since in the rigid

case the D-instanton charge is a two-dimensional vector, γ = (p, q), the charges of the

allowed D-instantons are necessarily mutually local. Thus, the metric computed in [47]

contains all instantons allowed by the fluxes.

Explicitly, this metric is given by

ds2 =
2

r2

[(
1− 2r

R2U

)(
(dr)2+

R2

4
|Y|2

)
+

1

64

(
1− 2r

R2U

)−1 (
dσ+ζ̃dζ−ζdζ̃ + V(σ)

)2
]
,

(2.9)

where all notations, such as R, U, Y, V(σ), are explained in appendix C.1. The charge

vectors (2.7) corresponding to our choice of fluxes are given by

k0 = h̃∂ζ̃ + h∂ζ +
(

2e0 + hζ̃ − h̃ζ
)
∂σ ,

ki = 2ei∂σ .
(2.10)

They generate isometries of the metric (2.9) provided that the D-instanton charges are re-

stricted to satisfy hq = h̃p. The associated moment maps ~µI are computed in appendix C.2

with the following result:

µ+
i = 0, µ3

i =
ei
2r
,

µ+
0 =

iR
2r

(
h̃− λh

)
, µ3

0 =
1

2r

(
e0 + hζ̃ − h̃ζ

)
.

(2.11)
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Thus, the only effect of instantons on the moment maps is contained in the function R
determined by the equation (C.12).

Now we use all these data to compute the scalar potential (2.1). A simple calculation

gives

V =
eK

4r2

[
2|E+E|2

1− 2r
R2U

+Kī (ei+EKi)
(
ej+ĒK̄

)
−3|E|2+4R2|h̃−λh|2

(
KīKiK̄ −1− 4r

R2U

)]
,

(2.12)

where Ki = ∂iK and we have denoted

E = e0 + hζ̃ − h̃ζ + eiz
i,

E =
1

2

(
hι∂ζ + h̃ι∂ζ̃

)
V(σ).

(2.13)

Note that both the metric and the potential are invariant under the symplectic trans-

formations induced by a change of basis of 3-cycles on Y. This invariance can be used

to put h-flux to zero, which we assume from now on. In this symplectic frame, only elec-

trically charged instantons contribute to the potential. Using this simplification, one can

show that

E =
4h̃rv̄

R(|M |2 + |v|2)
, (2.14)

where the quantities appearing on the r.h.s., initially introduced in appendix C.1, can now

be computed explicitly as

v = 384c
∑
q>0

s(q)q2 sin(2πqζ)K1(4πqR),

M = 2λ2 + 384c
∑
q>0

s(q)q2 cos(2πqζ)K0(4πqR), (2.15)

r =
λ2R2

2
− c− 24cR

π

∑
q>0

s(q)q cos(2πqζ)K1(4πqR),

whereas U, also appearing in the potential (2.12), is still given by (C.9). Here we have

introduced the divisor function

s(q) ≡ σ−2(q) =
∑
d|n

d−2, (2.16)

and, using (C.3) and (C.1), expressed the DT invariants, counting the D-instantons, via the

parameter c. As a result, all gs-corrections affecting the scalar potential are controlled by

just one topological number! It is in contrast to the α′-corrections which require knowledge

of an infinite set of genus-zero Gopakumar-Vafa invariants.

3 Moduli stabilization

Given the scalar potential (2.12), we can investigate whether it has local minima where all

moduli are stabilized. If such minima exist, the sign of the potential evaluated at these

points indicates whether they correspond to a de Sitter or an anti-de Sitter vacuum.
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At h = 0 the potential explicitly depends on dilaton r, Kähler moduli ti, periods bi

of the B-field, and the RR scalar ζ, and is independent of another RR scalar ζ̃ and the

NS-axion σ. This fact, however, is not a problem for moduli stabilization since these are

the scalars which are used for the gauging. In the effective action, one can redefine some of

the gauge fields to absorb these scalars. In such frame the scalars are “eaten up” and thus

disappear from the spectrum, whereas the corresponding gauge fields become massive.

It is also important to note that in the perturbative approximation the potential de-

pends on the fields bi and ζ, known as axions,5 only through the combination eib
i − h̃ζ

appearing in (2.13). Thus, the other h1,1 independent combinations of these fields enter

the potential only via instanton corrections: bi and ζ appear in the imaginary part of

the worldsheet and the D-instanton actions, respectively. This shows that the instanton

corrections are indispensable for stabilization of all moduli.6

The instanton corrected potential (2.12) leads to a very complicated system of equa-

tions on its extrema. However, if one assumes that the fluxes satisfy the relation

e0 = (nh̃− `iei)/2, n, `i ∈ Z, (3.1)

there exists a very simple solution for the axions,

ζ = n/2, bi = `i/2. (3.2)

Indeed, using the expressions for the inverse metric Kī (A.5c) and the first derivative of

the Kähler potential Ki (A.4a), the scalar potential can be rewritten as

V =
eK

4r2

2|E+E|2

1− 2r
R2U

−2|E|2−e−KN̂ ijeiej +

[
Re
(
E+e−KN̂klKkel

)]2
+ 4h̃2R2

e−KN̂ īKiK̄ − 1
− 16h̃2r

U

,
(3.3)

where N̂ ij is the inverse of Nij = −2 ImFij . Besides, it is straightforward to verify by using

the explicit formulae (2.15) and (B.1) that at the point (3.2) all the following quantities

vanish:

Re (E), v, E , ReKi, ∂ζR, ∂ζM, ∂ζU, ∂biNjk, ∂biK. (3.4)

Taking also into account that N̂ jk̄KjKk̄ = N̂ jk ReKj ReKk+e2KNijt
itj , these results imply

that the potential (3.3) satisfies

∂ζV | ζ=n/2
bi=`i/2

= 0, ∂biV | ζ=n/2
bi=`i/2

= 0. (3.5)

Thus, given the fluxes satisfying (3.1), half-integer axions are always a solution of (at least,

half of) the equations on critical points.

5The axions also include the “eaten up” fields ζ̃ and σ.
6In the given case of rigid CY, this argument does not allow us to conclude that D-instantons are truly

necessary, since worldsheet instantons together with the combination eib
i − h̃ζ lead to a dependence on all

axions. However, when h2,1 > 0, it is still true that only one combination of RR-scalars appears in the

perturbative potential [30], so that D-instantons must be taken into account to stabilize all moduli.
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Of course, there is no guarantee that sticking to this solution would allow to stabilize

the remaining moduli and to get a local minimum, not a saddle point of the potential. Note,

however, that the above properties also imply that the mixed second derivatives vanish,

∂ϕI∂ψJV
∣∣
ζ=n/2

bi=`i/2

= 0, (3.6)

where we have introduced the collective notation for the axions, ψI = (ζ, bi), and for the

remaining fields, ϕI = (r, ti). This result means that the matrix of the second derivatives

has a block-diagonal form,

∂∂V =

(
∂ϕI∂ϕJV 0

0 ∂ψI∂ψJV

)
, (3.7)

so that the condition of having a local minimum gives rise to the two independent conditions

on the positive definiteness of ∂ϕI∂ϕJV and ∂ψI∂ψJV . Furthermore, the integers n and `i

control the signs of instanton contributions. One may expect that changing these integers, it

may be possible to adjust the signs in such a way that the matrix ∂ψI∂ψJV becomes positive

definite, thus providing a local minimum in the subspace spanned by the axions, whereas

the positive definiteness of ∂ϕI∂ϕJV would impose certain restrictions on the critical points

in the remaining subspace.

Thus, in the following, we choose to work with the solution (3.2). Having restricted

ourselves to this solution, we can significantly simplify the potential. Using the vanishing

of (3.4), we find

V (ϕ)(r, ti) ≡ V | ζ=n/2
bi=`i/2

=
eK

4r2

[
4r(et)2

R2M−2r
− e−KN̂ ijeiej +

4h̃2R2

eKNijtitj−1
− 16h̃2r

M

]
. (3.8)

Having fixed the axions, we still have to stabilize the four-dimensional dilaton r and

the Kähler moduli ti. To this end, we need to solve the equations obtained by variation

of the potential (3.8) with respect to these moduli. However, we find it more natural to

consider the potential as a function of R rather than of the dilaton r becauseR(r) is defined

only implicitly: see the last equation in (2.15) where cos(2πqζ) should now be replaced by

(−1)nq. Proceeding this way and using that

∂Rr =
R
4

(M + 2λ2) , (3.9)

we obtain the following equations:

∂RV
(ϕ) =

eK

4r2

[
R
2r

(M + 2λ2) e−KN̂ ijeiej

− (et)2R
(R2M − 2r)2

(
R2M2 + 2λ2

(
R2M − 4r

)
+ 4r (M +R∂RM)

)
+

2h̃2R
(
4r−R2(M+2λ2)

)
r (eKNijtitj − 1)

+
4h̃2

M2
(RM(M+2λ2)+4r∂RM)

]
= 0, (3.10a)

∂tiV
(ϕ) = − 1

2r2

[
4re2K

(
(et)

R2M − 2r

(
(et)Nijt

j − e−Kei
)
− 4h̃2

M
Nijt

j

)

+ ReFijk

(
N̂ jmemN̂

knen −
4e2Kh̃2R2tjtk

(eKNijtitj − 1)2

)]
= 0. (3.10b)
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Unfortunately, in their full generality, these equations are too complicated for an analytic

treatment. Therefore, they should be studied either numerically or perturbatively. For

instance, we can first analyze them by neglecting all non-perturbative corrections, and then

add the terms with worldsheet and D-brane instantons. In the next section, we perform

the first step, and then in section 5 attempt the second step in the special case h1,1 = 1.

It is important to note that the fields to be stabilized cannot take arbitrary values,

being restricted to certain physical domains. These restrictions typically appear due to

various approximations used to get the scalar potential, while approaching a boundary of

a physical domain corresponds to a failure of one of such approximations. The physical

domains are defined by the following conditions:

• The Kähler moduli ti must belong to the Kähler cone of Y and be such that the

Kähler potential is well defined, which implies that e−K > 0. This quantity is ex-

plicitly computed in (B.1d). Typically, its positivity is ensured by the instanton

contributions, but in the perturbative approximation with ti sufficiently small, one

can reach a point where the negative perturbative correction becomes dominant over

the classical volume term. This indicates the breakdown of the perturbative approx-

imation and puts a bound on the domain of the Kähler moduli.

• Similarly, the Kähler moduli must be such that ImNIJ , defined in (A.2) and deter-

mining the kinetic terms of the gauge fields, and its inverse computed in (A.5b), are

negative definite.

• The four-dimensional dilaton r = eφ, besides being positive, should satisfy an addi-

tional bound. In [47] it was shown that the metric (2.9) has a curvature singularity

at the hypersurface determined by the equation r = 1
2 R

2U. However, the metric

on the physical moduli space must be regular. Thus, the curvature singularity is an

artefact of an approximation: in the case of fluxless CY compactifications, it is be-

lieved that it should be resolved by NS5-brane instantons [63], whereas in our case it

should probably disappear after taking into account the back reaction of fluxes. This

implies that close to the singularity the metric (2.9) and, hence, the corresponding

scalar potential cannot be trusted. In other words, we should require that r > rcr.

In the perturbative approximation one has rcr = −2c.

4 Perturbative approximation

After dropping all instanton corrections, the scalar potential (3.8) takes the following form:

V (ϕ) ≈ eK

8r2

[
16h̃2

λ2

(1− γ)r + 2c

1 + γ
+

4r(et)2

r + 2c
− e−Kκijeiej

]
, (4.1)

where the sign ≈ means that the equation holds in the perturbative approximation, κij is

the inverse of κij ≡ κijktk, and we have introduced

γ = 3CeK =
3χY

4π3
ζ(3)eK (4.2)
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as the variable encoding the volume V of the Calabi-Yau space since e−K ≈ 8V − C due

to (B.1d). Note that both κij and γ are functions of the Kähler moduli.

The equations on critical points (3.10) simplify as

e−Kκijeiej ≈
4(et)2r(r + c)

(r + 2c)2
+

8h̃2

λ2

(1− γ)r + 4c

1 + γ
, (4.3a)

κijkκ
jmemκ

knen ≈
8reK(et)

r + 2c

(
2eK(et)κijt

j − ei
)

+
64h̃2

λ2
e2Kκijt

j

(
2(r+c)

(1+γ)2
− r
)
. (4.3b)

The main complication here comes from the presence of the inverse matrix κij that intro-

duces a non-polynomial dependence on the Kähler moduli. It is, however, possible to get

at least one equation without such dependence. To this end, let us contract (4.3b) with ti.

This gives

e−Kκijeiej ≈
4r(et)2(1 + γ)

r + 2c
+

16h̃2

λ2
(3 + γ)

(
2(r + c)

(1 + γ)2
− r
)
. (4.4)

Combining this equation with (4.3a) leads to

r(et)2

(r + 2c)2
≈ 2h̃2

λ2

(
2γ3 + 9γ2 + 10γ − 5

)
r − 8c

(1 + γ)2 (γ(r + 2c) + c)
, (4.5)

which is a cubic equation on the dilaton r. Furthermore, substituting (4.3a) and (4.5) into

the perturbative potential (4.1), we find the following result for its value at critical points:

V (ϕ)
cr ≈ eK

r

[
h̃2

λ2

1− γ
1 + γ

+
c(et)2

2(r + 2c)2

]

≈ eKh̃2

λ2r2

γ(1− γ2)r2 − 4c(1− 3γ − 2γ2)r − 8c2

(1 + γ)2 (γ(r + 2c) + c)
.

(4.6)

In principle, one can solve the cubic equation (4.5) to express r in terms of the combi-

nation eit
i and the Calabi-Yau volume encoded in γ. The solution r(t) is to be substituted

into (4.3b), which leads to a complicated system of equations on the Kähler moduli. But

even without explicitly solving this system, it turns out to be possible to derive some

bounds on its solution.

4.1 Bounds on perturbative solutions

As we noticed in the end of section 3, the possible values of the scalar fields are restricted

to satisfy certain conditions. In the perturbative approximation, two of them put simple

bounds on the lowest values of the dilaton (inversely proportional to the string coupling)

and the volume of CY,

r > 2|c|, V > C/8, (4.7)

whereas the third one demands that ImNIJ is negative definite. The last condition is

equivalent to ImN IJvIvJ < 0 for any real vector vI . Let us take vI = (−(eb), ei). Then,

using the perturbative result (B.3f), we arrive at the following condition:

e−Kκijeiej
(et)2

< 4. (4.8)
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Figure 1. The plane γ-(r/|c|) and its regions where various conditions are satisfied: the condition

(4.8) corresponds to the dark grey region with the blue boundary, positivity of (4.5) holds in the

pink region with the purple boundary, and the potential at the extremum (4.6) is positive in the

light grey region with the brown boundary. The right picture magnifies the region close to the

bifurcation point corresponding to
(
γ? = 1

4 (
√

17− 3), r? = |c|
2 (
√

17 + 7)
)
. All three conditions are

satisfied only in the very narrow region which ends at this point. If one drops the positivity of the

potential, the region of large γ and r is also allowed.

Let us now apply this condition to the extrema of the potential. Using equations (4.3a)

and (4.5), we find that

e−Kκijeiej − 4(et)2 (4.9)

≈ 8h̃2

λ2r

γ(1− γ2)r3 + 8c
(
2− 3γ − 3γ2 − γ3

)
r2 + 4c2

(
12− 7γ − 7γ2 − 2γ3

)
r + 32c3

(1 + γ)2 (γ(r + 2c) + c)
.

Then (4.8) implies that the r.h.s. of (4.9) must be negative. This severely restricts the

regions in the γ-r plane where the potential can have critical points. Furthermore, the

positivity of (4.5) gives another condition of the same kind. Figure 1 shows the regions

allowed by the two conditions, as well as those where the potential (4.6) is positive. We

observe that there is a narrow region where all conditions are satisfied so that they do not

exclude the existence of meta-stable dS vacua, although they put a strong upper bound on

the dilaton.

It is the important feature of our results presented in figure 1 that the above conditions

do not allow solutions which have both large r (small string coupling) and small γ (large

volume). Such conclusion can actually be derived analytically. Indeed, it is enough to get

a milder consequence of (4.8) than the negativity of (4.9). For instance, one can note that

the first term in (4.3a) is larger than 4(et)2. Then (4.8) implies that the second term must
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be negative, which is equivalent to

γ > 1 +
4c

r
⇒

(
1 +

c

r

)(
1− C

8V

)
<

3

4
. (4.10)

When both r and V are large, which corresponds to the classical limit, this condition is

clearly violated. This shows that for the set of fluxes under consideration, it is impossible

to stabilize the string coupling and the volume in the region where all quantum corrections

become irrelevant. Note also that the bound does not depend on the values of fluxes, which

means that it is impossible to tune them in order to get arbitrarily large r and V.

4.2 One-modulus case

Given a complicated structure of the equations on critical points of the scalar potential

even in the perturbative approximation, it is natural to consider some particular cases with

a low number of moduli. First, we concentrate on the simplest case with a single Kähler

modulus, corresponding to CY with Hodge numbers (h1,1, h2,1) = (1, 0). To the best of our

knowledge, no CY manifolds with such topological characteristics have been constructed

so far, so that this case represents a fictional geometry and the corresponding gauged

supergravity has no direct connection to string theory. Nevertheless, it is instructive to

study it because the resulting equations allow an analytic treatment.

In the one modulus case, we find an additional relation,

e−Kκijeiej
(et)2

≈ 4

3 + γ
, (4.11)

where κijeiej =
e21

κ111t1
. It allows to rewrite the cubic equation on the dilaton in the form

where the coefficients are functions of γ only. Namely, combining (4.3a), (4.5) and (4.11),

we find

(5 + γ)(2− 4γ − 5γ2 − γ3)r3 + 4(2 + γ − 4γ2 − γ3)cr2 − 8(5− γ)c2r − 32c3 = 0. (4.12)

Remarkably, this equation can be factorized so that all three roots can be found explicitly as

r0 =
4|c|

5 + γ
, r± =

2|c|
(
γ ±

√
(2 + γ)(2− 5γ − 2γ2)

)
2− γ(1 + γ)(4 + γ)

. (4.13)

However, not all of them are relevant to us. First, we observe that r0 < |c| and, hence, this

root violates the bound (4.7). The other two roots are real only when

γ < γ(1) =
1

4

(√
41− 5

)
≈ 0.3508. (4.14)

However, in this region we have r− < 0. Thus, only r+ should be considered, whose

positivity puts a stronger bound than (4.14), namely,7

γ < γ(2) ≈ 0.3429. (4.15)

7γ(2) is one of the roots of the denominator in (4.13).
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Figure 2. The graphs represent the same quantity λ2

|c|h̃2
(et)2|r=r+(γ) evaluated in the one-modulus

case as a function of the parameter γ in the two ways: the blue curve represents the function (4.5)

and the red curve represents the function f−1(1 + 3γ−1)2/3 ∼ t2 obtained by using (4.17). The

parameter f controls the height of the second curve. For large f the curves intersect at two points

(the left picture with f = 26) corresponding to two extrema of the potential, whereas for small f

there are no intersections (the right picture with f = 6.5).

We should also check the two conditions mentioned in the previous subsection: (4.8) and

positivity of (4.5). The first one is automatically satisfied due to (4.11), whereas the second

one leads to an even stronger bound,8

γ < γ? ≈ 0.2808, (4.16)

where γ? was defined in the caption to figure 1.

Having verified all our conditions, it remains to solve the equation fixing the modulus γ.

The easiest way to obtain such equation is to take (4.5), where one should substitute

r = r+(γ) and

t1 =

(
3C

4κ111

(
1 + 3γ−1

))1/3

. (4.17)

Unfortunately, a solution can be found only numerically, and it is controlled by the

parameter

f =
|c|h̃2

λ2e2
1

(
4κ111

3C

)2/3

=
πh̃2

24λ2e2
1

(
κ111

3ζ(3)

)2/3

, (4.18)

where we have used that we are considering the case with χY = 2. One can show that for

f > fcrit ≈ 9.8 (4.19)

the equation always has two solutions, and does not have any in the opposite case. The

situation is demonstrated in figure 2 which represents the two sides of eq. (4.5) as functions

of γ. For the parameters satisfying (4.19), the two curves have two intersection points, but

once f decreases and reaches the critical value, they do not intersect anymore.

8γ? is one of the roots of the denominator in (4.5) after substitution r = r+, namely, it solves γ(r+(γ) +

2c) + c = 0. It coincides with the bifurcation point in figure 1, which is independent of the number of

moduli. Note also that for γ? < γ < γ(2), the r.h.s. of (4.9) is positive, which seems to contradict to (4.8).

In fact, there is no contradiction because in this domain one already violates the bound (4.16).
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Figure 3. The profile of the potential on the plane γ-(r/|c|). There is a local maximum at γ ≈ 0.27,

r ≈ 5.18|c| and a saddle point at γ ≈ 0.14, r ≈ 2.66|c|. The profile corresponds to the choice f = 26,

and the potential is rescaled by the factor 3λ2|c|C
h̃2

.

Thus, if the H-flux is sufficiently large compared to the F4-flux, the potential has two

critical points. Remarkably, for both of them the potential turns out to be positive (the

curve r+(γ) drawn on the γ-r plane precisely fits the narrow region identified in figure 1).

Unfortunately, both critical points do not correspond to local minima. As can be seen in

figure 3, the solution with larger γ and r corresponds to a local maximum, whereas the

one with smaller parameters corresponds to a saddle point. This is also confirmed by our

analysis of the matrix of the second derivatives of the potential performed in appendix D.

As a result, we conclude that in the one-modulus case the perturbative potential does not

have meta-stable vacua.

4.3 Generic case: stability analysis

Next, it is natural to analyze the case with two Kähler moduli. Remarkably, a Calabi-Yau

manifold with Hodge numbers (h1,1, h2,1) = (2, 0) was constructed a few years ago in [64].

Thus, in contrast to the one-modulus case, this one does have a mathematical realization.

The intersection numbers of this CY were recently calculated in [65], and are given by9

κ111 = 344, κ112 = 492 κ122 = 600, κ222 = 440. (4.20)

Unfortunately, these numbers do not have any particular symmetry which could help us

in solving our equations. Furthermore, although it is possible to explicitly invert the 2× 2

matrix κij entering these equations, they still remain unsuitable to an analytic treatment.

Due to these reasons, instead of solving the equations on critical points, we directly

proceed to the analysis of meta-stability. Remarkably, it turns out that this analysis can

be carried out for the general case with any number of Kähler moduli.

9We are very grateful to Eberhard Freitag for informing us about his calculations.
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The meta-stability of a vacuum requires that the matrix of the second derivatives

∂ϕI∂ϕJV
(ϕ) at the corresponding critical point is positive definite. To understand whether

this can be the case for our potential, we apply the following trick. First, we note that

the signature of any linear operator does not depend on the choice of a basis in the space

where it acts. Therefore, we can rotate the derivatives ∂ti by an invertible matrix mi
j .

We choose

m1
j = tj , m2

j = nj ≡ κjkek
eK(et)

, (4.21)

and mi
j with i > 2 such that together with tj and nj they form a set of linearly inde-

pendent vectors. Thus, instead of ∂ϕI∂ϕJV
(ϕ), we are going to analyze a matrix of the

following form:

M =


∂2
rV

(ϕ) ti∂ti∂rV
(ϕ) ni∂ti∂rV

(ϕ)

ti∂ti∂rV
(ϕ) titj∂ti∂tjV

(ϕ) nitj∂ti∂tjV
(ϕ) · · ·

ni∂ti∂rV
(ϕ) nitj∂ti∂tjV

(ϕ) ninj∂ti∂tjV
(ϕ)

· · · · · ·

 . (4.22)

Since M is a Hermitian matrix, we can apply Sylvester’s criterion which tells us that

M is positive definite if and only if all its leading principal minors are positive. In other

words, all matrices M(k) given by the upper left k-by-k corner of M must have a positive

determinant, i.e. ∆k ≡ det M(k) > 0. In particular, a necessary condition for M to be

positive definite is the positivity of ∆k, k = 1, 2, 3.10

The crucial fact is that it is possible to express all elements of the matrix M(3), and

hence ∆k, in terms of γ and r only. Indeed, contracting the vector-like equation (4.3b)

with ni, we obtain

κijk κ
ilel κ

jmem κ
knen ≈

8re2K(et)

r + 2c

(
2(et)2 − e−Kκijeiej

)
+

64h̃2

λ2
e2K(et)

(
2(r + c)

(1 + γ)2
− r
)

≈ 32h̃2

λ2

(et)e2K

r+2c

(5−10γ−13γ2−2γ3)r3−2c(1−8γ+3γ2)r2 − 4c2(9−8γ)r−8c3(3−2γ)

(1+γ)2 (c+γ(r+2c))
,

(4.23)

where we have used (4.4) and (4.5) to get the second line. Then, as shown in appendix D,

using the equations (4.4), (4.5) and (4.23), we can express all independent structures ap-

pearing in the entries of M(3) in terms of only two variables γ and r. As a result, it becomes

possible to search for regions in the γ-r plane where ∆k are all positive. It is important to

emphasize that, due to the use of the equations on critical points, all the parameters λ2,

κijk, the fluxes ei and h̃ conspire into the same positive multiplicative factor in all entries

of the matrix M(3), and, hence, in all minors ∆k, so that the stability analysis does not

depend on particular values of these parameters.

The details of this analysis are presented in appendix D. We find that there are no

regions in the γ-r plane where all three minors ∆k are positive. This implies that the

matrix M (4.22) cannot be positive definite and, hence, the perturbative potential cannot

have local minima for any number of Kähler moduli.

10In the following, whenever ∆k is mentioned, the condition k = 1, 2, 3 is implied.
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5 Instanton contributions in the one-modulus case

Given the results of the previous section about the absence of meta-stable vacua in the

perturbative approximation, it is natural to ask whether such vacua exist after taking into

account the non-perturbative corrections generated by worldsheet and D-brane instantons.

In this section we study this question in the simplest case of a fictional CY with h1,1 = 1.

Thus, given all our approximations, the potential analyzed here should be viewed only as

inspired by string theory, rather than realizing one of its compactifications. Nevertheless,

we expect that it captures the main features of the cases which do have such realization.

In the presence of the non-perturbative corrections it seems to be impossible to solve

our equations analytically, and we have to rely on numerical calculations. Our basic idea

is to evaluate the matrix of the second derivatives of the non-perturbative scalar potential

on-shell, so that the dependence on the flux parameters is completely factorized, and then

look for regions in the t-R plane11 such that (i) they contain the curve of possible critical

points, and (ii) the resulting matrix is positive definite. More precisely, we perform the

following steps:

1. Solve (3.10b), which in this case is a single equation, with respect to (et)2. The

solution can be represented as

(et)2 = h̃2E (t,R) (5.1)

with some function E (t,R). Note that this function, as well as all other functions

below, also depend on the signs (−1)n and (−1)l determined by the values of the

axion fields. Thus, each function appears in four different copies corresponding to

four different choices of these signs. It is enough to get a local minimum with one of

these copies.

2. Substitute (5.1) into (3.10a) so that the dependence on h̃2 is factored out and the

equation reduces to

Q(t,R) = 0, (5.2)

where the function Q(t,R) is independent on the flux parameters.

3. Calculate the matrix (3.7)12 and substitute (5.1), so that the dependence on h̃2 is

also factored out and the matrix takes the form

∂∂V = h̃2

(
ΦIJ(t,R) 0

0 ΨIJ(t,R)

)
. (5.3)

4. All the steps above can be done analytically. To proceed further, we have to stick to

a numerical analysis. To this end, we fix a finite number of instantons Ninst to be

taken into account, and choose some values for λ2, κ and Gopakumar-Vafa invariants

n
(0)
k , k ≤ Ninst. We recall that we take a fictional CY, so that all these numbers can

be chosen at will.
11In this section we drop the index i at the quantities like Kähler moduli since it takes only one value.
12More precisely, in the upper left entry we evaluate the derivatives with respect to (R, log t) instead

of (r, t).
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5. Find the low bounds Rcr and tcr by demanding

r(R) > −2c, e−K(t) > 0, ImNIJ(t) is negative definite. (5.4)

Under the second condition, the last one can be shown to be equivalent to (see

appendix E)

Nt2 > e−K or N < 0, (5.5)

where N ≡ N11(t). The subsequent analysis is concentrated on the region (R > Rcr,

t > tcr).

6. Draw the curve Q(t,R) = 0 on the t-R plane, and identify the parts of this curve

belonging to the regions where

• E (t,R) > 0,

• the matrix ΨIJ(t,R) is positive definite,

• the matrix ΦIJ(t,R) is positive definite.

7. Should such parts exist, it means that there is a range of the flux parameters that al-

lows the existence of a local minimum of the scalar potential. This range corresponds

to those values of e and h̃ when the two equations, (5.1) and (5.2), have a common

solution. The fact that such values exist is ensured by positivity of E (t,R).

For practical purposes, it is convenient to split the step 6 into two steps: first, impose

the positivity of E and the positive definiteness of ΨIJ , and only afterwards analyze ΦIJ .

Then, typically, at the first stage we can exclude (−1)l = 1 and identify a finite part of

the curve Q(t,R) = 0, not too far from the critical values, as a candidate for the position

of the minima. However, for all choices of the parameters we considered, it turns out

that the matrix ΦIJ is not positive definite in the region around the candidate part. A

typical situation is demonstrated in figure 4. It is striking that in all our examples the

regions of the positive trace and the positive determinant of ΦIJ approach each other,

with their boundaries going almost parallel, but never intersect. Given a highly non-trivial

dependence of these functions on t, R and all the parameters, this observation begs for a

deeper analytical explanation.13 We conclude that in the one-modulus case the instanton

corrections do not lead to meta-stable vacua.

6 Conclusions

In this paper we considered a simple class of flux compactifications which preserve N = 2

local supersymmetry in the four-dimensional low energy effective action. Ignoring the

back reaction of fluxes and using the recent results on the non-perturbative description of

fluxless CY compactifications, we derived a scalar potential which takes into account not

only perturbative corrections, but also worldsheet and D-brane instantons. Extremizing

this potential, we found that the axion fields are fixed to half-integer values, provided the

fluxes satisfy the simple constraint (3.1). The axion stabilization greatly simplifies the

13Actually, we found that in the deep quantum region (with small R and t) it is possible to have ΦIJ
positive definite and the non-perturbative scalar potential does have local minima. However, these minima

spoil at least one of the conditions (5.4) and, therefore, are non-physical.
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ΨIJ(t,R) is positive definite (pink). The red curve is a curve of solutions of Q(t,R) = 0, while the

horizontal and vertical green lines correspond to R = Rcr and t = tcr, respectively. One can see

that a part of the red curve belongs to the region where both conditions are satisfied. The right

pictures display the same plane and the curve of solutions together with the regions of the positive

trace (blue) and the determinant (pink) of ΦIJ(t,R). The lower picture magnifies the part where

the two regions are close to each other, in order to make clear that they do not intersect indeed.

Thus, ΦIJ is not positive definite near the red curve. The parameters are chosen as Ninst = 4,

λ2 = 0.1, κ = 10, n
(0)
k = 100k.

scalar potential and the equations on its critical points, and also leads to a factorization

of the matrix of its second derivatives, which allows to disentangle the issue of stability

into two independent problems in the subspaces spanned by the axions and the remaining

moduli, respectively.

Whereas the stability in the axion subspace is easy to achieve, our results on the

stabilization of the dilaton and the Kähler moduli are largely negative. First, we found

the bound (4.10) on the critical values of the CY volume and the dilaton, which shows

that the scalar potential does not have critical points in the large volume, weak coupling

region of the moduli space where both α′ and gs-corrections can be neglected. Second,
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we investigated these critical points in the perturbative approximation, but found that all

of them are not stable (i.e. not local minima). Furthermore, in the case with one Kähler

modulus, corresponding to the non-physical case of rigid CY with h1,1 = 1, we extended

this result to the non-perturbative level by taking into account all instanton contributions.

Thus, in all these cases not all of the moduli are stabilized by the chosen set of fluxes. The

direction of instability lies in the subspace spanned by the dilaton and the Kähler moduli.

This shows the existence of a non-trivial mixture between different moduli, and a failure of

the approximation where they are supposed to be stabilized in a step-by-step procedure.

Our results can be compared to the no-go theorems in the literature that forbid the

existence of dS vacua. For instance, [66] proves such a theorem in the approximation where

the coupling of hypermultiplets is ignored, i.e. when only abelian N = 2 vector multiplets

are taken into account, whereas [67] has a similar statement in the opposite case where

only hypermultiplets are present. The main differences to these papers are: (i) we take

into account both types of N = 2 matter multiplets, and (ii) obtain the stronger result that

not only dS, but any vacua are unstable. At the same time, our results only apply either

to the perturbative level or to CY’s with Hodge numbers (h1,1, h2,1) = (1, 0).

It was argued in [55] that meta-stable dS vacua can be obtained in N=2 gauged

supergravity with a single hypermultiplet and a single vector multiplet, by gauging an

abelian isometry of the hypermultiplet moduli space. It was based on the observation

that the bound of [67] on (scalar) sGoldstini masses is relaxed in such case. Our results

in the one-modulus case are not in tension with these findings because [55] studied the

most general metrics on MV and MH , which are consistent with the special Kähler and

quaternion-Kähler properties, respectively, whereas we restricted them to those resulting

from the fluxless CY compactifications. Rather, our results imply that the vacua of [55]

are not expected to arise in string theory, at least, if the back reaction does not change the

situation drastically.

It is also worth mentioning that dS vacua are known to arise after the gauging of non-

abelian isometries [68–70]. The non-abelian isometries do exist in the classical supergravity

where the hypermultiplet moduli space can be taken to be a quaternionic homogeneous

space14 G/H with a semi-simple stability group H, which allows to introduce the so-called

Roo-Wagemans angles playing a crucial role in the construction of the classical dS vacua.

However, any quantum correction, either perturbative or non-perturbative, breaks the non-

abelian symmetries of the hypermultiplet moduli space, so that the non-abelian gaugings

do not apply in quantum theory.15 Thus, the vacua constructed in [68–70] do not appear to

be relevant in the context of full string theory where quantum corrections are not ignored.

Returning to our results, we note that they do not fully exclude the class of flux

compactifications which inspired our potential: it remains to understand what happens at

the full non-perturbative level for CY’s with h1,1 > 1 (i.e. in all non-fictional cases), and

whether the picture we found still persists. In fact, there is a serious obstacle on this way

14For instance, the universal hypermultiplet moduli space, appearing in CY compactifications in the

classical approximation, is given by the symmetric coset space SU(2, 1)/SU(2)×U(1).
15That is why we omitted the non-abelian contributions in the basic equation (2.1) of the scalar potential

in N = 2 gauged supergravity.

– 23 –



J
H
E
P
1
1
(
2
0
1
6
)
0
6
6

due to the absence of any knowledge about Gopakumar-Vafa invariants for rigid CY mani-

folds. Usually, these invariants are calculated by using mirror symmetry [34, 35]. However,

rigid CY’s do not have mirror duals (h1,1 cannot be zero). It is the outstanding mathe-

matical problem to find the non-perturbative holomorphic prepotential for such manifolds.

Because of this problem, it might be reasonable to drop the assumption of rigidness and

consider more general CY threefolds. Since the D-instanton corrected metric on the hy-

permultiplet moduli space is known for any CY [47], it may not be difficult to generalize

the derivation of the non-perturbative potential (2.12) to a generic case. However, then

both the metric and the scalar potential would become even more complicated by acquiring

extra dependence on the complex structure moduli which also have to be stabilized.

Finally, it should be emphasized that we considered the very restricted set of fluxes,

with all magnetic fluxes, including Romans mass, being set to zero. It was chosen to

preserve N = 2 local supersymmetry that, in turn, was needed to take into account non-

perturbative contributions, which are known only under very special circumstances. Of

course, from both phenomenological and pure theoretical viewpoints, it would be desirable

to extend our analysis to more general flux compactifications when N = 2 local super-

symmetry is broken to N = 1. This, however, would require a much better understanding

of quantum effects in N = 1 flux compactifications, beyond the current level. Whereas

their direct calculation from the first principles is hardly possible, one may hope that a

combination of string dualities with geometry of the moduli spaces will become as powerful

in the N = 1 case as it turned out to be in the N = 2 case.
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A Conventions and normalizations

A.1 Special geometry relations

A special Kähler manifold Msk is determined by a holomorphic prepotential F (XI), a

homogeneous function of degree 2. The homogeneous coordinates XI are related to the

coordinates on the manifold zi by zi = XI/X0 and, for simplicity, we choose the gauge

where X0 = 1. Given the prepotential, it is convenient to define the matrix

NIJ = −2 ImFIJ . (A.1)
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It is invertible, but has a split signature (b2, 1). A related invertible matrix with a definite

signature can be constructed as follows. Let us define

NIJ = F̄IJ −
iNIKX

KNJLX
L

NMNXMXN
. (A.2)

NIJ appears as the coupling matrix of the gauge fields in the low-energy effective action

and its imaginary part is negative definite.

In terms of the matrix (A.1), the Kähler potential on Msk is given by

K = − log
(
XINIJX̄

J
)
. (A.3)

For reader’s convenience, we give here its derivatives with respect to zi and z̄ ı̄,

Ki = −eKNiIX̄
I , (A.4a)

Kī = −eKNij +KiK̄, (A.4b)

Kij = −2eKFijkt
k +KiKj , (A.4c)

Kijk̄ = −ieKFijk +KiKjk̄ +KjKik̄ +Kk̄Kij −KiKjKk̄, (A.4d)

where we have used homogeneity of the holomorphic prepotential and zi = bi + iti. In

particular, (A.4b) provides the metric on Msk.

The inverse matrices of NIJ , ImNIJ and Kī are explicitly given by

N IJ = ∆−1

(
1 −N̂ jkN0k

−N̂ ikN0k N̂
ij∆ + N̂ ikN0kN̂

jlN0l

)
, (A.5a)

1

2
ImN IJ = N IJ − eK

(
XIX̄J + X̄IXJ

)
, (A.5b)

Kī = −e−K
(
N̂ ij +

e−KN̂ ikKk̄N̂ jlKl
1− e−KN̂klKk̄Kl

)
, (A.5c)

where N̂ ij denotes the inverse of Nij and ∆ = N00−N̂ ijN0iN0j . It follows from (A.5c) that

KīK̄ =
e−KN̂ ijK̄

e−KN̂mn̄KmKn̄ − 1
, (A.6a)

KiKīK̄ − 1 =
1

e−KN̂mn̄KmKn̄ − 1
. (A.6b)

Finally, using the covariant derivatives

DiX
I = (∂i + ∂iK)XI , (A.7)

we can rewrite (A.5a) and (A.5b) as

N IJ = −eK
(
KīDiX

ID̄X̄
J −XIX̄J

)
, (A.8a)

1

2
ImN IJ = −eK

(
KīDiX

ID̄X̄
J + X̄IXJ

)
. (A.8b)
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A.2 Quaternionic geometry and scalar potential

There is the extensive literature about the scalar potential in the gauged N = 2 supergrav-

ity, although one should be careful of the relative normalization of various contributions

to the scalar potential in explicit calculations. There are two sources of different nor-

malizations: (i) the gravitational coupling constant κ2, and (ii) the relation between the

quaternionic 2-forms and the metric tensor on the hypermultiplet moduli space. Here we

explain this numerical ambiguity, provide the scalar potential with a generic choice of the

parameters, fix our conventions and compare them to the literature.

We recall that a QK space is a 4n-real-dimensional manifold with a holonomy group

Sp(n)×SU(2) [71]. It is characterized by the existence of a quaternionic structure encoded

in a triplet of 2-forms ~ω. Let us choose the local complex structure such that ω+ is

holomorphic.16 Denoting by πX a basis of (1,0)-forms in this complex structure, the metric

is related to ω3 as

ds2 = 2gXȲ π
X ⊗ π̄Y , ω3 = ia gXȲ π

X ⊗ π̄Y , (A.9)

where we have parametrized the ambiguity in the normalization of the quaternionic forms

by a real parameter a.

The triplet of 2-forms ~ω is, in fact, proportional to the SU(2) part of the curvature.

Denoting by ~p the SU(2) part of the spin connection, we have

d~p+
1

2
~p× ~p =

ν

a
~ω, (A.10)

where ν is the constant of proportionality. It is related to the scalar curvature and the

quaternionic dimension n as R = 4n(n + 2)ν and, hence, fixes the scale of the metric.

When n = 1, we find R = 12ν and, consequently, ν = Λ/3, where Λ is a “cosmological con-

stant”. Furthermore, given the conventional normalization of the kinetic terms of graviton

and scalars,

Lkin = − 1

2κ2
R(e)− 1

2
guv∂µφ

u∂µφv, (A.11)

the local N = 2 supersymmetry fixes the parameter ν in terms of the gravitational coupling

as ν = −κ2.

Finally, when the QK metric has a Killing vector k ∈ TM, one can define a triplet of

moment maps ~µ [24] by the equation

∂u~µ+ ~pu × ~µ = ~ωuvk
v ⇒ ~µ = − 1

2ν
~ωuvDuk

v, (A.12)

where we have used (A.10) and the fact that ~ω are covariantly constant with respect to

the SU(2) connection, d~ω + ~p× ~ω = 0.

Given these conventions with arbitrary κ2 and a, the scalar potential resulting from

gauging a set of isometries on the hypermultiplet moduli space is given by

V = 2κ−2eKkuIk
v
JguvX

IX̄J − a−2

(
1

2
ImN IJ + 4eKXIX̄J

)
(~µI · ~µJ)

= 2κ−2eKkuIk
v
JguvX

IX̄J + a−2eK
(
KīDiX

ID̄X̄
J − 3XIX̄J

)
(~µI · ~µJ) ,

(A.13)

16We define the chiral basis as x± = − 1
2
(x1 ∓ ix2), so that ~x · ~y = x3y3 + 2x+y− + 2x−y+.
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where kI ∈ TMH are the charge vectors characterizing the gauging and given by lin-

ear combinations of the Killing vectors, and ~µI are the triplets of moment maps defined

by kI . In going from the first representation to the second one, we have used the rela-

tion (A.8b). Note that the definition (A.12) implies ~µ ∼ aκ−2, whereas a combination

of (A.9) and (A.10) yields guv ∼ κ−2. As a result, using all these facts in the poten-

tial (A.13), we find that the dependence on all normalization constants is factorized as

V ∼ κ−4 so that different normalizations do not affect physics.

In the literature, one can find two natural choices for the parameter a and two choices

for κ2:

a = 1 a = 2

κ2 = 2 [23] [70]

κ2 = a/2 [19, 47] [15]

Substituting the corresponding values of κ2 and a, one can check that the scalar poten-

tial (A.13) agrees with the one given in [19], but differs by the factor of 1/4 from those

in [23, 70]. In this paper, we choose a = 1 and κ2 = 1/2 so that the scalar potential takes

the form (2.1).

B The worldsheet instanton corrected metric on MV

Here we apply the general special geometry relations given in appendix A.1 to the case of

the holomorphic prepotential (2.8) defining the geometry of N = 2 vector multiplets in the

type IIA compactifications. A straightforward calculation yields

Nij = 2κijkt
k +

1

2π

∑
klγl∈H+

2 (Y)

n
(0)
k kikj log

∣∣∣1− e2πiklz
l
∣∣∣2 , (B.1a)

N0i = −2κijkb
jtk − 1

2π2

∑
klγl∈H+

2 (Y)

n
(0)
k ki Im

[
Li2

(
e2πiklz

l
)

+ 2πikjz
j log

(
1− e2πiklz

l
)]

(B.1b)

NiIX̄
I = −e−KKi = −2iκijkt

jtk (B.1c)

+
i

4π2

∑
klγl∈H+

2 (Y)

n
(0)
k ki

[
Li2

(
e2πiklz

l
)
−Li2

(
e−2πiklz̄

l
)
−4πkjt

j log
(
1−e2πiklz

l
)]
,

e−K = 8V−C+
1

2π3

∑
klγl∈H+

2 (Y)

n
(0)
k Re

[
Li3

(
e2πiklz

l
)

+2πkjt
jLi2

(
e2πiklz

l
)]
, (B.1d)

where we have introduced the CY volume, V = 1
6 κijkt

itjtk, and the parameter controlling

the perturbative α′-correction

C =
ζ(3)χY

4π3
. (B.2)

The metric in question is obtained by plugging these results into (A.4b).
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The inverse metric and other related matrices cannot be explicitly computed in the

presence of worldsheet instantons. If, however, we restrict ourselves to the perturbative

approximation, then they can be expressed in terms of the inverse of κij ≡ κijktk which we

denote by κij . In particular, we find

Ki ≈
2iκijt

j

8V − C
, (B.3a)

Kī ≈ −
2κij

8V − C
+

4κikt
kκjlt

l

(8V − C)2
(B.3b)

Kī ≈ −1

2
(8V − C)

(
κij − 2titj

4V + C

)
, (B.3c)

NIJ ≈

(
2κijb

ibj − 4V − C −2κijb
j

−2κijb
j 2κij

)
, (B.3d)

N IJ ≈ − 1

4V + c

(
1 bi

bi bibj − 1
2 (4V + C)κij

)
, (B.3e)

−1

2
ImN IJ ≈

(
1

4V + C
+

2

8V − C

)(
1 bi

bi bibj

)
+

(
0 0

0 2titj

8V−C −
1
2 κ

ij

)
. (B.3f)

C The D-instanton corrected metric of the universal hypermultiplet

C.1 The metric

To write down the metric computed in [47], we have to introduce several important objects.

First, let us summarize the data characterizing a rigid Calabi-Yau manifold:

• The intersection numbers κijk, which specify the classical holomorphic prepoten-

tial (2.3) on the Kähler moduli space.

• The Euler characteristic χY = 2h1,1 > 0, which appears in the α′-corrected prepo-

tential (2.8), and is always positive for rigid Y. We also use the following parameter:

c = −
χY

192π
= − π2

48ζ(3)
C. (C.1)

• The complex number

λ ≡ λ1 − iλ2 =

∫
B Ω∫
AΩ

(C.2)

given by the ratio of periods of the holomorphic 3-form Ω ∈ H3,0(Y) over an integral

symplectic basis (A,B) of H3(Y,Z). The geometry requires that λ2 > 0, which

explains the minus sign in (C.2).

• The generalized Donaldson-Thomas (DT) invariants Ωγ , which are integers counting,

roughly, the number of BPS instantons of charge γ = (p, q). In the case of the

vanishing magnetic charge p and arbitrary electric charge q, they coincide with the

Euler characteristic,

Ω(0,q) = χY. (C.3)
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Next, we introduce the central charge

Zγ = q − λp (C.4)

which characterizes a D-instanton of charge γ. It is used to define the function

Xγ(t) = (−1)qp exp
[
−2πi

(
qζ − pζ̃ +R

(
t−1Zγ − tZ̄γ

))]
, (C.5)

where R is a function on the moduli space, which is fixed below. Geometrically, t

parametrizes the fiber of the twistor space Z, a CP 1 bundle over MH , whereas Xγ are

Fourier modes of holomorphic Darboux coordinates on Z [41, 42]. Using (C.5), we define

J (1)
γ =

∫
`γ

dt

t
log (1−Xγ) , J (2)

γ =

∫
`γ

dt

t

Xγ
1−Xγ

,

J (1,±)
γ = ±

∫
`γ

dt

t1±1
log (1−Xγ) , J (2,±)

γ = ±
∫
`γ

dt

t1±1

Xγ
1−Xγ

,

(C.6)

where `γ is a contour on CP 1 joining t = 0 and t = ∞ along the direction fixed by the

phase of the central charge, `γ = iZγR+. These functions satisfy the reality properties

J (n)
γ = J (n)

−γ , J (n,+)
γ = J (n,−)

−γ , (C.7)

and the following identities:

ZγJ (n,+)
γ = Z̄γJ (n,−)

γ , (C.8)

which can be verified by partial integration. Expanding the integrands in powers of Xγ ,

they can be expressed as series of the modified Bessel functions of the second kind Kn.

The set of functions (C.6) encodes the D-instanton corrections to the moduli space.

It is, however, convenient to introduce a few more quantities, which explicitly appear in

the metric:

• the functions

v =
1

2π

∑
γ

Ωγ |Zγ |2J (2,−)
γ , M = 2λ2 −

1

2π

∑
γ

Ωγ |Zγ |2J (2)
γ ,

U = M +M−1|v|2,
(C.9)

• the one-forms

Y = dζ̃−λdζ− i

4π

∑
γ

ΩγZγ

(
J (2)
γ −vM−1J (2,+)

γ

)(
qdζ−pdζ̃

)
− 2iv

RM
dr, (C.10)

V(σ) =
2r

πλ2RU

∑
γ

ΩγZγ

(
J (2,+)
γ + v̄M−1J (2)

γ

) [
(q − λ1p)

(
dζ̃ − λ1dζ

)
+ λ2

2pdζ
]
.

(C.11)
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Finally, the function R entering (C.5) is implicitly determined as a solution to the

following equation:

r =
λ2R2

2
− c− iR

32π2

∑
γ

Ωγ

(
ZγJ (1,+)

γ + Z̄γJ (1,−)
γ

)
, (C.12)

where r = eφ is the four-dimensional dilaton.

With all the notations above, the D-instanton corrected metric on the four-dimensional

hypermultiplet moduli space is given by

ds2 =
2

r2

[(
1− 2r

R2U

)(
(dr)2+

R2

4
|Y|2

)
+

1

64

(
1− 2r

R2U

)−1 (
dσ+ζ̃dζ−ζdζ̃+V(σ)

)2
]
.

(C.13)

There are two regimes of validity of this result:

• One includes D-instantons of all charges γ = (p, q), but in this case the metric is

not valid beyond the one-instanton approximation, i.e. only the terms linear in the

DT invariants Ωγ can be trusted. In particular, such metric is merely approximately

quaternion-Kähler. In this approximation it can be further simplified by expanding

all the coefficients to the first order in Ωγ .

• One includes only “half” of D-instantons by restricting them to a set of charges

satisfying the condition of mutual locality, 〈γ, γ′〉 = 0. In this case, all charge

vectors are proportional to each other, γ = nγ0 with a fixed γ0. This restriction

should be imposed in all sums over γ in (C.9)–(C.12). Then the metric is exactly

quaternion-Kähler.

As was proven in [47] in the latter case, the metric (C.13) agrees with the Tod

ansatz [57] where the role of the Tod potential satisfying the Toda equation is played

by the function T = 2 log(R/2). Unfortunately, this function and the coordinates adapted

to the Tod ansatz are defined only implicitly in terms of the physical fields, so that we do

not use this representation here.

C.2 The moment maps

In this appendix we evaluate the quaternionic moment maps for the Killing vectors (2.10)

of the metric (C.13). They are defined by equation (A.12) and can be found using the

following trick. Let us contract (A.10) with kI . In our normalization νa−1 = −1
2 , so that

the resulting equation can be written down as

ιkI~ω = 2d (ιkI~p) + 2~p× (ιkI~p)− 2LkI~p . (C.14)

Thus, if the following condition holds

LkI~p = ιkId~p+ d (ιkI~p) = 0, (C.15)

comparing (C.14) and (A.12), we conclude that the moment maps are given by a very

simple expression,

~µI = 2ιkI~p . (C.16)
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To proceed further, we have to know the explicit expressions of the components of

the SU(2) connection ~p. They were computed in [47] and, after restricting them to four

dimensions, the result reads

p+ =
iR
4r

(
dζ̃ − λdζ − 1

8π2

∑
γ

ΩγZγdJ (1)
γ

)
,

p3 =
1

8r

(
dσ + ζ̃dζ − ζdζ̃

)
.

(C.17)

First, we need to check the vanishing of Lie derivatives (C.15) along the Killing vec-

tors (2.10). It is a trivial exercise for p3, whereas for p+ we find

LkIp
+ =

i

4r
(ιkIdR)

(
dζ̃ − λdζ − 1

8π2

∑
γ

ΩγZγdJ (1)
γ

)
− iR

32π2r

∑
γ

ΩγZγd
(
ιkIdJ

(1)
γ

)
.

(C.18)

Let us now take into account that the presence of the H-flux only admits D-instantons

of the charges satisfying hq = h̃p. This implies that ιkIdXγ = 0 and, as a result, both

terms in (C.18) vanish. Due to the same reason, the instanton term in (C.17) does not

contribute to the moment maps (C.16). Then it is easy to check that they coincide with

the expressions given in (2.11).

D The second derivatives of the perturbative potential

A straightforward calculation gives the following results for the second derivatives of the

scalar potential (4.1):

∂2
rV

(ϕ) =
eK

4r4

[
16h̃2

λ2

(1−γ)r+6c

1 + γ
+

4(et)2r

(r+2c)3

(
3(r+c)2+c2

)
− 3e−Kκijeiej

]
, (D.1a)

∂ti∂rV
(ϕ) =

eK

4r3

[
16eKκijt

j

(
2h̃2

λ2

(
2(r + 2c)

(1 + γ)2
− r
)

+
(et)2r(r + c)

(r + 2c)2

)
− 8(et)eir(r + c)

(r + 2c)2

−e−Kκijk κjmem κknen

]
, (D.1b)

∂ti∂tjV
(ϕ) =

eK

4r2

[
64e2Kκikt

kκjlt
l

(
4h̃2

λ2

(
2(r + c)

(1 + γ)3
− r
)

+
r(et)2

r + 2c

)

− 16eKκij

(
4h̃2

λ2

(
2(r+c)

(1+γ)2
−r
)

+
r(et)2

r+2c

)
− 16r(et)eK

r+2c
(eiκjk+ejκikl) t

k

+
4reiej
r + 2c

− e−Kκikl κkpep κlm κjmn κnqeq

]
. (D.1c)
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Contracting the last two quantities with ti and ni ≡ κijej
eK(et)

, we find

ti∂ti∂rV
(ϕ) =

eK

4r3

[
8h̃2(3+γ)

λ2

(
2(r+2c)

(1+γ)2
−r
)

+
4(et)2r(r + c)(1 + γ)

(r + 2c)2
− e−Kκijeiej

]
,

(D.2a)

ni∂ti∂rV
(ϕ) =

eK

4r3

[
32h̃2

λ2

(
2(r + 2c)

(1 + γ)2
− r
)

+
8r(r + c)

(r + 2c)2

(
2(et)2 − e−Kκijeiej

)
−e
−2K

(et)
κijk κ

ilel κ
jmem κ

knen

]
, (D.2b)

titj∂ti∂tjV
(ϕ) =

eK

4r2

[
16h̃2(3 + γ)

λ2

(
4(r + c)

(1 + γ)3
− (2 + γ)r

)
+

4(et)2r(1 + 3γ + γ2)

r + 2c

−e−Kκijeiej

]
, (D.2c)

nitj∂ti∂tjV
(ϕ) =

eK

4r2

[
64h̃2

λ2

(
4(r+c)

(1+γ)3
−(2+γ)r

)
+

4r

r+2c

(
4(1+γ)(et)2−e−K(2+γ)κijeiej

)
−e
−2K

(et)
κijk κ

ilel κ
jmem κ

knen

]
, (D.2d)

ninj∂ti∂tjV
(ϕ) =

eK

4r2(et)2

[
16
(
4(et)2 − e−Kκijeiej

)(4h̃2

λ2

(
2(r + c)

(1 + γ)2
− r
)

+
(et)2r

r + 2c

)

− 512h̃2(et)2γ(r + c)

λ2(1 + γ)3
− 4r e−K

r + 2c
κijeiej

(
8(et)2 − e−Kκijeiej

)
−e−3Kκijκikl κ

kpep κ
lqeq κjmn κ

mrer κ
nses

]
. (D.2e)

Using (4.4), (4.5) and (4.23), all terms with the intersection numbers and/or flux

parameters ei, and, hence, all the second derivatives also, can be written down as functions

of γ and r only. Explicitly, they are

∂2
rV

(ϕ) = −2h̃2eK

λ2r4

γ(1−γ2)r3−2(7−17γ−13γ2−γ3)cr2−8(4−3γ−2γ2)c2r−16c3

(1+γ)2(r+2c)(γr+c(1+2γ))
,

(D.3a)

ti∂ti∂rV
(ϕ) = −2h̃2eK

λ2r3

γ(3−5γ−5γ2−γ3)r2−2(1−3γ−2γ2)cr−8(1+γ)c2

(1+γ)2(γr+c(1+2γ))
, (D.3b)

ni∂ti∂rV
(ϕ) = − 8h̃2eK

λ2r3(1 + γ)2(r + 2c)2(γr + c(1 + 2γ))

(
γ(1− 2γ − γ2)r4 (D.3c)

+ 2(3−4γ−11γ2−3γ3)cr3+4γ(3−4γ−γ2)c2r2−8(5−2γ)c3r−32c4
)
,

titj∂ti∂tjV
(ϕ) = − 2h̃2eK

λ2r2(1 + γ)3(γr + c(1 + 2γ))

(
γ(4 + 29γ + 5γ2 − 5γ3 − γ4)r2

−2(3−23γ−69γ2−29γ3−2γ4)cr−4(3−4γ−17γ2−6γ3)c2
)
, (D.3d)
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Figure 5. The functions ∆1(γ, r = r+(γ)) (blue) and ∆2(γ, r = r+(γ)) (red) rescaled by a ≡ 3λ2|c|C
h̃2

and a2, respectively. (∆2 was also multiplied by 10 to make it more visible.) The vertical line

indicates the bound γ < γ? in (4.16). The right picture magnifies the region near the critical

value. Both pictures demonstrate that, in the allowed range of γ, the two functions are never

simultaneously positive.

nitj∂ti∂tjV
(ϕ) =

8h̃2eK

λ2r2(1 + γ)3(r + 2c)(γr + c(1 + 2γ))

(
γ(2− 13γ − 13γ2 − 7γ3 − γ4)r3

+2(1− 8γ − 28γ2 − 4γ3 − γ4)cr2 + 4(2− 13γ − 27γ2 − 2γ3)c2r

+8(1− 3γ − 6γ2)c3
)
, (D.3e)

ninj∂ti∂tjV
(ϕ) =

32h̃2eK

λ2r2(1 + γ)3(r + 2c)3(γr + c(1 + 2γ))((5− 10γ − 9γ2 − 2γ3)r + 8c)

×
(
(100− 320γ − 377γ2 + 831γ3 + 1246γ4 + 614γ5 + 135γ6 + 11γ7)r6

+ 2(275−643γ−1180γ2+1232γ3+2193γ4+1043γ5+216γ6+16γ7)cr5

+ 4(168− 233γ − 903γ2 + 482γ3 + 1087γ4 + 439γ5 + 76γ6 + 4γ7)c2r4

+ 8(−158 + 139γ + 127γ2 + 340γ3 + 313γ4 + 61γ5 + 6γ6)c3r3

+ 16(−232 + 21γ + 232γ2 + 195γ3 + 88γ4 + 4γ5)c4r2

+32(−93− 36γ + 41γ2 + 32γ3 + 12γ4)c5r − 256(3 + 2γ)c6
)
. (D.3f)

We are interested in whether the first three principle minors ∆k of the matrix M (4.22),

which are constructed from the quantities (D.3), can be simultaneously positive. Verifying

this condition on Mathematica shows that it is never satisfied (we employed the function

RegionPlot with the argument
{

∆1 > 0 && ∆2 > 0 && ∆3 > 0
}

). This implies that there

are no local minima of the perturbative potential with at least two Kähler moduli.

The same method can be used to show that the same conclusion remains true in the

one-modulus case. In this case, one should consider only two functions, ∆1 and ∆2. Plotting

the regions where they are positive shows that they have a non-trivial intersection. Hence,

this simple analysis does not exclude meta-stable vacua yet. However, in the one-modulus

case we know that critical points must belong to the curve r = r+(γ) (4.13). Substituting

this into ∆1 and ∆2, and plotting the resulting functions of γ, we arrive at figure 5. It

shows that these two functions are never simultaneously positive and, hence, both critical

points of the perturbative potential are unstable.
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E The matrix ImNIJ

In this appendix we elaborate the condition of negative definiteness of the matrix ImNIJ
defined in (A.2). Since any change of basis does not change the signature of a matrix, we

can equivalently consider the matrix N = UT ( ImN )U . Choosing U =

(
1 0

bi δij

)
and

using

NiIX
I = −e−KKı̄, NIJX

IXJ = e−K
(
1− 2itiKı̄

)
, (E.1)

we find

N =

 1
2

(
e−K −Nijt

itj
)
− e−KRe

(1−itiKı̄)
2

1−2itiKı̄ −1
2 ReKı̄ + e−KRe

(1−itiKı̄)Kı̄
1−2itiKı̄

−1
2 ReKı̄ + e−KRe

(1−itiKı̄)Kı̄
1−2itiKı̄

1
2 Nij − e−KRe

Kı̄K̄
1−2itiKı̄

 . (E.2)

Let us now take half-integer bi-moduli as in (3.2). Then Kı̄ = −ieKNijt
j (see (B.1))

and the matrix (E.2) simplifies to

N =

−1
2 e
−K e−K−Nijtitj

e−K−2Nijtitj
0

0 1
2 Nij +

Nikt
kNjlt

l

e−K−2Nijtitj

 . (E.3)

Thus, the negative definiteness of ImNIJ requires

Nijt
itj − e−K

2Nijtitj − e−K
> 0 and

2Nikt
kNjlt

l

2Nijtitj − e−K
−Nij is positive definite. (E.4)

Let us further restrict ourselves to the one-modulus case and drop the indices i, j taking

a single value. Then the two conditions (E.4) simplify as

Nt2 − e−K

2Nt2 − e−K
> 0 and

Ne−K

2Nt2 − e−K
> 0. (E.5)

Given positivity of e−K, it is easy to see that these conditions are equivalent to (5.5).
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