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Moutard type transform for matrix generalized

analytic functions and gauge transforms ∗

R.G. Novikov † I.A. Taimanov ‡

Considerable progress in the theory of Darboux-Moutard type transforms
for two-dimensional linear differential systems with applications to geometry,
spectral theory, and soliton equations has been achieved recently, see, e.g., [1,
2, 3, 4]. In the present note we derive such a transformation for the matrix
generalized function system

∂z̄Ψ + AΨ + BΨ̄ = 0, (1)

where ∂z̄ = ∂
∂z̄ , the coefficients A and B and solutions Ψ are (N × N)-matrix

functions on D, with D an open simply connected domain in C. In particular,
this generalizes the transform for N = 1 found in [4] with A = 0. In addition, we
show that the Moutard type transform for system (1) with B = 0 is equivalent
to a gauge transform for the connection ∇z̄ = ∂z̄ +A. In turn, our studies show
that the Moutard type transform for system (1) with A = 0 can be treated as
a proper analog of the aforementioned gauge transform.

As for N = 1, system (1) is reduced to the system

∂z̄Ψ + BΨ̄ = 0, (2)

i.e. to system (1) with A = 0, by the gauge transform

Ψ→ Ψ̃ = g−1Ψ, B → B̃ = g−1Bḡ, ∂z̄g + Ag = 0, det g 6= 0.

We say that the system
∂zΨ+ − Ψ̄+B = 0 (3)

is conjugate to system (2) (see [5] for a similar definition for N = 1).
We have the following result.
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Theorem 1 Systems (2) and (3) are covariant, i.e. mapped into the systems
of the same type, with respect to the Moutard type transform

Ψ→ Ψ̃ = Ψ− F ω−1
F,F+ ωΨ,F+ ,

Ψ+ → Ψ̃+ = Ψ+ − ωF,Ψ+ ω−1
F,F+ F+,

B → B̃ = B + F ω−1
F,F+ F+,

(4)

where F and F+ are arbitrary fixed solutions of (2) and (3), respectively,

∂z̄ωΦ,Φ+ = Φ+Φ̄, Re ωΦ,Φ+ = 0, (5)

for Φ and Φ+ meeting equations (2) and (3), and det ωF,F+ 6= 0.

For finding ωΦ,Φ+ satisfying (5) we use also that ∂zωΦ,Φ+ = −Φ̄+Φ. In
addition, our definition of ωΦ,Φ+ is self-consistent up to a pure imaginary matrix
integration constant in view of the identity ∂zΦ+Φ̄ = −∂z̄Φ̄+Φ. The latter
equality follows from systems (2) and (3) for Φ and Φ+, respectively. We recall
that the domain D is simply connected.

Given ωF,F+ , ωΨ,F+ , and ωF,Ψ+ , Theorem 1 is proved by straightforward
computations.

In addition, for the system

∂z̄Ψ + AΨ = 0, (6)

i.e., for system (1) with B = 0, the following result also holds.

Proposition 1 System (6) is covariant under the following Moutard type trans-
form

Ψ→ Ψ̃ = Ψ− F ω̂−1
F,F+ ω̂Ψ,F+ , A → Ã = A + F ω̂−1

F,F+ F+, (7)

where F is an arbitrary fixed solution of (6), F+ is an arbitrary fixed matrix
function,

∂z̄ω̂Φ,F+ = F+Φ (8)

for any matrix function Φ, and det ω̂F,F+ 6= 0.

Equations (7) and (8) are analogs of equations (4) and (5). However, in
difference with (5), we do not require that the matrix functions ω̂F,F+ would be
pure imaginary. Equation (8) is solvable for ω̂F,F+ and Proposition 1 is proved
by straightforward computations.

Remark. Let A, Ã,Ψ, F, F+, and ω̂Φ,F+ be the same as in Proposition 1.
Let

g = 1− Fω̂−1
F,F+Λ, Λz̄ = ΛA + F+.

Then
∂z̄(gΨ) + Ã(gΨ) = 0.

It is proved by straightforward computations and it shows that for invertible g
the transform A → Ã reduces to a gauge transform.
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