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Abstract

This paper introduces a coupled approach between stochastic finite element methods and an adaptive con-

densation technique for the analysis of nonlinear mechanical problems under uncertainties. This coupling

reduces the size of each individual nonlinear problem solved in SFE by the use of an adaptive condensation

method. The reduced stiffnesses and other quantities necessary for the condensation technique are approx-

imated using a second, low-order, polynomial expansion, thus taking advantage of the coupling with SFE.

This approach also features a semi-analytical technique to compute accurately distributions of structural

quantities of interest. This method is applied on an elasto-plastic steel bar with a small defect, and on a

damaged beam under 4-point bending. In both cases it predicts the random behaviour of the structure quite

accurately, and is able to provide higher-order models than a state-of-the-art stochastic collocation method,

for a reduced computation time.

Keywords: Stochastic finite elements, Concrete cracking, Collocation, Static condensation, Metamodels.

1. Introduction

During the last decades, numerous methods have been developed, inside the general framework of stochas-

tic finite elements (SFE). These methods allow the use of finite element analysis on uncertain mechanical

problems. They can also quantify the influence on the structure of these uncertainties on quantities of

interest. The Monte-Carlo (MC) method [1, 2] should be considered as the first one, and is still widely used

in different application domains. However, more recent modeling techniques offer, compared to the MC

method, higher orders of convergence, and require a reduced number of deterministic simulations [3, 4, 5, 6].

These techniques are now used in several industrial simulation codes [7, 8]. In certain cases, they even

provide directly approximations of the statistical quantities of interest [9, 10, 11]: mean values, statistical

moments, probability density functions (PDFs), etc. SFE methods are characterized by three combined

building blocks, which allow to predict the behaviour of a structure under uncertainties [6]

• A model for uncertainties (e.g. modeling of random material properties).

• A mathematical technique to solve deterministic problems (typically, direct FE simulation).
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• An algorithm to propagate deterministic solutions depending on the uncertainties (e.g. perturbation,

polynomial chaos expansion).

Various methods have been developed to model the uncertainties on geometry, material properties, load-

ing. Techniques to propagate uncertainties through deterministic solutions have also been widely studied,

and various classes of methods are now available in literature. However, in the framework of SFE, few studies

addressed the problem of the model and of the numerical techniques to solve the deterministic problems,

in particular to minimize the computational cost [6, 12]. It is especially the case for large scale nonlinear

systems, for which non intrusive approaches such as Polynomial-Chaos or collocation-based methods are

generally preferred to intrusive ones.

This work presents a coupled method to solve nonlinear SFE problems at a reduced cost. It includes

a deterministic system reduction approach similar to those in [13] (using dynamic condensation) or in [14]

(using static condensation). However, the presented method :

• uses an adaptive condensation technique based on a two-level Guyan’s reduction, suitable for nonlinear

mechanical problems [15, 16].

• builds a second, lower-order, metamodel. This is used for the stiffnesses, equivalent loadings and

displacements fields necessary in the condensation technique.

• provides full probability density functions (PDF) of quantities of interest thanks to a semi-analytical

approach or Monte-Carlo simulations when it is not possible.

This method may be used in mechanical engineering, to evaluate the robustness of numerical models, build

fragility curves of mechanical systems, etc. In particular, an application to civil engineering structures is

proposed in this contribution.

Firstly, the nonlinear stochastic mechanical problem to be solved is presented and formulated. Then,

the proposed method to solve it efficiently is described. A validation is performed on an heuristic test case,

where the presented SFEM is compared to analytical results. Finally, an application is presented, where the

method is compared to a state-of-the-art SFE technique.

2. Problem setting

2.1. Stochastic nonlinear mechanical problem

The problem is a general n-dimensional nonlinear mechanical problem, defined on a bounded domain

Ω εRd (d=1,2,3). It is characterized by a set of r input parameters y = (y1, ..., yr). It is assumed that the

problem is well posed. The problem is solved using the finite element method (implemented in Cast3M [17]).
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The resulting n-dimensional mechanical system is considered through a pseudo-time t. Using a discretized

time τ , the problem can be solved iteratively :

[Kτ (y, uτ (y))] . [uτ (y)] = [F τ (y)] (1)

where Kτ ∈ Rn,n is the stiffness matrix, uτ ∈ Rn the nodal displacement vector, and F τ ∈ Rn the nodal force

vector (at time t = τ). Mechanical quantities of interest can be extracted once the structural problem has

been solved: they are considered as a random vector Z = hτ (y). We consider in the following that the random

input parameters can be normalized to a standardized Gaussian random vector x = (x1, ..., xr) = T (y), using

the Gaussian standardization function T [18]. Given that any distribution can be generated from a standard

distribution [18], this methodology allows to chose any type of law for the actual r.v.s used in the problem

(mechanical properties, random fields, etc) with a single SFE method. The denormalization function is

therefore included in the mechanical response function M. The random vector Z writes :

Z = hτ (y) = hτ ◦ T−1(x) =M(x) (2)

2.2. Construction of a metamodel

The input uncertain parameters y are represented using a r-dimensional vector of standard independent

random variables (r.v.s) X = T (Y ) = (X1, ..., Xr), defined on the probability space (Θ,F ,P).

In some cases, the function M is approximated using an analytical function Z̃ = M̃(X) : Ω → I. This

approximation M̃ is classically provided using SFE methods under the general form of a metamodel (or

surface response). This metamodel is often a projection of the mechanical functionM onto a suitable basis

of an ng dimensional domain of orthogonal polynomials Φp, p = 1, ..., ng. The approximation of the random

variable (r.v.) writes :

Z =M(X) ' Z̃ = M̃(X) =

ng∑
p=1

zpΦp(X) (3)

where zp are the coefficients of the polynomial metamodel, more or less complicated to estimate, as discussed

further.

2.3. Probability Density Functions (PDFs) of the quantities of interest

In numerous studies using SFE methods, only the mean value of the structural quantities of interest,

several statistical moments, or a direct probability of failure are usually computed for a given problem [8].

These can be obtained with various techniques, through sensitivity or reliability approaches. We are inter-

ested in the full probabilistic characterization of the r.v. Z =M(X), i.e. we seek to approximate the PDF

pZ , as well as the mean µZ , and standard deviation σZ . The PDF pZ̃ of Z̃ is a good approximation of pZ

(pZ̃ allows to obtain quantities such as µZ̃ and σZ̃).
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For the sake of simplicity, it is assumed in Eq. (4) that the mechanical system depends on one real r.v.

X whose law admits a PDF pX on the interval I. It is assumed that there exists a set of n duals of intervals

(Θ1
i ,Θ

2
i ) of R and bijections Mi : Θ1

i → Θ2
i such that ∀x ∈ Θ1

i ,Mi(x) =M(x). Each function Mi admits

a reciprocal M−1
i . Using a change of variables, pZ writes :

pZ(z) =
∑
i∈Iz

pX
(
M−1

i (z)
) ∣∣M−1′

i (z)
∣∣ (4)

where M−1′
i is the derivative of the function M−1

i , and Iz = {i ∈ [1, n], z ∈ Θ2
i }. The same hypotheses

are made for M̃ with similar notations (in particular, the functions M̃i are explicitly known if M̃ is a

polynomial function) to obtain the PDF pZ̃ of Z̃.

However, on typical mechanical problems under uncertainties, the quantities of interest depend on several

random parameters. This approach can be extended to this case with similar hypotheses [19], making it

suitable for a much larger range of mechanical problems. In this case, the PDF of Z and its approximation

Z̃ write in an expression similar to Eq. (4) :

pZ(z) =
∑
i∈Iz

pX
(
M−1

i (z)
) ∣∣det

(
DM−1

i (z)
)∣∣ ' pZ̃(z) =

∑
i∈Iz̃

pX

(
M̃−1

i (z)
) ∣∣∣det

(
DM̃−1

i (z)
)∣∣∣ (5)

where DM−1
i is the Jacobian matrix of the function M−1

i , and Iz̃ = {i ∈ [1, n], z ∈ Θ2
i }.

3. Formulation of the proposed approach

In this section, an approach is proposed to solve the previous problem, and to obtain the probabilistic

estimation of the quantities of interest:

• A coupling between an adaptative condensation method and SFE approaches is introduced: the adap-

tive condensed SFEM. This method can be applied with different SFE approaches to provide the

coefficients for the approximations of the mechanical response functions (Eq. (3)).

• The particular case of the coupling with a stochastic collocation method is presented.

• A semi-analytical approach to compute the PDF of the quantities of interest is introduced. This

method uses the approximated response function to build the PDF of the quantities of interest Z.

3.1. Adaptive condensed SFE method

In the general framework of SFE methods, deterministic problems have to be solved to provide the

coefficients zp for the approximation of M̃ in the form of Eq. (3). The proposed approach allows to

compute these coefficients efficiently.
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3.1.1. Problem decomposition and static condensation

For the sake of clarity, dependency on y is implicitly considered in the next two paragraphs. To solve the

nonlinear structural problem (Eq. (1)) defined on Ω, nI subproblems Ωi are considered. They are divided

in two groups:

• ΩE contains the nE elastic areas Ωi numbered by i ∈ E.

• ΩN contains the nN nonlinear areas (or areas of interest) Ωi numbered by i ∈ N .

These groups are defined for any time τ such that Ω = ΩZ ∪ΩN (and nI = nE + nN ). The subdomains are

such that areas interact together only by their geometrical boundaries (continuous media). The associated

stiffness matrices of ΩE and ΩN can be obtained by assembling the stiffnesses of the areas Ωi. The global

problem then writes : KE,E KE,N

tKE,N Kτ
N,N (uτ )

 .

uτE
uτN

 =

F τE
F τN

 (6)

Guyan’s technique [15] applied to ΩE allows to reduce this system by condensing it on the nonlinear sub-

domain ΩN . It follows the condensed stiffness matrix K̂ and loading vector F̂ :

K̂τ (uτN ) = Kτ
N,N (uτN )− tKE,NK

−1
E,EKE,N (7)

F̂ τ = F τN − tKE,NK
−1
E,EF

τ
E (8)

The condensed nonlinear system at time τ is finally obtained :

K̂τ (uτN ).uτN = F̂ τ (9)

This system is reduced and contains all the information on the nonlinear behaviour. The solution uτE on

ΩE can still be deduced by linear resolution (much less time-consuming) from the condensed solution uτN ,

using Eq. (6) :

uτE = K−1
E,E (F τE −KE,Nu

τ
N ) (10)

3.1.2. Adaptive condensation

The adaptive condensation method constitutes an upgrade of Guyan’s method in two aspects [16] :

• It uses time-dependent decomposition in elastic areas (EA) and nonlinear areas (NLA): EA are pro-

moted to NLA when they enter a nonlinear phase. Thus, it follows the evolution of the system in

nonlinear behaviour. Therefore, ΩE and ΩN become respectively ΩτE and ΩτN .

• It uses two levels of condensation : first on each condensed area, and second on the assembled condensed

area ΩτE . This optimizes the computation of stiffness matrices.
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1 2 3
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(a) Full problem (6 areas)

3

(b) Problem at time τ0

3

4 5

(c) Problem at time τ1 > τ0

Stiffness

Forces

Blocked displacement

(d)

Figure 1: Illustration of a nonlinear mechanical problem solved with adaptive condensation [16]: the method eliminates the

linear areas and adapts to the evolution of the system. At time τ0, only one area is nonlinear (#3). At time τ1, three areas

are nonlinear (#3, #4, #5).

Computing the condensed stiffness matrix K̂τ is a time-consuming operation, mainly because of the large

dimension of the inverse term K−1
E,E of Eq. (7). In practical cases, nonlinear behaviour appears in the initially

elastic areas, and requires updates of the subdomains ΩτE and ΩτN , and of the stiffness matrices KE,E and

K̂τ (Fig. 1). Therefore, to limit computational cost in updates of K−1
E,E , a second level of condensation

is applied inside each area Ωi on its boundaries, computing its equivalent stiffness K̂i,i before starting the

nonlinear simulation. The reduced stiffness matrices of each condensed area writes, for j ∈ E, K̂j,j . The

global stiffness of condensed areas used in Eq. (6) is then assembled from condensed area stiffnesses :

KE,E =


K̂1,1 ... K̂1,nE

...
. . .

...

K̂nE ,1 ... K̂nE ,nE

 (11)

The dimension of the matrix KE,E is reduced, thus reducing the computational cost of its inversion. The

time-consuming operation is now to compute the reduced stiffnesses K̂j,j of condensed areas. These stiff-

nesses are not updated through a deterministic simulation. Guyan’s formula can be used to solve the system

in each condensed area Ωj and obtain the solution uτj . This is required to monitor the mechanical state of

the system and update the decomposition if necessary.

It is worth noting that the inverses of the stiffness matrices are only used in the theoretical formulation,

while the actual algorithms more often use matrix decomposition methods such as Cholesky or LU factor-

ization [20, 21]. However, the stiffness matrices are invertible when using a dualization method for boundary

conditions (such as the double Lagrange multipliers used in Cast3M [17, 22]).

3.1.3. Approximation of condensed quantities

In SFE methods, each individual deterministic problem can be solved using finite elements with the

adaptive condensation method described in 3.1.2. The adaptive condensation method reduces the cost of

the FE simulation of the problem, but requires computing additional quantities.
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• The condensed stiffness matrices K̂i,i. These are pre-computed before the start of each nonlinear

simulation.

• The condensed loading F̂ τi . These are computed throughout each nonlinear simulation.

• The local solution uτCi inside each condensed area, computed regularly to monitor the mechanical state

of the condensed areas (and trigger the promotion from EA to NLA [16]).

These quantities, which depend on the values of the random parameters, would have to be computed

independently for any realization and nonlinear simulation run in the SFE framework. As this is a rather

costly operation, this approach should be optimized. The proposed method therefore builds for the condensed

stiffness of each area Ωi a metamodel of order (nKi − 1) on values of an appropriate subvector XKi of X.

In each deterministic simulation, the necessary quantities are approximated using this metamodel. The

reduced stiffness matrix is approximated at the beginning of the numerical simulation :

K̂i(X) '
nKi∑
p=1

K̂p
i Φp(XKi) (12)

Following the same form, the condensed force vector F̂ τi (X) of the condensed area Ωi can also be written

as :

F̂ τi (X) = F τMi(X)− tKCi,Mi(X)K−1
Ci,Ci(X)F τCi(X) (13)

F̂ τi (X) '
nFi∑
p=1

F̂ τ,pi Φ′p(XFi) (14)

The solution uτCi(X) on the eliminated degrees of freedom (DOFs) on area Ωi also writes :

uτCi(X) = K−1
Ci,Ci(X) (F τCi(X)−KCi,Mi(X)uτMi(X)) (15)

uτCi(X) '
nui∑
p=1

uτ,pCiΦ′′p(Xui) (16)

where Φp, Φ′p, and Φ′′p are three bases of orthogonal polynomials, and K̂p, F̂ p, and up are the coefficients of

the approximation.

It is worth noting that these metamodels are independent from the approximation of Eq (3), and can

therefore be built using a different approach: for instance, the quantities necessary for condensation could be

approximated by Taylor expansion, while the mechanical response could be approximated using a collocation-

based SFE approach. This reduces the dimension of the pre-simulation polynomial metamodel computation.

3.2. Condensed stochastic collocation

Fig. 2 presents the general scheme of the condensed stochastic collocation approach.

7
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Figure 2: General scheme of the ”Condensed Stochastic Collocation” approach.

3.2.1. Stochastic collocation

Stochastic collocation is a class of SFE methods in which the coefficients zp of the polynomial metamodel

M̃ of the mechanical response functionM are computed using successive deterministic simulations on sample

realizations. This study more specifically uses the Lagrange-polynomial based collocation method described

in [23]. Given that the order of approximation is in general relatively low, Lagrange polynomials are used as

basis of Φp in Eq. (3), instead of Hermite polynomials. The resulting stochastic collocation method solves a

number of deterministic problems defined by the ng collocation points zp =M(xp) of the response function

M̃ defined in Eq. (3). The collocation points xp are chosen accordingly to the Gauss-Hermite quadrature,

to minimize the Runge oscillation phenomenon of Lagrange polynomials [20].

3.2.2. Adaptive condensed stochastic collocation

The proposed condensed stochastic collocation method is the application of coupling between the stochas-

tic collocation method and the adaptive condensation method. It is the specific form of the adaptive con-

densed SFEM in a collocation-based framework. The proposed approach is actually a double-collocation

based approach:

• A first collocation-based metamodel is built to approximate the condensation quantities (stiffness

matrices) depending on the problem’s random parameters.

• A second metamodel is built for the mechanical response function: this requires computation of de-

terministic simulations on collocation points.

• The mechanical function on collocation points is computed using the adaptive condensation method.

The necessary condensation quantities are approximated in these simulations using the first metamodel.

8
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In the particular form of condensed stochastic collocation, the approximated random condensed stiffness

matrices K̂i(X), random condensed force vectors F̂ τi (X) and random displacement fields uτCi(X) in the

condensed areas are approximated based on a collocation metamodel. At first, for each area i, the random

variables of X that influence the condensed quantities of area i (in particular, the reduced stiffness), are

determined and ordered in a subvector XKi.

The choice of the subvectors XKi and of the order of approximation (nK − 1) depends on the nature of

the uncertainties taken into account

• Random variable that influence the elastic stiffness (in particular, elastic material properties such

as Young’s modulus or Poisson coefficient) should be included in the subvector XKi. The stiffness

matrices are approximated linearly on those variables (therefore nK = 2) in the proposed applications.

• Random variables that have no impact on the elastic stiffness (such as loading or elastic limit) are not

considered in the vector XKi.

• Random variables that influence nonlinearly the stiffnesses (such as position of inclusions) are included

in the vector XKi, with an order of approximation nK ≥ 3.

Obviously the choice of the rvs to be included in the local metamodels is largely case-dependant. For

instance, on civil engineering applications, concrete properties are often represented by uncertainty on local

model parameters, such as Young’s modulus or damage threshold. These properties are often considered to

vary independently between the different lifts. Therefore, for a given area i, a good strategy is to take into

account in XKi only the elastic modulus of the lift in which the area is situated.

On these subvectors XKi, collocation points xpKi are determined accordingly to the Gauss-Hermite

quadrature (as for the first metamodel), on which the values K̂p
i of the condensed stiffnesses are calcu-

lated. Note that the stiffness matrices (K̂p
i ,K

p
Ci,Mi,K

p
Ci,Ci) are calculated at these points, but also the

(time-consuming) inverse terms ((K−1)p) that will allow to compute other condensed quantities.

A Lagrange-polynomial based metamodel is then built by collocation on those points, for the estimation

of the condensed stiffnesses at the start of each condensed nonlinear simulation:

K̂i(X) '
nK∑
p=1

K̂p
i Φp(XKi) (17)

where Φp are the Lagrange polynomials defined on the nK points of the metamodel, XKi is the selected

sub-vector of X, and K̂p are the values at the collocation points xpKi.

During the condensed nonlinear simulations, it is necessary to compute the reduced loading transmitted

by the condensed areas to the areas of interest. It is also necessary to compute regularly the displacements

and promotion criteria in the condensed areas. In the condensed stochastic collocation, these quantities are

9
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first computed using the collocation values of the inverted stiffnesses (K−1)p:

F̂ τ,pi (X) ' F τMi(X)−
(
tKCi,Mi(K

−1
Ci,Ci)

p
)
F τCi(X) (18)

uτ,pi (X) ' (K−1
Ci,Ci)

p (F τCi(X)−KCi,Miu
τ
Mi(X)) (19)

Afterwards, the condensed quantities are approximated from these values using a Lagrange polynomial

metamodel, and used within the nonlinear simulation:

F̂ τi (X) '
nK∑
p=1

F̂ τ,pi (X)Φp(XKi) (20)

uτCi(X) '
nK∑
p=1

uτ,pCi (X)Φp(XKi) (21)

One of the advantages of this approach is that it allows to use the same choice of r.v.s XKi and collocation

points xpKi, and therefore a single metamodel for all condensation quantities.

It can be used with almost no user input, for instance by simply taking all variables into account in

the subvector (XKi = X), with a reduced order of approximation (typically nK = 2). Since the number of

necessary computations of the reduced stiffnesses (collocation values) grows in (nK)n (where n is the total

number of rvs), it is largely reduced in this way if the number of rvs is high. However, with some user

expertise to identify the influence of the different rvs on the local stiffnesses, it can reduce more drastically

the number of necessary calculations of reduced stiffnesses. On a typical civil engineering study, a single

computation of the reduced stiffnesses may require several minutes on a dedicated simulation node.

3.3. Approximation of the PDF of quantities of interest

The objective is to obtain an approximation of the probabilistic characterization of the quantities of

interest Z. The approximation Z̃ of Z is available from SFE methods and has then to be characterized (in

particular, its PDF pZ̃ must be computed). Two different approaches are presented for this purpose, that

will be used and compared in the following parts.

3.3.1. Monte-Carlo estimation

The first method available consists in applying the Monte-Carlo method on the response function.

This approach is proposed in [23], with a polynomial metamodel built by collocation. For a given (ar-

bitrarily large) sample (x1, . . . , xN ) of realizations of X, the values of the approximated response function(
M̃(x1), . . . ,M̃(xN )

)
are computed. The experimental distribution can then be statistically analyzed.

This technique presents numerous advantages, mainly a simplicity of implementation and robustness, and

a limited computational load, as the polynomial response surface requires very little calculation. Also, it

matches the objective of building a full probabilistic characterization (with PDF) of the approximated quan-

tities of interest Z̃. However, it still has drawbacks, such as a low rate of convergence and the necessity to

post-process large quantities of data.

10
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3.3.2. Semi-analytical approach

In several cases, where the form of the metamodel M̃ is rather simple, another approach is proposed here

to avoid these disadvantages. The proposed technique, called semi-analytical approach, uses the expression

of the metamodel M̃ to compute directly the PDF of the approximated quantities of interest Z̃. It offers,

under certain hypotheses, an alternative to Monte-Carlo type methods, or other kinds of numerical methods

applied on the metamodel, and uses its polynomial nature. In the cases where the hypotheses are not

matched, or hard to obtain, applying the Monte-Carlo approach to the polynomial expansion may still be

required. Using either Eq.(4) or Eq.(5) with the approximation M̃ of the mechanical response allows to

obtain the PDF of Z̃.

For the sake of clarity, we focus at first on the particular case of a single r.v. Considering a standard

Gaussian PDF, and assuming that M′ is non-null at x = M̃−1
i (z), the PDF of Z̃ is deduced (Eq.(4)) :

pZ̃(z) =
∑
i∈Iz̃

1√
2π

exp

(
−1

2

(
M̃−1

i (z)
)2
) ∣∣∣∣∣∣ 1

M̃′
(
M̃−1

i (z)
)
∣∣∣∣∣∣ (22)

Considering the polynomial nature of M̃, its derivative M̃′ can be explicitly computed, and the intervals

Iz where M̃ is bijective are given by the roots of M̃′. The local reciprocals M̃−1
i of M̃ may be obtained

directly if the order of the expansion is low: in the cases where Nsc ∈ [2, 3], explicit solutions exist to the

equation M̃(x) = z. In the other cases, where the metamodel is of higher degree, local approximations of

the reciprocals M̃−1
i may be used.

An approach is to compute the values M̃i(x
j) = z̃j of the function M̃i on an arbitrary number of points

xj ∈ Θ1
i . On each point xj , the first and second derivatives M̃′i(xj) and M̃′′i (xj) can be computed, either

directly (if the expression of M̃ is explicitly known), or using a finite-difference scheme with M̃i(x
j−1) = z̃j−1

and M̃i(x
j+1) = z̃j+1. These derivatives also provide the values of derivatives of the reciprocal M̃−1′

i (z̃j) and

M̃−1′′
i (z̃j). Therefore, a degree-2 Taylor approximation of M̃−1

i around zj can be built. This approximation

is to be used in Eq. (22) to compute values of the PDF of the quantity of interest pZ̃ .

In the general case however, the response function and its approximation M̃ are functions of k scalar

r.v.s that provide k′ scalar values: M̃ : Θ1 ⊂ Rk → Θ2 ⊂ Rk′ with, ∀x = (x1, . . . , xk) ∈ Θ1, M̃(x) =(
M̃1(x), . . . ,M̃k′(x)

)
. In some cases, local bijections M̃i can be built. A first step is to use k-dimensional

sets as Θ1 and Θ2.

• If k′ > k, a possible approach is to separate the values in multiple response functions. The single

response function M̃ : Rk → Rk′ is replaced by a serial of functions A, B, C... : Rk → Rk treated as

separate responses.

• If k′ < k, a possible approach is to build a response function N : Rk → Rk such that N (x) =(
M̃1(x), . . . ,M̃k′(x), xk′+1, . . . , xk

)
.
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A combination of both methods can be necessary to obtain k-dimensional sets in some cases. The series of

sets {Θ1
1, . . . ,Θ

1
k} and {Θ2

1, . . . ,Θ
2
k} and the local bijections Ni can then be built. Their reciprocals N−1

i

may be built explicitly in some cases. However, in the general case, they will be approximated using methods

similar to the 1-dimensional case such as Taylor expansion. The PDF of N (X) can be obtained using Eq. (5)

with the functions Ni. The PDF of Z̃ = M̃(X) can then be deduced using conditional probability.

Therefore, this can be considered as a semi-analytical method to obtain an approximation of the response

of the probabilistic problem. This method requires to extract the metamodel, define the sets where it is

bijective and compute the derivatives. In particular it requires a mathematical study to obtain the bijectivity

of a response function in the multivariate case. This may represent a large amount of work for high-order

metamodels with a large number of random variables. However, for problems with low numbers of random

parameters, the proposed semi-analytical approach provides analytical-quality results.

4. Application: Steel bar with localized defect

4.1. Problem description

This test case aims at illustrating the principle and applicability of the proposed method on a small two-

dimensional, locally nonlinear problem: in particular, it can be simplified to be solved analytically. it also

includes an arbitrarily small area with nonlinear behaviour. The results are compared to a state-of-the-art

SFE method [23, 24] and an analytical solution. The structure is a steel bar with a central defect, undergoing

tensile loading. The objective is to build a metamodel of the mechanical behaviour and to extract a PDF

for the maximum plastic strain εp at the end of the loading.

Figure 3: Scheme of the steel bar with boundary conditions

The bar is modeled in two dimensions under the plane stress hypothesis. Fig. 3 presents the scheme of

the bar. The bar is meshed uniformly with square bilinear elements (QUA4). The central defect is modeled

as a 2 cm long segment. At this position, the height of the bar is reduced by 5 %. The relation between

both end parts of the bar and the central part is ensured by kinematic relations on nodal displacements.

Fig. 4 presents the meshes (central part): different mesh size will be used to evaluate scalability. Rigid body

motion is blocked. The loading is an horizontal force applied at the right end, to create uniaxial loading

conditions. It yields a stress of 475 MPa in both lateral parts, and f = 500 MPa in the central part.

The steel is modeled using Von Mises’ plasticity model with linear hardening. Parameters used in the

model are typical values from European construction codes [25], given in Table 1. All material parameters

are considered homogeneous in the bar.
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(a) Mesh size 10 mm (b) Mesh size 2 mm

Figure 4: Two different meshes of the bar

Table 1: Material parameters for the steel mechanical model

Young’s modulus Poisson ratio Yield strain* Ultimate strain Ultimate stress

Mean Std. dev.

E ν εµy εσy εu fu

210 GPa 0.28 2.38× 10−3 2.38× 10−5 0.05 540 MPa

* random material parameter

To model the uncertainty on the mechanical properties of the steel, a random variable is introduced to

represent the yield strain εy. Its distribution follows a truncated Gaussian law, with mean εµy = 2.38× 10−3

and standard deviation εσy = 2.38 × 10−5 (such that f = E × εµy ). The normalized distribution of X is

truncated on [−8, 8] (8 standard deviations from average). The truncated standard law avoids the creation

of nonphysical values of εy to be created, since it eliminates values higher than fu/E, and negative values.

The choice of the truncated standard distribution has been made to simplify the analytical study, as it

presents a simple PDF, is symmetric, and allows a collocation point to be placed at X = 0. This truncation

introduces a error in the estimation of the PDF. However, this error is estimated to be lower than 10−13,

and is therefore neglected.

The elastic properties and ultimate strain and stress do not depend on the value of the random yield

strain εy, but the hardening modulus and yield stress do. Fig. 5 presents the stress-strain evolutions of the

model for three different values of εy.

4.2. Analytical study

This test case can be analytically solved, by considering the central defect as a one-dimensional plasticity

problem. Knowing that the reduced-section zone is plasticized, the plastic strain εp can be computed

depending on the yield limit εy :

• if 0 ≤ εy ≤ f
E

εp =

(
Eεu − fu

E

)
f − Eεy
fu − Eεy

(23)

• if f
E ≤ εy ≤

fu
E

εp = 0 (24)
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Figure 5: Stress-strain evolutions of the steel model for different values of εy .

• The other cases are not considered, due to physical considerations and model limitations (in particular,

a negative yield limit or a yield limit greater than the ultimate limit).

The yield strain εy of the steel bar depends on a standard r.v. X:

εy = εµy + εσyX (25)

Therefore, the mechanical response (maximum plastic strain in the bar) can be directly written as a function

of x, realization of X :

• if − ε
µ
y

εσy
≤ x ≤ 0

εp(x) = (Eεu − fu)
−εσyx

(fu − f)− Eεσyx
(26)

• if 0 ≤ x ≤ fu−f
Eεσy

εp(x) = 0 (27)

• Other cases are not considered. Their probabilities are nullified due to the truncation of the probability

law at ±8 standard deviations.

The plastic strain is null when x ≥ 0 (yield strain greater than its average value). Therefore useless and

costly numerical simulations are avoided by considering only the negative part of the distribution, where

nonlinear mechanical behaviour actually appears (εp(x) > 0). From the mechanical response function (Eq.

26,27), the null value of the mechanical response corresponds to a finite probability :

P(εp = 0) = P(X ≥ 0) =
1

2
(28)
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The PDF pp of the r.v. which represents the plastic strain value εp can be directly written, knowing the

PDF pX of the r.v. X and the analytical mechanical response function εp, using Eq. (4) :

∀x ∈
]
0; εu

f

fu

]
, pp(x) =

(
(fu − f)− Ex(fu−Eεµy)

Ex−(Eεu−fu)

)2

√
2πεσy (Eεu − fu) (fu − f)

exp

−[ x
(
fu − Eεµy

)
√

2εσy (Ex− (Eεu − fu))

]2
 (29)

This PDF will serve as a reference result for the simulations in the following.

4.3. Adaptive condensation and condensed collocation parameters

On this test case, the adaptive condensation method [16] is applied on the simulations with 32 areas.

Since the only random parameter applied is the yield strain, which has no impact on the stiffness, the order

(nKi − 1) of the metamodel for the condensed stiffness is chosen equal to zero: condensed stiffnesses are in

fact independent on the r.v., and the displacements in the condensed zones are interpolated from only one

value (i.e., directly computed) at each step :

K̂i(X) ' K̂i (30)

F̂ τi (X) ' F τMi(X)−
(
tKCi,MiKCi,Ci

−1
)
F τCi(X) (31)

uτCi(X) ' KCi,Ci
−1 (F τCi(X)−KCi,Miu

τ
Mi(X)) (32)

As aforementioned, the metamodels are only built on and used for the negative part of the r.v’s law. The

choice of the collocation points is then modified: since the metamodel is used only for negative values of X,

only the negative quadrature points are used in the polynomial expansion.

Considering a 3-point collocation, the metamodel M̃ is a degree 2 polynomial. Its reciprocal M̃−1 can be

directly computed using the delta method on the intervals where the polynomial is bijective. Its derivative

M̃′ (degree 1 polynomial) can also be directly obtained. The PDF pp of the random plastic strain can then

be obtained using Eq. (22).

4.4. Results

Fig. 6 presents the metamodels built with the ”classical” and condensed stochastic collocation methods

both using 3 collocation points. It also compares it to the analytical solution of Eqs. (26)-(27) and illustrates

the choice of the collocation points. On the figure, both collocation metamodels are similar. They correspond

to the analytical solution at the collocation points. It indicates that the simulation and the analytical solution

are in good agreement. Far from the collocation points, the metamodels are less accurate. This implies that

the collocation points and basis of the metamodel are to be chosen in accordance with the objectives of the

study.

The results obtained by the two collocation methods are in good agreement with the analytical func-

tion. With both collocation methods (Nsc = 3), we obtain values of the quantity of interest ε1
p = 0,
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Figure 6: Analytical and collocated evolutions of plastic strain εp depending on the r.v. εY .

ε2
p = 7.04× 10−3, ε3

p = 1.26× 10−2 for the collocation points x1 = 0, x2 = −1.36, x3 = −2.86. For positive

values of the standardized r.v. X, values of the plastic strain εp are taken null, as in the analytical study.

The metamodel, computed by Lagrange polynomials, writes

M̃(X) = −5.22× 10−4X2 − 5.90× 10−3X (33)

The metamodel M̃ (degree 2 polynomial) reaches a maximum around a plastic strain of 1.67×10−2. There-

fore, the PDF of the plastic strain obtained with the metamodel is null for values higher than 1.67× 10−2.

For values in
[
0, 1.67× 10−2

]
, M̃ admits two local reciprocal bijections M̃−1

1 :
[
0, 1.67× 10−2

]
→ [−5.66, 0]

and M̃−1
2 :

[
0, 1.67× 10−2

]
→ [−11.3,−5.66] (the case where X < −11.3 is not taken into account, since

the distribution of X is truncated on [−8, 8]). Their expressions write:

M̃−1
1 (Ep) = −959×

(
5.90× 10−3 −

√
3.48× 10−5 − 2.09× 10−3Ep

)
(34)

M̃−1
2 (Ep) = −959×

(
5.90× 10−3 +

√
3.48× 10−5 − 2.09× 10−3Ep

)
(35)

From these expressions we deduce the semi-analytical PDF for the r.v. Ep:

pp̃(z) =
1√
2π

exp

(
−0.5

(
M̃−1

1 (z)
)2
)

∣∣∣M̃′ (M̃−1
1 (z)

)∣∣∣ +

exp

(
−0.5

(
M̃−1

2 (z)
)2
)

∣∣∣M̃′ (M̃−1
2 (z)

)∣∣∣
 (36)

Fig. 7 presents three PDFs pp for the plastic strain εp

• The analytical solution, obtained from Eq. (29) (1D analytical mechanical model);

• The semi-analytical PDF, obtained from Eq. (30);
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• The PDF obtained by standard stochastic collocation associated to a Monte-Carlo approach [23], from

25,000 calls to the metamodel of the condensed collocation (Nsc = 3).

The Monte-Carlo PDF is less accurate than the semi-analytical one. However it would eventually converge

to the semi-analytical evolution using more realizations.

Figure 7: Analytical and collocated PDFs of the plastic strain

Table 2 presents the processor times necessary for both the standard and condensed stochastic collocation

methods to compute metamodels of the mechanical problem with various mesh sizes. Presented metamodels

are built with either 3 or 5 collocation points, and use therefore respectively degree 2 or degree 4 polynomials.

The condensed collocation, which provides similar metamodels to the standard collocation (Fig. 6), requires

less computation time on a given problem. When the problem becomes larger, for instance with mesh

refinement, the gap becomes clearer. Consequently, for a given computation time, the condensed collocation

method is able to improve the quality of the results.

Table 2: Processor times for two simulations of the steel bar, on a standard dual-core workstation. Processor times of the full

Monte-Carlo calculations are estimated for 10,000 realizations, to give an order of magnitude.

Simulation Stochastic coll. Condensed coll. Monte-Carlo (est.)

10 mm mesh 3 pts 19.2 s 17.6 s ∼ 65× 103 s

(2,426 DOFs) 5 pts 32.8 s 30.0 s

1 mm mesh 3 pts 1286 s 254 s ∼ 4.2× 106 s

(168,924 DOFs) 5 pts 2110 s 465 s

Fig. 8 presents the speed-up values obtained by condensed collocation compared to stochastic collocation

to calculate the metamodels as a function of the relative problem size. 3 and 5 point collocation are

considered. Both results show a gradual increase of the speed-up, up to a plateau at around 5. Obviously
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the values of this speed-up are highly dependent on the problem configuration and decomposition. However

similar trends can be expected in general.

Figure 8: Speed-up of condensed collocation for different meshes.

4.5. Effect of the stochastic dimension

In order to evaluate the ability of the proposed method to scale to a higher stochastic dimension, a

variant of this problem is studied, which contains additional random parameters. In this variant, 6 random

variables affect the problem. They follow log-normal distributions, with the parameters given in Table 3.

The condensed stochastic collocation is used to build a polynomial metamodel using 3 collocation points

on each variable. Building the metamodel with standard or condensed stochastic collocation will therefore

require 729 collocation points (and 729 nonlinear simulations).

Table 3: Random parameters in the variant of the bar application.

Parameter Elastic modulus Poisson ratio Width Yield limit Ult. strain Ult. stress

Symbol E ν L′ εy εu fu

Mean 210 GPa 0.28 1.0 2.38× 10−3 5.0× 10−2 540 MPa

Std. dev. 4.2 GPa 5.6× 10−3 5× 10−3 4.76× 10−5 2.0× 10−3 21.6 MPa

However, only 3 of the random variables (Young’s modulus, Poisson coefficient and bar width) influence

the elastic properties of the bar. Since these quantities are expected to have linear impact on the local stiffness

matrices, the order of approximation for the second polynomial expansion is chosen at (nK − 1) = 1: the

stiffness estimation will use 2 collocation points on each variable. Hence, the fully coupled approach using

the low-order expansion for the reduced stiffnesses allows the pre-processing to be considerably lightened.

In this configuration, only 8 sets of reduced stiffnesses have to be effectively computed, while an uncoupled
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approach would require 729 calculations. Using a 10 mm mesh, this represents a pre-processing time of

7.0 s with the coupled approach, and 619.4 s without the second metamodel. Using a 1 mm mesh, the

pre-processing time with the coupled approach reaches 370.3 s. Fig. 9 presents the PDF of the plastic strain

εp obtained by condensed collocation with the Monte-Carlo approach on this variant of the problem. In this

configuration, the probability of a null value for the plastic strain is P(εp = 0) ' 0.32.

Figure 9: PDF of the plastic strain εp on the 6 rvs variant of the steel bar.

5. Application: Plain concrete beam under 4-point bending

5.1. Problem description

This test case aims at validating the applicability of the proposed method on a typical structural nonlinear

problem with uncertainties. The structure is a concrete beam undergoing four-point bending load. The

objective is to build a metamodel of the mechanical behaviour and to extract a PDF for the maximum value

of damage D at the end of the loading.

Figure 10: Scheme of the concrete beam with boundary conditions

The beam is modeled in two dimensions under the plane stress hypothesis. It is worth noting a 2D model

is here only used for simplicity. The presented method can also be applied with 3D models. Fig. 10 presents

the principle of the beam under loading. The beam is meshed uniformly with square bilinear elements

(QUA4) of size 5 x 5 mm. Small elastic areas are used to avoid damage in the support points and loading
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areas. The loading is a vertical imposed displacement, up to 3×10−4 m, applied on two points on top of the

beam, both located at 40 cm (L/3) from the ends. This loading creates an homogeneous bending moment

in the central third of the beam. The concrete is modeled using an isotropic damage model [26]. In this

model, the damage evolution law writes :

D(κ) = 1− κ0

κ
(1− α+ α exp [−β (κ− κ0)]) (37)

where κ is the historical equivalent strain, κ0 the damage threshold, α and β parameters of the model, whose

values are given in Table 4.

Table 4: Material parameters for the concrete mechanical model

Young’s modulus*† Poisson coeff. Damage threshold* α β compressive / tensile

Mean Std. dev. Mean Std. dev. strength ratio

E′µ E′σ ν κµ κσ α β k

30 GPa 3 GPa 0.2 1× 10−4 5× 10−6 0.96 9000 11

* random material parameters, † heterogeneous field

To avoid pathological mesh dependency, and to ensure a better modeling of the damaged areas, the

nonlocal stress-based method is applied [27] (nonlocal internal length lC0 = 12 mm). This allows the

problem to be well-posed. Using this regularization method, the nonlocal equivalent strain ε̃ writes :

ε̃(x) =

∫
Ω
ε̄(s)φ(x− s)ds∫
Ω
φ(x− s)ds

(38)

where ε̄ is the equivalent strain, and φ is the stress-based weighting function, whose expression writes :

φ(x− s) = exp

(
−
(

2‖x− s‖
lC0 ρ (x, σ(s))

)2
)

(39)

where lC0 is the nonlocal internal length and ρ a function of the stress state and geometry.

To model the heterogeneity of the mechanical properties in a material such as concrete, an heterogeneous

field C(x) is used for the Young’s modulus. This parameter has been chosen as it creates an heterogeneity

in both material strength and stiffness. All other mechanical parameters are considered homogeneous, the

material spatial heterogeneity is represented by only one realization of an auto-correlated lognormal random

field (of mean value Cµ = 1 and standard deviation Cσ = 0.067), with an internal correlation length

li = 12 mm. It is to be noted that the nonlocal internal length lC0 and the internal correlation length li of

the random field are equal. Both those values are usually considered linked to the size of the aggregates,

and have been taken equal.

Lognormal probability laws are often used in the field of mechanics to model uncertain material parame-

ters, as they avoid creating negative (and nonphysical) values of material parameters. Therefore, lognormal
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distributions will be used to model the uncertain parameters. To model the uncertainty on the mechanical

properties, a lognormal random variable E′, with mean and standard deviation indicated in Table 4 weights

the elastic modulus. The heterogeneous and random Young’s modulus therefore writes :

∀x = (x1, x2) ∈ [0;H]× [0;L], E(x,X1) = E′(X1).C(x) (40)

Fig. 11 presents the random field C(x) for the elastic modulus.

Figure 11: Field of (normalized) elastic modulus C(x) in the concrete beam

A second r.v. is used to model the uncertainties on the mechanical properties: the damage threshold κ0

used in the model, homogeneous in the beam, is a r.v. κ0(X2). It also follows a lognormal law, with the

parameters given in Table 4.

5.2. Adaptive condensation and condensed collocation parameters

On this test case, the adaptive condensation method [16] is applied on the simulations with 32 areas.

Two random parameters are considered, namely the random elastic modulus E′(X1) and the random dam-

age threshold κ0(X2). However, the damage threshold has no impact on the structure’s elastic stiffness.

Therefore, the metamodel for the condensed stiffness uses a polynomial decomposition of order (n′− 1) = 1

(linear) on the single r.v. X1: condensed stiffnesses, and condensed area’s displacements are interpolated

from n′ = 2 collocation points. Using the particular r.v.s of this problem, the approximation of the con-

densed stiffness matrices (Eq. (12)), condensed force vector (Eq. (13)), and condensed displacement fields

in the condensed areas (Eq. (15)) can then be formulated as :

K̂i(X) '
n′∑
p′=1

K̂p′

i ΦE
′

p′ (X1) (41)

F̂ τi (X) '
n′∑
p′=1

F̂ τ,p
′

i (X)ΦE
′

p′ (X1) (42)

uτCi(X) '
n′∑
p′=1

uτ,p
′

Ci (X)ΦE
′

p′ (X1) (43)

5.3. Results

On this application case, the results obtained by the standard stochastic collocation technique are com-

pared to those of the condensed collocation method.
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Figure 12: Metamodels of the maximal value Dmax of the damage variable in the beam: Stochastic collocation vs. Condensed

Collocation

Figure 13: Metamodel of the equivalent stress σ at the most damaged integration point: Condensed collocation.

Fig. 12 presents the metamodels generated through both techniques, to obtain an approximation of

the maximal value Dmax of damage in the beam at the end of the simulation. Both models use a 4

point collocation on the two r.v.s (and therefore, degree 3 polynomials on two variables). 16 condensed

deterministic simulations are thus used to build this metamodel. The metamodels obtained from condensed

collocation and standard collocation are in good agreement. On this application case (which includes

10,122 DOFs), using a higher-order metamodel with two r.v.s, the stochastic collocation method requires a

computation time of 6,392 s to build the metamodel (on a standard dual-core workstation).

Fig. 14 presents the PDFs obtained with the metamodel from the condensed collocation method using

both Monte-Carlo (104 and 105 realizations) and semi-analytical approaches. These PDFs are in good

agreement.
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Figure 14: PDFs of the damage variable obtained with the condensed collocation method: Semi-analytical vs. Monte-Carlo

(104 and 105 realizations)

Building the metamodel with the condensed collocation technique only requires 2,808 s of computation

time on the same machine for equivalent results (Fig. 12-13), thus reducing the global computational load

of the SFE calculation. As in the steel bar case, the reduction of computational load is related to the size

of the problem, and especially of the non linear part of this problem. Using the semi-analytical formulation

to compute the PDF of the quantity of interest provides a more accurate result (Fig. 14) and eliminates the

computational cost associated to the MC method.

6. Conclusions

A condensed collocation approach has been presented for the SFE analysis of large-scale, locally nonlinear

structures under uncertainties. It adopts the framework of stochastic collocation to build a polynomial

expansion of the quantities of interest in a structural mechanical problem, and provides statistical results

on these quantities, such as fragility curves, statistical moments or PDFs. In some cases, a semi-analytical

technique allows to compute the PDFs of quantities of interest, more accurately and without the heavy data

processing of MC approaches.

The proposed approach consists in a two-level coupling between SFEM and an adaptive condensation

technique: it reduces both the cost of each deterministic simulation required in the SFE approach, and

the cost of system reduction in the condensation technique. Each deterministic simulation necessary for

SFEM is reduced using an adaptive, two-level condensation technique based on Guyan reduction, suited for

nonlinear problems. The quantities required for this adaptive condensation method are approximated using

a second level of polynomial expansion of smaller dimension on selected random parameters.

This method is applied on the numerical model of a steel tension rod with a localized defect, using a

nonlinear mechanical model with one random parameter. On this test case, it reproduces the results of a
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state-of-the-art stochastic finite element method, in accordance with the analytical study, for a fraction of

the computational cost. It also allows to perform a semi-analytical probabilistic study to obtain accurate

statistical quantities such as the PDF of the plastic strain. When the number of random parameters

increases, the second polynomial expansion allows to reduce largely the numerical cost of the condensation

pre-processing. The method is also applied on a 4-point bending beam application case, where it builds

a metamodel depending on two random variables. The metamodel is equivalent to the one obtained with

stochastic collocation, for once again a fraction of the computational load.

Ongoing research will focus on several axes of development. In particular, an implementation using the

same framework suited for nonlinear problems, but with a Galerkin-type SFE approach, similar to the work

described in [14] would be most interesting. In fact, as the proposed implementation uses stochastic collo-

cation, it is mostly usable for problems with large number d of DOFs in the mechanical system and small

number of r.v.s n. To build a p-order metamodel on such a system, the single stochastic collocation would re-

quire (in the linear case) (p+1)n solutions of linear systems of size d, for a total complexity in O
(
(p+ 1)nd2

)
.

For the same order of approximation, a Galerkin-type polynomial chaos approach would require a single

solution of a system of size d(n+ p)!/(n!p!), with a total complexity in O
(

((n+ p)!/(n!p!))
2
d2
)

. Therefore,

a Galerkin-type SFEM using the same ”condensed SFEs” approach would be faster on structural problems

with large number of random variables, but would also require more memory. Also, the principle of the

proposed method could be extended to dynamical problems, in particular with the use of condensed mass

matrices in addition to stiffnesses.
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