
HAL Id: hal-01347983
https://hal.science/hal-01347983v1

Submitted on 22 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic process migration based on block access
patterns occurring in storage servers

Jianwei Liao, François Trahay, Guoqiang Xiao

To cite this version:
Jianwei Liao, François Trahay, Guoqiang Xiao. Dynamic process migration based on block access
patterns occurring in storage servers. ACM Transactions on Architecture and Code Optimization,
2016, 13 (2), pp.20. �10.1145/2899002�. �hal-01347983�

https://hal.science/hal-01347983v1
https://hal.archives-ouvertes.fr

Dynamic Process Migration based on Block Access
Patterns occurred in Storage Servers

JIANWEI LIAO
Southwest University, China

FRANCOIS TRAHAY,
CNRS Samovar

Télécom SudParis
Universit Paris-Saclay
GUOQIANG XIAO

Southwest University, China

Abstract—An emerging trend in developing large and complex
applications on today’s high performance computers is to couple
independent components into a comprehensive application. The
components may employ the global file system to exchange their
data when executing the application. In order to reduce the time
required for I/O data exchange and data transfer in the coupled
systems or other applications, this paper proposes a dynamic
process migration mechanism on the basis of block access pattern
similarity for utilizing the local file cache to exchange the data.
We first introduce the scheme of block access counting diagram,
to profile the process access pattern during a time period on
the storage server. Next, we propose an algorithm that compare
the access patterns of processes running on different computing
nodes.. At last, processes are migrated in order to group processes
with similar access patterns. Consequently, the processes on the
computing node can exchange their data by accessing the local
file cache, instead of the global file system.

The experimental results show that the proposed process
migration mechanism can reduce the execution time required
by the application because of the shorter I/O time, as well
as yield attractive I/O throughput. In summary, this dynamic
process migration technique can work fairly well for distributed
applications whose data dependency rely on distributed file
systems.

I. INTRODUCTION

High performance clusters and other high performance dis-
tributed computer systems, which consist of computing nodes
for executing processes and storage nodes for providing I/O
services, are widely used to solve large scientific applications
[Vecchiola 2009]. However, due to the increase of application
scale and of the data size, one of the most critical challenges
to be addressed is how to overcome the data access bottleneck
[Dongarra 2011].

Specifically, the noticeable issue arises from the study area
of data I/O in high performance computing: the I/O transfer
time needed for exchanging data among processes belonging
to the same application depends on both the affinity of the
processes and the locations of processes [Jeannot 2014]. That
is to say, if two processes are located on the same node, both
of them can exchange data by using the local file cache. As a
consequence, the time required for exchanging data using the
local file can be considerably reduced compared to exchanging
the data via the parallel file system.

In other words, preserving data locality by placing the
computation tasks close to their required data is crucial for
performance in large clusters, because the slow data rate on the
disk and the network bisection bandwidth become a bottleneck
[Dean 2008]. In order to reduce the cost of inter-process
communication (i.e. MPI communication [MPICH2]), many
studies have focused on binding processes to the proper com-
puting nodes [Chen 2006,Mercier 2011]. These mechanisms
make sense if and only if the binding process knows the
communication pattern of the application (i.e., which process
communicate with which process).

However, many problems in science and engineering can
be solved by coupling interacting models, which may result
in several independent/semi-independent models for handling
the different steps. For example, in modeling long-term global
climate, the Community Climate System Model (CCSM)
includes an atmosphere model, an ocean model, a sea-ice
model and a land-surface model [Hack 2006]. On the other
side, these models have been separately developed by different
researchers, thus, they may present distinct behaviors deriving
from their interdisciplinary essence and from their compu-
tation flow in the algorithms [Larson 2005,Valcke 2012].
As a result, the processes belonging to the different models
do not have the information about where to send/get their
output/input data. For this reason, this kind of application
commonly leverages the global file system for exchanging the
data. However, disk-based data I/O operations not only slow
down the execution of the application, but also place pressure
to the file system.

This paper proposes a mechanism that analyzes the I/O
transfers of a distributed application and dynamically migrates
processes between computing nodes in order to improve
the locality of I/O accesses. Therefore, instead of using the
distributed file system, processes can exchange data via the
local file cache on the computing node, which reduce the cost
of data transfers. In this mechanism, we first employ the newly
proposed scheme of block access counting diagram to profile
the access pattern on the storage server for each process; then
we compute the access pattern similarity of two processes.
Depending on their similarity, some of the processes may then

be dynamically migrated to other computing nodes in order
to improve the locality of I/O accesses and to yield a better
system performance. In short, this paper makes the following
two contributions:

1) On the storage server side, we propose the techniques of
block access counting diagram and N-compressed access
counting diagram, to classify block access patterns in a
certain period with a per-process granularity. The access
patterns are then compared in order to estimate the
pattern similarity of two processes.

2) We also propose a novel scheme to perform process
migration based on the similarity of access patterns. This
migration strategy groups processes with similar access
patterns together so as to improve the data locality and
thus maximize the usage of the local file cache. As a
consequence, besides accelerating the I/O operations, the
data rate of the I/O subsytem is greatly improved.

The rest of the paper is structured as follows: the related
work regarding process migration is described in Section II.
The design and implementation details of this newly pro-
posed process migration mechanism are illustrated in Section
III. Section IV introduces the evaluation methodology and
discusses experimental results. At last, we make concluding
remarks in Section V.

II. RELATED WORK

Many previous work have focused on process migration,
block access pattern-based I/O optimization, and the coupling
tools for independent models:

Dynamic Process Migration: The mechanism of dynamic
process migration by using the checkpoint/restart facility is
widely used for a variety of purposes: 1©. Dynamic processes
migration for balancing workloads. C. Du and X. Sun et al.
proposed a dynamic scheduling mechanism that takes migra-
tion cost and other conventional influential factors into ac-
count, to boost system performance in a shared, heterogeneous
environment [Du 2007]. L. Pilla and C. Ribeiro et al. have
introduced a novel hierarchical load balancing mechanism by
adopting dynamic process migration, to enhance the perfor-
mance of applications on parallel multi-core systems [Pilla
2012]. 2©. Dynamic processes migration for achieving fault
tolerance. Checkpoint/restart is the most popular technique
in high performance computing to offer high availability and
reliability. It is simple and effective enough in situations
where the failures do not occur frequently. The fundamental
principle of checkpoint/restart is to periodically save the state
of the target process. If, for some reason, the process crashes,
the most recent checkpointed state is read and the process
execution restarts from there [Liao 2012a]. Although the
idea of checkpoint/restart is quite straightforward, it adopts
many variants in the specified application contexts [Meneses
2015,Dong 2011].

Especially, with the emerging of visualization technique
[Williams 2012], certain virtual machine replication and mi-
gration approaches have been introduced. L. Cheng and C.
Wang have proposed a new I/O virtualization approach called

vBalance to substantially boost the I/O performance for Sym-
metric MultiProcessing (SMP) virtual machines [Cheng 2012]
. This approach is a cross-layer solution to speedup I/O
operations by migrating interrupts from a preempted vCPU to
a running one. Through migrating operating systems running
services with liveness constraints in a virtual machine, it is
possible to rapidly move the interactive workloads within
clusters and data centers, and then reach the targets of load
balancing and fault tolerance [Clark 2005].

In addition, in order to enhance the communication per-
formance among the MPI processes in multi-core clusters,
E. Jeannot and G. Mercier et al. have proposed algorithms
that place MPI processes on computing nodes according to
their communication patterns. That is to say the processes that
communicate a lot with each other are allocated on the same
or nearby nodes. The overhead of inter process MPI com-
munication is thus greatly decreased [Mercier 2011,Jeannot
2014]. P. Michaud et al. have proposed a thread migration
mechanism, which is able to maximize system performance
for ensuring the necessary thread migrations on the basis of
a temperature constraint [Michaud 2007]. Q. Chen and M.
Guo have presented an adaptive scheme of task scheduling on
the basis of workloads, for asymmetric multicore architectures
[Chen 2014].

Active Storage Systems & Other Intelligent Storage
Systems: The active storage system is aimed at I/O bound
applications that involve fundamentally independent data sets
[Piernas 2010]. It takes advantage of the underutilized comput-
ing resources in the storage servers, and supports migrating the
processes from computing nodes to the proper storage nodes
[Piernas 2007,Xie 2015]. As a result, the processes can be
executed on the storage nodes by using a large amount of
data without any data transfers between the computing nodes
and storage nodes, for achieving better system performance.
However, the migrated processes are likely to use certain
restricted kernel functions offered by the computing nodes in
some cases, because of resource limitations on storage nodes,
it might be impossible to execute this kind of tasks on the
storage nodes. Furthermore, direct access to the storage nodes
is not generally allowed in real-world production environments
for security reasons [Zheng 2013].

To offer intelligent storage services for different I/O in-
tensive workflows, L. Costa et al. have presented a mech-
anism to enable making runtime system configuration deci-
sions including chunk size and caching policies, in a storage
system, to speedup I/O processing in the case of specified
application context [Costa 2014]. Z. Gong have introduced a
high-performance parallel I/O middleware for large-scale HPC
applications, to yield user-transparent layout optimization for
scientific workflows, on the basis of access patterns of the
applications [Gong 2013].

Block Access Patterns-based I/O Optimization: In order
to yield better I/O performance, there are also substantive op-
timization strategies that employ the information about block
access patterns on the storage nodes or the local file server.
Z. Li and Y. Zhou et al. proposed a data mining approach

called C-miner to explore block correlations in the file server
on a local machine. So that the file system can make use of
the discovered block correlations for guiding I/O optimization
strategies, such as data prefetching or data movement [Li
2004]. Similarly, S. Jiang et al. have implemented DiskSeen,
which employs a frequent sequence-based pattern modeling
technique to classify block access pattern, and both temporal
and spatial correlations of block access events have been taken
into account, for improving the sequentiality of disk accesses
and overall prefetching performance [Ding 2007,Jiang 2013].
J. He et al. have proposed file re-organization on the basis of
logical I/O patterns, which occur in the computing nodes, for
expediting the I/Os [He 2013].

Moreover, after knowing the fact of the block access events
occurred on the storage servers have certain regularities,

Moreover, we have proposed and implemented a server-
side prefetching mechanism in distributed file systems in
our previous work [Liao 2015] that takes into account the
regularity of the block access events that occur on storage
servers. This I/O optimization scheme utilizes the block access
patterns to direct prefetching data on the storage nodes. Then
the prefetched data is proactively forwarded to the client node,
to speed up the execution of the applications running on the
resource-limited computing nodes (i.e. client nodes), and to
enhance I/O data throughput.

Coupling mechanisms for separated models or appli-
cations. The Model Coupling Toolkit (MCT) [Larson 2005]
is a library providing routines and datatypes for creating
a coupled system, and mainly used in Community Climate
System Model (CCSM). Hereafter, S. Valcke et al. [Valcke
2012] have summarized major coupling technologies used
in Earth System Modeling, and their paper shows common
features of the existing coupling approaches including the
functionality to communicate and re-grid data. Moreover, the
OASIS coupler is another typical related work, which is able
to process synchronized exchanges of coupling information
generated by different components of the climate system,
and the separate coupler mediates communication among the
components [Valcke 2006]. However, these coupling tools
require to modify the source codes of applications, to use
their specific interfaces. That is to say, they cannot keep the
transparency to the application users, and fail to offer a general
solution to all cases.

III. DESIGN AND IMPLEMENTATION

We propose a novel mechanism that dynamically migrates
processes from one computing node to another, to effectively
use the local file cache on the computing node. The decision
to migrate a process to another computing node is done
according to the similarity of the block I/O access patterns
of the computing processes.

Figure 1 gives an overview of the dynamic process mi-
gration mechanism when the processes that run on different
computing nodes have heavy I/O data dependency. The storage
servers regularly compare the I/O access patterns of client
computing processes. If two processes have similar access

Storage node II

Memory

Cache

Memory

Cache

Memory

Cache
…

Memory

Cache

Storage node IV

Heavy access
requests to the
same storage

node

Computing Migration

Storage node I
…

Write Req. Read Req.

Fig. 1. The illustration of dynamic process migration on the basis of data
dependency (note: data dependency can be represented with block access
pattern similarity).

Client	 file	 system Storage	 server Low	 level	 file	 system

Client	
Run	 applica*on

ACK

ACK

Logical	 I/O	 Req.	 &	
piggybacked	 info.

Physical	 I/O	 req.

Piggybacking info:
client info. & process

info. & I/O request info.

Separate real I/O req.
&forward the req.

Mapping physical I/O
with piggybacking

info. from logical I/O

ACK

Fig. 2. Piggybacking mechanism for constructing mapping relationship
between the logical I/O requests on client file systems and the physical I/O
requests on storage servers with per-process granularity [Liao 2015].

patterns, the storage server triggers the migration of one
process so that it is placed nead the process that has a similar
access pattern. By improving the data locality, some of the
processes I/O requests can be processed at the local file cache,
which reduce the cost of I/O data transfer.

To put this mechanism to work, we propose a scheme of
Access Counting Diagram to profile the block access patterns
of processes, which are used to estimate the pattern similarity.
After that, a checkpoint/restart mechanism is employed to
migrate a process so that the processes that have similar access
patterns share the same computing node.

A. Classifying access patterns

We designed a mechanism for caracterizing the I/O access
pattern of processes. This mechanism runs on the storage
nodes that receive requests for blocks of data from clients

file systems running on multiple nodes. Since a client file
system can be solicited by multiple processes, we employ
a piggybacking mechanism that has been implemented in
our previous work [Liao 2015] in order to caracterize access
patterns on a per-process basis. The sequences of I/O requests
of each process are then stored as an Access Counting Diagram
for further analysis.

1) Piggybacking mechanism: Figure 2 illustrates the piggy-
back mechanism, in which the client file system is responsible
for keeping extra information about the process and client file
system. After that, it piggybacks the extra information with
the relevant client I/O request, and then sends them to the
corresponding storage server. On the other hand, the storage
server parses the request to separate the piggybacked informa-
tion and the real I/O request from the client request. In addition
to forwarding the I/O request to the low-level file system, the
storage server also records the disk I/O access event with the
piggybacked information about the process identifier etc. As
a result, the storage server makes a record for each block
access event along with the information piggybacked by the
corresponding client I/O request, and then it is possible to
profile block access patterns belonging to a specific process1.

2) Profiling block access patterns: To model the block ac-
cess pattern for a specific process and then benefit to matching
patterns exactly and quickly, we have propose an approach of
space-time diagram, called Access Counting Diagram. Both
temporal and spatial correlations of block access events have
been taken into account in this approach. Figure 3(a) illustrates
the basic idea of the proposed space-time diagram for profiling
block access patterns. In the figure, the X-axis indicates
the time periods split with a fixed interval; and the Y-axis
represents the range of accessed blocks. All the access tracks
that occurred in the time window (t0 to t6 in the figure) are
represented as points in the figure. Figure 3(b) shows how to
count the events in each grid, and then a two-dimension array,
i.e. a matrix, is used to represent the access pattern relevant to
the process in the designated time period, i.e., time window.

Because a process may access a huge amount of blocks,
the size of the pattern array may become quite large. To
reduce the size of the pattern array for quickly matching the
block access patterns, we propose the N-compressed counting
scheme, which can coarsen N × N grids into a big one, and
sum the values in the grids. Figure 3(c) shows an example of
the 2-compressed counting conversion of Figure 3(b). In this
case, the number of elements in the matrix is reduced from
36 to 9. As a result, the time needed for matching patterns
is decreased to a great extent, though it may introduce less
accuracy in pattern matching. Section IV discuss the impact
of scaling the value of N in the compressed counting scheme.

B. Computing access pattern similarity

In order to estimate the degree of data dependency of two
processes running on different computing nodes, we introduce

1Note that the piggybacking mechanism is not a new idea. It has been
proposed in our previous work [Liao 2015], but it is a key technique to design
and implement the newly proposed mechanism.

the notion of pattern similarity. Equation 1 summarizes the
algorithm that computes the similarity score of two block
access patterns. The patterns are represented as two matrices
having m × n elements (i.e. m time intervals and n block
ranges.). A similarity score close to 1.0 indicates a high
similarity, and that the two processes frequently access the
same blocks of data.

µ = f(Am×n, Bm×n) = 1−

m−1∑
i=0

(
n−1∑
j=0

|Ai,j−Bi,j |
Maxevent

)

m× n
(1)

where Am×n and Bm×n mean the two involved matrices;
|Ai,j −Bi,j | represents the absolute difference of two integers,
i.e. Ai,j and Bi,j , which are two corresponding elements in
the different matrices; Maxevent is a pre-defined integer value,
and set as the maximum number of block access events in the
grid element by default.

As mentioned before, we keep the original access counting
diagram and the compressed access counting diagram to com-
pare the access pattern of processes. Therefore, the comparison
algorithm first computes the similarity scores of the coarse-
grain diagrams in order to promptly detect and discard the
processes that have dissimilar access patterns. The fine-grain
similarity is then computed only if the coarse-grain similarity
is greater than a pre-defined threshold. The default value of
similarity threshold is fixed as 0.90. To put it from another
angle, there are two steps in calculating the access pattern
similarity:
• Step 1: the algorithm computes the similarity between

two compressed access counting matrices. If the value of
µ is larger than a pre-defined threshold, i.e., similarity
threshold, it continues to Step 2 for a fine-grained check.
Otherwise, it stops and returns false, which means the
result of “no similarity”.

• Step 2: the algorithm conducts the pattern similarity com-
putation between two original access counting matrices.
When the value of µ is greater than the pre-defined
threshold, it stops and returns true that indicates the result
of “having similarity”; otherwise, it returns false that
stands for “no similarity”.

C. Dynamic process migration

This section discusses the details about dynamic process
migration by using the MPI communication facility, as well
as the checkpoint/restart mechanism.

1) Triggering migration: When a storage server detects two
processes with similar block access patterns, it triggers the
migration of a process in order to group the processes on the
same computing node. Consequently, the two processes can
use the local file cache on the client file system for exchanging
intermediate data, rather than pulling/pushing the data from/to
the storage nodes.

For the purpose of selecting a process to be migrated and
choosing the destination node for the migrated process, the
storage server first summaries the patterns’ scales, according to

Time

B
lo

ck
 N

um
be

r
1	

5	

2	

2	

4	

7	

6	

4	

4	

5	

2	

2	

5	

2	

4	

4	

3	

3	

3	

6	

1	

Time

B
lo

ck
 N

um
be

r

2	
16	

Time

B
lo

ck
 N

um
be

r

3	 12	

2	 7	

3	

7	

14	

(a) Block Access Track (b) Access Counting Diagram
 (6 × 6 matrix)

(C) N-compressed Access Counting Diagram (N=2)
 (3 × 3 matrix)

8	

t0 t1 t2 t3 t4 t5 t6
0

8

16

24

32

40

48

t0 t1 t2 t3 t4 t5 t6 t0 t2 t4 t6
0

8

16

24

32

40

48

0

16

32

48

Fig. 3. Classifying block access patterns by using the scheme of space-time diagram. (a) forming a basic grid of space-time diagram to express the track of
block access events; (b) counting the number of occurred block access in each grid element; (c) enlarging the size of grid element to reduce the number of
grid elements.

Equation 2. These scales aggregate the number of I/O requests
that were issued by a process over a period of time. Then,
the storage server calculates the pattern similarity between
the pattern having the largest scale and the patterns of the
other processes running on other computing nodes according
to Equation 1. If the storage server does not find a matched
one, the process having the second-largest scale is selected and
the server searches for a process that matches it. This algorithm
is repeated until all the processes have been traversed. As a
result, the found process(es) are migrated to the destination
computing node(s).

ε = f(Am×n) =

m−1∑
i=0

n−1∑
j=0

Ai,j (2)

where Am×n represents the matrix of access pattern; and Ai,j

is the matrix element.
Certain cases may trigger the migration, for instance, peri-

odical scanning conducted by the storage server tries to find
the target processes to be migrated, this policy is currently used
in our design. Besides, it is possible to allow the heavy-loaded
computing nodes to issue process migration after resorting
to storage servers for obtaining the information about the
destination computing node. In summary, the storage servers
are responsible for notifying both the source node and the
destination node to be ready for process migration.

When a storage server decides to migrate a process from
one computing node to another, the server notifies both the
source node and the destination node, in order to trigger the
migration process.

2) Migrating process: The checkpoint/restart facility is
utilized to perform the process migration. Figure 4 shows
the interaction between the two involved computing nodes for
completing the migration.

On the source computing node, the client file system first
sends a message for building a connection state with the
destination node, so that both nodes are ready for conducting
the process migration. Then, the client file system sends
the consistent image of the targeted processes after certain
synchronization operations.

① MPI_Send (“flag: start migration”)

② MPI_Recv(“flag: start migration”)

④ MPI_Send (“data: process image”)

⑤ MPI_Recv(“data: process image”)

③ Synchronizing & Stopping process

⑥	 Resuming the stopped process

Source computing node Destination computing node

Fig. 4. The interaction between the source computing node and the destination
computing node when performing a task of dynamic process migration.

On the destination computing node, the client file system
restarts the stopped process when it has received the image of
the targeted process. Consequently, the migrated process can
continue running on the destination computing node, and is
able to use the local file cache on the node for exchanging
data with other processes running on the same node, which
have the similar access pattern.

Note that the migration requires that the destination node
has enough memory for hosting the migrated process. Thus,
we configured the file system to abandon the migration when
the size of the checkpointed state is bigger than one fourth of
the memory capacity.

D. Implementation

Regarding the functionality of process migration, we have
integrated the MPICH2 library [MPICH2] with the transpar-
ent kernel-level checkpoint/restart library implemented in our
previous work [Liao 2012a] after certain modifications on
the checkpoint/restart library, according to the idea presented
in [Wang 2008]. Thus, we can save the consistent state of
the process running on the source node, and transfer the

TABLE I
SPECIFICATION OF NODES ON THE CLUSTER I AND CLUSTER II

Cluster I Cluster II
CPU 4xIntel(R) E5410 2.33G Intel(R) E5800 3.20G
Memory 1x4GB 1066MHz/DDR3 4GB DDR3-SDRAM
Disk 6x114GB 7200rpm SATA 500GB 7200rpm SATA
Network Intel 82598EB, 10GbE 10GbE
OS Ubuntu 13.10 Debian 6.0.4
of Nodes 5 16

process image to the destination computing node by using MPI
communication facilities, in order to resume the execution of
the migrated process.

Moreover, we have implemented the newly proposed mech-
anism in the PARTE file system, which has been implemented
from scratch in C, and runs in the Linux environment [Liao
2012b]. The implementation has three modules running at the
user level:
• partmds running on a specified server node. The module

of active metadata server, which offers metadata services
for client file systems and storage servers.

• parteost running on the storage nodes. The module of
storage server that manages real file data. Moreover, it is
in charge of profiling block access patterns, computing
pattern similarity, and issuing the command of process
migration periodically.

• partecfs running on the computing nodes. The module
of client file system has been designed and implemented
based on FUSE [FUSE]. The client file system supports
caching and managing for the cached data by employing
the least recently used (LRU) policy. Furthermore, the
client file system calls the checkpoint/restart library to
fulfill dynamic process migration, after receiving the
commands from the storage servers.

IV. EXPERIMENTS AND EVALUATION

This section describes the experimental methodology for
evaluating the proposed migration mechanism, and then
presents the experimental results.

A. Experimental setup

1) Experimental platform: Two clusters were used for
carrying out the experiments: the active metadata server and
4 storage servers were deployed on the 5 nodes of Cluster
I, and all the client file systems were located on the 16
computing nodes of Cluster II. Both clusters are equipped
with MPICH2-1.4.1, and connected with a 1 GigE Ethernet.
Table I shows the specifications of the nodes of both clusters.

2) Comparison counterparts & benchmarks: Because there
is no related work that migrates on-going processes on the
basis of I/O workloads, we used the PARTE distributed file
system with the following three configurations to run the
benchmarks:
• Pattern-based Migration, which is the distributed file

system equipped with the mechanism we propose. It

supports dynamic process migration according to the
block access patterns. At first, the processes are allocated
to the computing nodes by following the fashion of
round-robin. But, the processes can be migrated to other
computing nodes during the execution.
We run the Pattern-based Migration scheme with differ-
ent time windows. Namely, Timewindow is configured as
256 block access events or 512 block access events, we
respectively label them as Pattern-based Migration+256,
which is used by default, and Pattern-based Migra-
tion+512.

• Non-Migration, which does not enable process migra-
tion. The processes are bound to the computing nodes
according to the round-robin fashion, and they are never
migrated to other nodes.

• Optimal Static Placement, which is similar to the Non-
Migration scheme, as it does not support process mi-
gration. The processes are statically allocated to the
computing nodes, on the basis of their data dependency,
after analyzing the source codes of benchmarks [Mercier
2009]. In other words, the processes in a process-pair
are mapped to the same computing nodes, to enable
exchanging their data by using the local file cache.
Note that this scheme is not a general solution, as it must
understand the data dependency among the processes,
and the placement of processes never change during the
life cycle. That requires to analyze the source codes
of applications, or that the application users offers the
dependency information. This comparison counterpart
is leveraged to demonstrate the gain/loss in a global
scale resulted by our proposed Pattern-based Migration
scheme. Because we have modified the source codes of
mpi-io test to emulate varied data dependency among
the processes, we use this scheme while executing the
benchmark of mpi-io test.

Moreover, several benchmarks and applications were se-
lected to run on the above-mentioned storage systems, for
evaluating the applicability of the proposed process migration
mechanism. All the selected applications are scheduled to
continuously run three rounds.

• mpi io test, which is constructed on top of MPI I/O
calls and used to gather timing information for reading
from and writing to file(s) using a variety of I/O profile
configurations [MPI-IO Test]. In this benchmark, each
process writes a large chunk of data to a non-overlapping,
non-interleaved region of a file and then reads it back.
We used mpi io test v1.00.021, and made two modifica-
tions to the code. First, in order to emulate the different
processes having data dependencies, we have slightly
modified this benchmark: process number N reads the
data flushed by process number N + i, in the ith round
of execution. Namely, the data dependency varies from
different round of execution. The second modification in-
volved enabling asynchronous I/O interface. That means
a process can read the data, when another corresponding

process has written a part of data, the read and write
operations are performed in parallel.

• Scalable Synthetic Compact Applications (SSCA), which
is a benchmark suite consisting of six benchmarks, in-
cluding the simulations of real-world applications, such as
Bioinformatics Optimal Pattern Matching, Graph Analy-
sis, and Synthetic Aperture Radar Application. Since we
focus on I/O performance, only the source code of SSCA
#3 (version 0.1) was used in our experiments, which
has Sensor-Processing and Knowledge-Formation steps,
and focuses on large block data transfers and memory
accesses, and small I/O operations [HPCS].

• SPEEDY-LETKF, which is a typical real-world coupled
system including the SPEEDY model and the LETKF
model. To be specific, SPEEDY is a simplified AGCM
(Atmospheric General Circulation Model) developed by
F. Molteni [Molteni2003]. In this experiment, it is cou-
pled with the Local Ensemble Transform Kalman Filter
(LETKF), which is a state-of-the-art approach to data
assimilation [Hunt 2007]. LETKF reads the output data
from SPEEDY, and then carries out the data assimilation.
After that, the output results of LETKF are read by
SPEEDY as the input data for continuing the next cycle
of simulation.

3) Parameter Settings: In the PARTE file system, the block
size of the system is 64KB, and the size of local file cache on
the computing node was configured to 16 MB (thus, the client
file system can cache up to 256 blocks of data), for which
the Least Recently Used (LRU) replacement policy was used
to replace cache blocks. The default value of Maxevent was
the maximum value of counting numbers among all grids in
the access counting diagram. We configure the size of grid as
32 × 8, which means each grid may have a 32-block range
and there are 8 time intervals in a pattern. The value of N
in the compressed access counting diagram was set to 2 by
default. For each process, we keep the latest 3 block access
patterns which are used for calculating the pattern similarity.
In each round of scan, 1 process is fixed to be migrated when
the corresponding process running on another computing node
has been found.

There are also several pre-defined values for computing the
pattern similarity in the experiments, according to the size of
local file cache. The number of block access events, i.e. the
time window of Timewindow, is relevant to the size of the
local file cache, we recommend to set the number between
the range of [Sizecache/Sizeblock, 2 × Sizecache/Sizeblock].
In other words, the larger time windows indicates the ac-
curate pattern similarity, and this can reduce the number of
unnecessary migrations. However, it requires more time for
estimating the similarity, and it might not perform process
migrations, even both processes have data dependency in
reality. The storage servers calculated pattern similarity for the
processes while they have completed 2 × Timewindow block
access events from the previous stage. The experiments of
running mpi io test, and SSCA #3 have evaluated the proposed

mechanism having different values of Timewindow.
Furthermore, in the case study of real-world application,

we have also changed the value of pre-defined similarity
threshold, the value of N for the compressed access counting
scheme, and the number of block access events used for
profiling the access pattern, respectively in the case study. For
simplifying the illustration, we set the value of Timewindow as
256, and the impacts of different values for Timewindow have
not been checked in the case study anymore. The experimental
results have illustrated the effectiveness with different level of
triggers, and relevant results are reported in this section, as
well.

B. Experimental results

This section aims to disclose the effectiveness of the pro-
posed mechanism, through running the selected benchmarks,
as well as SPEEDY-LETKF, the real-world coupled applica-
tion.

1) Results of mpi-io test: In our tests, we executed the
benchmark with 64 MPI processes (4 MPI processes per
computing node) that read or write one shared 16GB file. That
is to say, each process pi accesses the (i + 16j)th segment
(with varied size) at call j, for 0 ≤ i ≤ 15, generating
a fully sequential access pattern. Since the processes read
the pieces of data written by the different processes in the
different rounds of execution, we present the experimental
results in the different rounds, separately. Figures 5(a), (b), and
(c) present the experimental results of read data throughput,
and Figures 5(d), (e), and (f) report the write data throughput
in the different rounds of execution, when the size of segment
varies from each other, and the number of client nodes is fixed
as 16 (i.e. 64 MPI processes). In the same way, Figures 6(a)
- (f) show the I/O data rate, when the number of client nodes
varies from 1 node to 16 nodes, but the size of segment is
fixed to 64KB.

The experimental results show that the newly proposed
mechanism improves the I/O data rate by 14.3 − 76.6%, in
contrast to the Non-Migration scheme. Because the proposed
mechanism of block access pattern-based process migration
can indeed dynamically re-allocate the processes to the client
nodes, on which there are processes with similar access
patterns. Consequently, the processes are able to exchange
their data by using the local file cache, instead of accessing
the data through a storage server.

Further, the results reported in Figures 5 and 6 confirm
that Pattern-based Migration works well when the access
pattern changes during the execution. In the first round, the
Optimal Placement scheme (that binds optimally the processes
for the first round) outperforms the Pattern-based Migration
scheme and Non-Migration (that place the processes in the
round-robin fashion). This is because, for the first round, the
Optimal Placement binds the processes according to their
data dependency and that the processes can exchange their
data through the local file cache. Although the Pattern-based
Migration can dynamically migrate the processes for the same
purpose, the migration causes an overhead that prevents this

(a) Round 1: Read Data Throughput (b) Round 2: Read Data Throughput (c) Round 3: Read Data Throughput

(d) Round 1: Write Data Throughput (e) Round 2: Write Data Throughput (f) Round 3: Write Data Throughput

256 512 1,024

D
at

a
T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Size of Segment (KB)

Pattern−based Migration+256
Pattern−based Migration+512
Non−Migration
Optimal Placement

 0

 50

 100

 150

 200

 250

16 32 64 128 256 512 1,024

D
at

a
T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Size of Segment (KB)

Pattern−based Migration+256
Pattern−based Migration+512
Non−Migration
Optimal Placement

 0

 50

 100

 150

 200

 250

16 32 64 128 256 512 1,024

D
at

a
T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Size of Segment (KB)

Pattern−based Migration+256
Pattern−based Migration+512
Non−Migration
Optimal Placement

 0

 50

 100

 150

 200

 250

16 32 64 128

Optimal Placement

 0

 50

 100

 150

 200

16 32 64 128 256 512 1,024

D
at

a
T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Size of Segment (KB)

Pattern−based Migration+256
Pattern−based Migration+512
Non−Migration

Optimal Placement

 0

 50

 100

 150

 200

16 32 64 128 256 512 1,024

D
at

a
T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Size of Segment (KB)

Pattern−based Migration+256
Pattern−based Migration+512
Non−Migration

Optimal Placement

 0

 50

 100

 150

 200

16 32 64 128 256 512 1,024

D
at

a
T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Size of Segment (KB)

Pattern−based Migration+256
Pattern−based Migration+512
Non−Migration

Fig. 5. Data throughput obtained for the mpi-io benchmark with varying size of segment, when there are 16 client nodes. (a), (b), (c): Read data throughput
in the different rounds of execution; (d), (e), (f): Write data throughput in the different rounds of execution.

(a) Round 1: Read Data Throughput (b) Round 2: Read Data Throughput (c) Round 3: Read Data Throughput

(e) Round 2: Write Data Throughput (f) Round 3: Write Data Throughput

D
at

a
T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Number of Client Nodes

Pattern−based Migration+256
Pattern−based Migration+512
Non−Migration
Optimal Placement

 0

 50

 100

 150

 200

1 2 4 6 8 10 12 14 16

D
at

a
T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Number of Client Nodes

Pattern−based Migration+256
Pattern−based Migration+512
Non−Migration
Optimal Placement

 0

 50

 100

 150

 200

1 2 4 6 8 10 12 14 16

D
at

a
T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Number of Client Nodes

Pattern−based Migration+256
Pattern−based Migration+512
Non−Migration
Optimal Placement

 0

 50

 100

 150

 200

1 2 4 6 8 10 12 14 16

D
at

a
T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Number of Client Nodes

Pattern−based Migration+256
Pattern−based Migration+512
Non−Migration
Optimal Placement

 0

 50

 100

 150

 200

1 2 4 6 8 10 12 14 16

D
at

a
T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Number of Client Nodes

Pattern−based Migration+256
Pattern−based Migration+512
Non−Migration
Optimal Placement

 0

 50

 100

 150

 200

1 2 4 6 8 10 12 14 16

D
at

a
T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Number of Client Nodes

Pattern−based Migration+256
Pattern−based Migration+512
Non−Migration
Optimal Placement

 0

 50

 100

 150

 200

1 2 4 6 8 10 12 14 16

(d) Round 1: Write Data Throughput

Fig. 6. The data throughput with varying number of client nodes, when the size of segment is 64KB. (a), (b), (c): Read data throughput in the different
rounds of execution; (d), (e), (f): Write data throughput in the different rounds of execution.

strategy from achieving the same performance as the Optimal
Placement strategy. On the other hand, when the access pattern
has changed in the second round and the third round of exe-
cution, the Optimal Static Placement scheme works like Non-
Migration, and the processes have to use the global file system
for exchanging their data. For these rounds, the Pattern-based
Migration strategy is able to dynamically adapt the placement
of processes and it achieves the same performance as for the
first round. The Pattern-based Migration thus outperforms the
other strategies by up to 76 %.

Another interesting clue revealed in Figures 5 and 6, is that
Pattern-based Migration+256 slightly outperforms Pattern-
based Migration+512. This is because the smaller time win-
dow indicates less time for disclosing a matched process pair,

so that the process migration can be conducted a little earlier
in our selected benchmark. However, it is possible to perform
incorrect migrations when the time window is too small, even
though this kind of case did not occur in our experiments.

2) Results of SSCA #3: In this series of experiments, the
benchmark was configured with a scale factor of 6 and a dialed
grid size of 4×4×4 = 64 images on a single computing node,
using the shared file system for storing the data. The size of the
formed image is 1492×2286 Bytes, which means every node
has to process 208MB of data, and all the 16 client nodes run
the same jobs. We did not analyze the source codes of SSCA
#3, so that the Optimal Placement scheme has not been used
in this experiment.

Since the SSCA #3 benchmark does not change its access

(b) Write Data Throughput (c) Overall System Performance (a) Read Date Throughput

 20

 40

 60

 80

 100

Sensor−Processing Knowledge−Formation
D

at
a

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

Pattern−based Migration+256 events
Pattern−based Migration+512 events
Non−Migration

 0

 20

 40

 60

 80

 100

Sensor−Processing Knowledge−Formation

D
at

a
T

h
ro

u
g
h
p
u
t

(M
B

/s
)

Pattern−based Migration+256 events
Pattern−based Migration+512 events
Non−Migration

 0

 20

 40

 60

 80

 100

Total−Througput Execution−Time

D
at

a
T

h
ro

u
g
h
p
u
t

(M
B

/s
)

Pattern−based Migration+256 events
Pattern−based Migration+512 events
Non−Migration

 0

20

10

30

40

0

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
d)

 50

Fig. 7. Results of running the HPCS SSCA #3 benchmark. (a)Read data bandwidth in different steps; (b)Write data bandwidth in different steps; (c)Overall
system performance in the measurements of total data throughput and the execution time.

pattern in the different rounds of execution, the average statis-
tics over the three rounds of execution are reported. Figures
7(a) and (b) reports the read data throughput, and write data
throughput that were measured during the execution. Figure
7(c) presents the system performance by the measurements of
the overall data throughput and the total execution time. From
the reported results, we conclude that the proposed scheme of
block access pattern-based process migration can effectively
enhance the I/O data throughput by 42.7% compared to
Non-migration, and reduce the application run time time by
14.8%. Besides, note that the two selected sizes of the time
window adopted by the proposed mechanism do not make any
significant performance difference in this experiment.

3) Case study of SPEEDY-LETKF: Because the first cycle
of the SPEEDY-LETKF is the initialization cycle, and the
access pattern does not change during the different cycles of
execution, we run it with 2 cycles in each test, and we only
report the results of the second cycle. In the tests, we set
each LETKF ensemble member has 16 parallel processes. That
indicates the number of SPEEDY processes is the number of
LETKF ensemble members multiplied by 16. The SPEEDY
processes are initially allocated from client node 0 to 15,
following the round-robin fashion, and the LETKF processes
are placed from client node 15 to node 0, following the
round-robin fashion, as well. The SPEEDY model executes
1-month integration, and outputs the simulation results after
the computation. The size of input data for the SPEEDY model
is around 4.1MB, and the size of its output data, which is then
read by the LETKF model, is 12.6MB. Furthermore, in order
to explore the impact of different similarity thresholds and
the value of N in the compressed matrix, on the system per-
formance, we have also executed the benchmark with diverse
settings of these parameters. As Pattern-based Migration+256
and Pattern-based Migration+512 have yielded the similar
results in our experiments, only Pattern-based Migration+256
has been used in this case study, and labeled as Pattern-based
Migration by default. In this case study, we first measured the
time required for running the application; next, we analyze
the breakdown time; At last, the results in terms of I/O data
throughput are presented.

Time required for running the application. We measured
the time required for executing the SPEEDY-LETKF appli-
cation using the Pattern-based Migration and Non-Migration
strategies in the storage system. In the experiments, we scaled

the number of ensemble LETKF from 1 to 10, which indicates
there are totally 16 to 160 processes for each kind of model.
Figure 8 reports the time consumed for running the application
benchmark utilizing the aforementioned two schemes. Espe-
cially, we employed the different scales of similarity and the
value of N in the Compressed Access Counting scheme. As
the figure shows, the proposed mechanism can significantly
reduce the time needed for running the application, compared
to the Non-Migration mechanism.

In order to analyze more precisely the execution time of
SPEEDY-LETKF, when using Pattern-based Migration, we
have conducted a breakdown analysis of the execution time.
Figure 9 illustrates the results of time distribution. We con-
clude that the shorter execution time obtained when using
Pattern-based Migration, is due to the I/O operations that
are performed faster since the time required by computation
remains the same. For example, when the size of ensemble
instances is 10 (160 processes in total) in the test case, Pattern-
based Migration only needs around a quarter of the I/O time
consumed by Non-Migration to perform the pattern-based
migrations, as well as the requested I/O operations.

Another interesting clue showed in Figures 8 and 9 is the
impact of the similarity threshold, and the different value
of N in the Compressed Access Counting scheme. Although
varying N does not impact the performance significantly in
the evaluation, the different scales of similarity threshold
indeed play a role in performance fluctuations. When there
are few processes, lower similarity thresholds achieve the best
performance, whereas the performance obtained with higher
similarity thresholds is improved as the number of processes
grows. This is because the lower scale of similarity threshold
requires less time for finding a matched pattern, but has a
higher probability to migrate the process to the node that is
not be the best choice. So that it may work well when there
are few processes, but it does not cause attractive results when
there are a large number of processes.

I/O Data Throughput. We have also measured the I/O
data throughput, when running the test case. Figure 10 shows
the data throughput of the two selected comparison strategies.
The results show that the Pattern-based Migration strategy
improves the I/O data throughput by up to 236.6 % compared
to the Non-Migration scheme.

In summary, SPEEDY-LETKF communicates between pro-
cesses in a pair-wise fashion, that indicates that the data written

(a) Execution Time (N = 2) (b) Execution Time (N = 4) (c) Execution Time (N = 6)

0

5

10

15

20

25

30

35

40

1(16) 2(32) 4(64) 6(96) 8(128) 10(160)

E
x

ec
u
ti

o
n

 T
im

e
(s

ec
o

n
d

)

Number of Ensemble Cases (Number of Processes)

Pattern-based Migration (Similarity = 70%)
Pattern-based Migration (Similarity = 80%)
Pattern-based Migration (Similarity = 90%)
Non-Migration

0

5

10

15

20

25

30

35

40

1(16) 2(32) 4(64) 6(96) 8(128) 10(160)

E
x
ec

u
ti

o
n
 T

im
e

(s
ec

o
n
d
)

Number of Ensemble Cases (Number of Processes)

Pattern-based Migration (Similarity = 70%)
Pattern-based Migration (Similarity = 80%)
Pattern-based Migration (Similarity = 90%)
Non-Migration

0

5

10

15

20

25

30

35

40

1(16) 2(32) 4(64) 6(96) 8(128) 10(160)

E
x
ec

u
ti

o
n
 T

im
e

(s
ec

o
n
d
)

Number of Ensemble Cases (Number of Processes)

Pattern-based Migration (Similarity = 70%)
Pattern-based Migration (Similarity = 80%)
Pattern-based Migration (Similarity = 90%)
Non-Migration

Fig. 8. The total execution time when utilizing Pattern-based Migration and Non-Migration.

(a) Breakdown Time Analysis (N = 2) (b) Breakdown Time Analysis (N = 4) (c) Breakdown Time Analysis (N = 6)

0

5

10

15

20

25

30

35

40

45

1(4) 2(8) 4(16) 6(24) 8(32) 10(40)

Pattern-based Migration (Similarity=70%)

Pattern-based Migration (Similarity=80%)

Pattern-based Migration (Similarity=90%)

Non-Migration

E
xe

cu
ti

on
 T

im
e

(m
s)

Number of Ensemble (Number of Processes)

Computation Time

Migration-relevant Time

I/O Time

0

5

10

15

20

25

30

35

40

45

1(4) 2(8) 4(16) 6(24) 8(32) 10(40)

Pattern-based Migration (Similarity=70%)

Pattern-based Migration (Similarity=80%)

Pattern-based Migration (Similarity=90%)

Non-Migration

E
xe

cu
ti

on
 T

im
e

(m
s)

Number of Ensemble (Number of Processes)

Computation Time

Migration-relevant Time

I/O Time

0

5

10

15

20

25

30

35

40

45

1(4) 2(8) 4(16) 6(24) 8(32) 10(40)

Pattern-based Migration (Similarity=70%)

Pattern-based Migration (Similarity=80%)

Pattern-based Migration (Similarity=90%)

Non-Migration

E
xe

cu
ti

on
 T

im
e

(m
s)

Number of Ensemble (Number of Processes)

Computation Time

Migration-relevant Time

I/O Time

Fig. 9. The breakdown time analysis when utilizing Pattern-based Migration and Non-Migration.

(a) I/O Data Throughput (N = 2) (b) I/O Data Throughput (N = 4) (c) I/O Data Throughput (N = 6)

0

50

100

150

200

250

300

350

400

1(16) 2(32) 4(64) 6(96) 8(128) 10(160)

I/
O

 D
at

a
T

h
ro

u
g
h
p
u
t

(M
B

/s
)

Number of Ensemble Cases (Number of Processes)

Pattern-based Migration (Similarity = 70%)
Pattern-based Migration (Similarity = 80%)
Pattern-based Migration (Similarity = 90%)
Non-Migration

0

50

100

150

200

250

300

350

400

1(16) 2(32) 4(64) 6(96) 8(128) 10(160)

I/
O

 D
at

a
T

h
ro

u
g
h
p
u
t

(M
B

/s
)

Number of Ensemble Cases (Number of Processes)

Pattern-based Migration (Similarity = 70%)
Pattern-based Migration (Similarity = 80%)
Pattern-based Migration (Similarity = 90%)
Non-Migration

0

50

100

150

200

250

300

350

400

1(16) 2(32) 4(64) 6(96) 8(128) 10(160)

I/
O

 D
at

a
T

h
ro

u
g
h
p
u
t

(M
B

/s
)

Number of Ensemble Cases (Number of Processes)

Pattern-based Migration (Similarity = 70%)
Pattern-based Migration (Similarity = 80%)
Pattern-based Migration (Similarity = 90%)
Non-Migration

Fig. 10. I/O data throughput when utilizing Pattern-based Migration and Non-Migration.

by a SPEEDY process is then read by the corresponding
LETKF process. Consequently, the time required for exchang-
ing the data between two kinds of processes can be remarkably
reduced and the data rate can be significantly improved, when
both of them are allocated in the same computing node, and
the local file cache on the node is used for data exchange.

4) Overhead Analysis: The evaluation has shown that the
pattern-based dynamical process migration can effectively and
practically improve the performance for different workloads,
but it is also necessary to measure the overhead caused the
migration scheme we propose. In fact, in addition to conducing
the process migration, the proposed mechanism also needs to
analyze the block access events to profile the patterns, and
computing the pattern similarity for triggering migration. This
section evaluates the overhead caused by the migration of the
processes between computing nodes, as well as the overhead.

Overhead on process migration.
Table II reports the overhead caused by the migration of

processes, when running the benchmarks with default settings.
Namely, the value of Timewindow is 256 block access events,

TABLE II
PROCESS MIGRATION OVERHEAD

Benchmark # of Migrations Traffic (MB) Time (ms)
mpi io test 31 1400 1298
SSCA #3 7 742 1002
SPEEDY-LETKF (16) 8 422 1211
SPEEDY-LETKF (32) 16 825 1473
SPEEDY-LETKF (64) 32 1613 1794
SPEEDY-LETKF (96) 49 2211 2172
SPEEDY-LETKF (128) 65 2764 2445
SPEEDY-LETKF (160) 81 3187 2667

and the value of Similarity is 0.9. Because the processes
in the selected benchmarks have heavy data dependency,
nearly half the processes have been migrated to other nodes.
However, the results show that the overhead of the migration
overhead is not high. For instance, SPEEDY-LETKF runnig
160 processes in total consumed 2.7 seconds of downtime
for process migrations, but the migration saved more than 18
seconds of I/O time.

TABLE III
COMPUTATION AND SPACE OVERHEAD

Benchmark Time (%) Space (MB)
mpi io test 2.18 169.64
SSCA #3 1.25 26.98
SPEEDY-LETKF (16) 1.87 10.21
SPEEDY-LETKF (32) 1.81 22.18
SPEEDY-LETKF (64) 1.78 30.45
SPEEDY-LETKF (96) 1.76 42.16
SPEEDY-LETKF (128) 1.78 60.22
SPEEDY-LETKF (160) 1.77 77.44

While traditional checkpoint/restart mechanisms rely on
disk operations, the Pattern-based migration transfers the
state of a process to the destination client node using the
MPI communication facility. As a result, the process can be
resumed to execute on the destination node with a short time
interruption. In other words, the downtime of the migrated
process is reduced when using MPI for transfering the process
state. This downtime is compensated with the I/O operations
that are carried out faster, we shown in the previous sections.

Overhead on computation and storage. The Pattern-based
Migration mechanism records the block access events and
then profiles block access patterns using the Access Counting
Scheme, in order to calculate the pattern similarity and to
direct the process migration. Table III reports the overhead
on computation and space storage due to the Access Counting
Scheme for the benchmarks presented in the previous sections.

The results show that the overhead in terms of computation
is minor. The overhead in terms of space storage remains
low: less than 200 MB of disk space is used for storing
trace logs. Thus, analyzing the similarity of block access
patterns and activating the process migration can be done on
the same machine as the storage system without causing too
much computation and disk overhead. For long-time running
applications, the size of trace logs may become extraordinary
large, in this case, the Pattern-based Migration scheme may
discard certain logs that occurred early, because disk block
correlations are relatively stable during certain period, and the
disk access logs at earlier stages do not reflect the current
access patterns [Li 2004].

V. CONCLUSION

This paper has proposed, implemented, and evaluated a
novel process migration mechanism for yielding better I/O
performance. It leverages the block access pattern similarity
of processes, which is computed by the storage servers, to
properly perform migrations. The experiments have shown that
this mechanism can benefit to coupled applications or other
scientific applications running on high performance clusters,
without any modifications to the application themselves. To
put it from another angle, we first profile the block access
pattern of processes for a specified period using the scheme
of Access Counting Diagram. Next, we calculate the pattern
similarity of the patterns of process pairs and search for

processes that have similar access patterns. When such a pair
of processes is found, one of the processes is migrated to
the other process computing node. Therefore, both processes
can exchange data via the local file cache on the computing
node, instead of using the global file system. The results of
the evaluation experiments show that not only the I/O data
throughput can be remarkably improved, but also the execution
time of the application can be greatly reduced.

We also emphasize that the idea of process migration
according to pattern similarity presented in this paper can be
applied to other conventional distributed/parallel file systems
such as Lustre, the Google file system, PVFS or the Hadoop
distributed file system. Our current implementation selects the
targeted migration process on the basis of I/O workloads,
and the computing workloads is not considered. This may
result in migrating an I/O-bound process running on an idle
computing node, to a busy one, though this kind of cases did
not appear in the evaluation experiments. Moreover, the intra-
application communications among processes are not taken
into account before conducting process migrations. Therefore,
we are intending to optimize the implementation, and using the
information about the computing utilization on the computing
nodes and the intra-application communication traffics, to
properly carry out process migrations. Besides, intelligently
adapting the values of parameters used in the proposed mecha-
nism for the different application contexts, is another direction
of our future work.

VI. ACKNOWLEDGEMENTS

This work was partially supported by “National Natu-
ral Science Foundation of China (No. 61303038)”, “Nat-
ural Science Foundation Project of CQ CSTC (No.
CSTC2013JCYJA40050)”, “the Scientific Research Founda-
tion for the Returned Overseas Chinese Scholars, State Edu-
cation Ministry”, and “the Opening Project of State Key Labo-
ratory for Novel Software Technology (No. KFKT2014B17)”.

REFERENCES

[1] Bailey D., Barszcz E., and Barton J. et al. The NAS parallel benchmarks.
International Journal of High Performance Computing Applications, Vol.
5(3): 63–73, 1991.

[2] Chen H., Chen W., and Huang J. et al. MPIPP: an automatic profile-
guided parallel process placement toolset for SMP clusters and multi-
clusters. In Proceedings of the 20th annual international conference on
Supercomputing (ICS ’2006), pp. 353–360, 2006.

[3] Chen Q, Guo M. Adaptive workload-aware task scheduling for single-
ISA asymmetric multicore architec- tures. ACM Transactions on Archi-
tecture and Code Optimization (TACO), Vol. 11(1): 8, 2014.

[4] Cheng L., Wang C. vBalance: using interrupt load balance to improve
I/O performance for SMP virtual machines. In Proceedings of the Third
ACM Symposium on Cloud Computing (SoCC ’2012), ACM, 2012.

[5] Clark C., Fraser K., and Hand S., et al. Live migration of virtual
machines. In Proceedings of the 2nd conference on Symposium on Net-
worked Systems Design and Implementation (NSDI ’2005), USENIX
Association, pp. 273-286, 2005.

[6] Costa B., Al-Kiswany S., and Yang H., et al. Supporting storage
configuration for i/o intensive workflows. In Proceedings of the 28th
ACM international conference on Supercomputing (ICS ’2014). ACM,
pp. 191–200, 2014.

[7] Dean J. and Ghemawat S. MapReduce: Simplified Data Processing on
Large Clusters. Communication of ACM, Vol. 51(1):107–113, 2008.

[8] Ding X., Jiang S., Chen F., and Zhang X. et al. DiskSeen: Exploiting
Disk Layout and Access History to Enhance I/O Prefetch. In Proceedings
of USENIX Annual Technical Conference (ATC ’2007), San Francisco:
USENIX Association, 2007.

[9] Dong X., Xie Y., and Muralimanohar N. et al. Hybrid checkpointing
using emerging nonvolatile memories for future exascale systems. ACM
Transactions on Architecture and Code Optimization (TACO), Vol.8(2):
6, 2011.

[10] Dongarra J. and Beckman P. et al. The International Exascale Software
Roadmap. International Journal of High Performance Computer Appli-
cations, Vol. 25(1), pp. 3–60, 2011.

[11] Du C., Sun X., and Wu M. Dynamic scheduling with process migration.
Seventh IEEE International Symposium on Cluster Computing and the
Grid (CCGRID ’2007), pp. 92–99, 2007.

[12] Filesystem in Userspace. http://fuse.sourceforge.net/ [Accessed in Nov.,
2010]

[13] Gong Z., Boyuka D., and Zou X. et al. Parlo: Parallel run-time layout
optimization for scientific data explorations with heterogeneous access
patterns. In Proceedings of 13th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid ’2013), IEEE, pp. 343–
351, 2013.

[14] Hack J., Caron J., and Danabasoglu G. et al. CCSM-CAM3 climate
simulation sensitivity to changes in horizontal resolution. Journal of
climate, Vol. 19(11): 2267–2289, 2006.

[15] He J., Bent J., Torres A., and Sun X., et al. I/O acceleration with pattern
detection. In Proceedings of the 22nd international symposium on High-
performance parallel and distributed computing (HPDC ’2013). ACM,
New York, NY, USA, pp. 25–36, 2013.

[16] HPCS challenge benchmarks scalable synthetic compact applica-
tion. SSCA #3: Sensor processing and knowledge formation, MIT.
http://www.highproductivity.org/SSCABmks.htm, 2005.

[17] Hunt B., Kostelich E., and Szunyogh I. Efficient data assimilation for
spatiotemporal chaos: A local ensemble transform Kalman filter. Physica
D: Nonlinear Phenomena, 2007, Vol.230(1): 112–126.

[18] Jeannot E., Mercier G., and Tessier F. Process Placement in Multicore
Clusters:Algorithmic Issues and Practical Techniques. IEEE Transac-
tions on Parallel and Distributed Systems, Vol. 25(4):993–1002, 2014.

[19] Jiang S., Ding X., Xu Y., and Davis K. A Prefetching Scheme Exploiting
both Data Layout and Access History on Disk. ACM Transaction on
Storage, Vol. 9:Article 10, 2013.

[20] Larson J., Jacob R., and Ong E. The Model Coupling Toolkit: A New
Fortran90 Toolkit for Building Multiphysics Parallel Coupled Models.
International Journal of High Performance Computing Applications,
Vol.19(3):277–292, 2005.

[21] Li Z., Chen Z., Srinivasan S., and Zhou Y. C-Miner: Mining Block
Correlations in Storage Systems. In Proceedings of the Third USENIX
Conference on File and Storage Technologies (ATC ’2004), San Fran-
cisco: USENIX, 2004.

[22] Liao J. A New Concurrent Checkpoint Mechanism for Embeded Multi-
Core Systems. Computing and Informatics, Vol. 31(3): 693-709, 2012(a).

[23] Liao J., and Ishikawa Y. Partial Replication of Metadata to Achieve
High Metadata Availability in Parallel File Systems. In the Proceedings
of 41st International Conference on Parallel Processing (ICPP ’2012),
pp. 168-177, 2012(b).

[24] Liao J., Trahay F., Gerofi B., and Ishikawa Y. Prefetching on Storage
Servers through Mining Access Patterns on Blocks. IEEE Transactions
on Parallel and Distributed Systems, DOI: 10.1109/TPDS.2015.2496595,
2015.

[25] Meneses E., Ni X., Zheng G., and Mendes C. et al. Using migratable
objects to enhance fault tolerance schemes in supercomputers. IEEE
Transactions on Parallel and Distributed Systems, Vol. 26(7):2061–2074,
2015.

[26] Mercier, G., Clet-Ortega, J. Towards an efficient process placement
policy for MPI applications in multicore environments. In: Ropo, M.,
Westerholm, J., Dongarra, J. (eds.) PVM/MPI. LNCS, vol. 5759, pp.
104–115. Springer, Heidelberg, 2009.

[27] Mercier G. and Jeannot E. Improving MPI applications performance
on multicore clusters with rank re-ordering. Recent Advances in the
Message Passing Interface, pp. 39-49, 2011.

[28] Michaud P., Seznec A., Fetis D., Sazeides Y., and Constantinou T. A
study of thread migration in temperature-constrained multicores. ACM
Trans. Archit. Code Optim. Vol.4(2), Article 9, 2007.

[29] Molteni F. Atmospheric simulations using a GCM with simplified
physical parametrizations. I: Model climatology and variability in multi-
decadal experiments. Climate Dynamics, Vol. 20, pp. 175-191, 2003.

[30] MPI-IO Test (fs test). http://institute.lanl.gov/data/software/ [Accessed
in May, 2014]

[31] MPICH2, https://www.mpich.org/ [Accessed in Dec., 2012]
[32] Piernas J., and Nieplocha J.. Implementation and evaluation of active

storage in modern parallel file systems. Parallel Computing, Vol.36(1):
26-47, 2010.

[33] Piernas J., Nieplocha J., and Felix E. Evaluation of active storage
strategies for the lustre parallel file system. In Proceedings of the 2007
ACM/IEEE conference on Supercomputing (SC ’2007), 2007.

[34] Pilla L., Ribeiro C., and Cordeiro D. et al. A hierarchical approach for
load balancing on parallel multi-core systems. In Proceedings of the
41st International Conference on Parallel Processing (ICPP 2012), pp.
118-127, 2012.

[35] Valcke S., Budich R., and Carter M. et al. The PRISM software
framework and the OASIS coupler. In proceedings of the 18 Annual
BMRC Modelling Workshop, Melbourne, Australia, 2006.

[36] Valcke S., Balaji V. Craig A., and Riley G. et al. Coupling Technologies
for Earth System Modelling. Geoscientific Model Development, 2012.

[37] Vecchiola C., Pandey S., and Buyya R. High-performance cloud com-
puting: A view of scientific applications In Proceedings of the 10th
International Symposium on Pervasive Systems, Algorithms, and Net-
works (ISPAN ’2009), pp. 4-16, 2009.

[38] Wang C., Mueller F., and Engelmann C., et al. Proactive process-
level live migration in HPC environments. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing (SC ’2008). IEEE Press,
2008.

[39] Williams D., Jamjoom H., and Weatherspoon H. The Xen-Blanket: vir-
tualize once, run everywhere. In Proceedings of the 7th ACM European
Conference on Computer Systems (EuroSys ’2012). ACM, New York,
NY, pp. 113–126, 2012.

[40] Xie Y., Feng D., Li Y. and Long D. Oasis: An active storage framework
for object storage platform. Future Generation Computer Systems, 2015.

[41] Zheng F., Zou H., and Eisenhauer G. et al. Flexio: I/O middleware for
location-flexible scientific data analytics. In Proceedings of IEEE 27th
International Symposium on Parallel & Distributed Processing (IPDPS
’2013),pp. 320-331, 2013.

