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Introduction

The Helmholtz equation is very difficult to solve by iterative methods [START_REF] Ernst | Why it is difficult to solve Helmholtz problems with classical iterative methods[END_REF], and the time harmonic Maxwell's equations inherit these difficulties. Optimized Schwarz methods are among the most promising iterative techniques. For the Helmholtz equation, they have their roots in the seminal work of Deprés [START_REF] Després | Décomposition de domaine et problème de Helmholtz[END_REF][START_REF] Després | A domain decomposition method for the harmonic Maxwell equations[END_REF], which led to the development of optimized transmission conditions [START_REF] Chevalier | An OO2 (Optimized Order 2) method for the Helmholtz and Maxwell equations[END_REF][START_REF] Gander | Optimized Schwarz methods for Helmholtz problems[END_REF][START_REF] Gander | Optimized Schwarz methods without overlap for the Helmholtz equation[END_REF][START_REF] Gander | An optimized Schwarz method with two-sided Robin transmission conditions for the Helmholtz equation[END_REF][START_REF] Boubendir | A quasi-optimal nonoverlapping domain decomposition algorithm for the Helmholtz equation[END_REF], and these techniques were independently rediscovered for the sweeping preconditioner [START_REF] Engquist | Sweeping preconditioner for the Helmholtz equation: hierarchical matrix representation[END_REF] and the source transfer domain decomposition method [START_REF] Chen | A source transfer domain decomposition method for Helmholtz equations in unbounded domain[END_REF]. For the time harmonic Maxwell's equations, optimized transmission conditions were developed and tested for problems without conductivity in [START_REF] Alonso-Rodriguez | New nonoverlapping domain decomposition methods for the harmonic Maxwell system[END_REF][START_REF] Dolean | Optimized Schwarz methods for Maxwell equations[END_REF][START_REF] Peng | Non-conformal domain decomposition method with second-order transmission conditions for time-harmonic electromagnetics[END_REF][START_REF] Peng | One way domain decomposition method with second order transmission conditions for solving electromagnetic wave problems[END_REF][START_REF] Bouajaji | Optimized Schwarz methods for the time-harmonic Maxwell equations with damping[END_REF], and with conductivity in [START_REF] Dolean | Domain decomposition methods for electromagnetic wave propagation problems in heterogeneous media and complex domains[END_REF]. Particular Galerkin discretizations of transmission conditions were studied in [START_REF] Dolean | Optimized Schwarz algorithms for solving time-harmonic Maxwell's equations discretized by a discontinuous Galerkin method[END_REF][START_REF] Dolean | A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods[END_REF], and for scattering applications, see [START_REF] Peng | Non-conformal domain decomposition method with second-order transmission conditions for time-harmonic electromagnetics[END_REF][START_REF] Peng | One way domain decomposition method with second order transmission conditions for solving electromagnetic wave problems[END_REF].

In [START_REF] Dubois | Optimized Schwarz Methods for the Advection-Diffusion Equation and for Problems with Discontinuous Coefficients[END_REF][START_REF] Dubois | Optimized Schwarz methods for a diffusion problem with discontinuous coefficient[END_REF], it was discovered that heterogeneous media can actually improve the convergence of optimized Schwarz methods, provided that the coefficient jumps are aligned with the interfaces, and the jumps are taken into account in an appropriate way in the transmission conditions. Similar results were found for Maxwell's equations in [START_REF] Dolean | Optimized Schwarz methods for Maxwell equations with discontinuous coefficients[END_REF] and [START_REF] Dolean | Schwarz methods for second order Maxwell equations in 3d with coefficient jumps[END_REF]; it is even possible to obtain convergence independently of the mesh size in certain situations. We present and study here transmission conditions for the Helmholtz equation with heterogeneous media, and establish a relation to the results of [START_REF] Dolean | Optimized Schwarz methods for Maxwell equations with discontinuous coefficients[END_REF][START_REF] Dolean | Schwarz methods for second order Maxwell equations in 3d with coefficient jumps[END_REF] written for Maxwell's equations. We then study improved convergence behavior for specific choices of the discretization parameters related to the pollution effect [START_REF] Babuska | Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?[END_REF]. We consider the two dimensional Helmholtz equation in discontinuous media with piece-wise constant density ρ and wave-speed c. The Helmholtz equation in Ω = R 2 is defined by

∇( 1 ρ ∇ • u) + ω 2 c 2 ρ u = f, in Ω, (1) 
with

ρ =: ρ 1 in Ω 1 , ρ 2 in Ω 2 , c := c 1 in Ω 1 , c 2 in Ω 2 ,
where

Ω 1 = R -× R, Ω 2 = R + × R and the Sommerfeld radiation condition is imposed at infinity, lim |x|→∞ |x| ∂ |x| u + iωu = 0, (2) 
for every possible direction x |x| . We can naturally define a Schwarz algorithm for equation [START_REF] Alonso-Rodriguez | New nonoverlapping domain decomposition methods for the harmonic Maxwell system[END_REF] with Robin transmission conditions at the interface aligned with the discontinuity between the coefficients, and parameters s 1 , s 2 ∈ C,

∇( 1 ρ1 ∇ • u n 1 ) + ω 2 c 2 1 ρ1 u n 1 = f, in Ω 1 , ( 1 ρ1 ∂ n1 + 1 ρ2 s 2 )u n 1 = ( 1 ρ2 ∂ n1 + 1 ρ2 s 2 )u n-1 2 , on Γ, ∇( 1 ρ2 ∇ • u n 2 ) + ω 2 c 2 2 ρ1 u n 2 = f, in Ω 2 , ( 1 ρ2 ∂ n2 + 1 ρ1 s 1 )u n 2 = ( 1 ρ1 ∂ n2 + 1 ρ1 s 1 )u n-1 1
, on Γ.

(

) 3 
Proposition 1. The convergence factor of algorithm (3) is given by

ρ opt (k, ρ 1 , ρ 2 , ω, c 1 , c 2 , s 1 , s 2 ) = (λ 1 -s 1 )(λ 2 -s 2 ) (λ 1 + s 2 ρ1 ρ2 )(λ 2 + s 1 ρ2 ρ1 ) 1/2 , ( 4 
)
with λ j = k 2 -ω 2 j , ω j = ω cj for j = 1, 2.
The proof of Proposition 1 is based in Fourier analysis, see [START_REF] Veneros | Méthodes des décomposition de domaines pour des problèmes de propagation d'ondes heterogènes[END_REF] for details.

In order to obtain an efficient algorithm, we have to choose s 1 and s 2 such that ρ opt becomes as small as possible for all relevant numerical frequencies

k ∈ K := [k min , k max ],
where k min is the lowest relevant frequency (k min depends on the geometry of the media) and k max = cmax h is the highest numerical frequency supported by the numerical grid with mesh size h.

In what follows, we only consider s 1 = P 1 (1+i) and s 2 = P 2 (1+i), P j > 0, a choice that has been justified in [START_REF] Gander | Optimized Schwarz methods without overlap for the Helmholtz equation[END_REF], and thus study the min-max problem

ρ * opt = min P1,P2>0 max k∈K |ρ opt (k, ρ 1 , ρ 2 , ω, c 1 , c 2 , P 1 (1 + i), P 2 (1 + i))|. (5) 
Similarly we can define a Schwarz algorithm for the time-harmonic Maxwell equations in a given domain

Ω = R 3 -iωεE + ∇ × H = J, iωµH + ∇ × E = 0, (6) 
with the Silver-Müller radiation condition [START_REF] Silver | Microwave antenna theory and design[END_REF][START_REF] Müller | Grundprobleme der mathematischen Theorie elektromagnetischer Schwingungen[END_REF] 

lim r→∞ r(H × e r + 1 Z j E) = 0, (7) 
where r := |x| and e r = x/r for any vector x ∈ R 3 . We also consider the heterogeneous case where the domain Ω consists of two non-overlapping subdomains Ω 1 := R -× R 2 and Ω 2 := R + × R 2 with interface Γ , with piece-wise constant parameters ε j and µ j in Ω j , j = 1, 2. A general Schwarz algorithm for this configuration is

-iωε 1 E 1,n +∇ × H 1,n = J, iωµ 1 H 1,n + ∇ × E 1,n = 0 in Ω 1 , (B n 1 +S 1 B n 2 )(E 1,n , H 1,n ) = (B n 1 +S 1 B n 2 )(E 2,n-1 , H 2,n-1 ) on Γ , -iωε 2 E 2,n +∇ × H 2,n = J, iωµ 2 H 2,n + ∇ × E 2,n = 0 in Ω 2 , (B n 2 +S 2 B n 1 )(E 2,n , H 2,n ) = (B n 2 +S 2 B n 1 )(E 1,n-1 , H 1,n-1 ) on Γ , ( 8 
)
where S j , j = 1, 2 are tangential, possibly pseudo-differential operators, and

B n j (E j,n , H j,n ) = E j,n Z j × n j + n j × (H j,n × n j )
are the characteristic conditions, with Z j = µ j /ǫ j , j = 1, 2. Different choices of S j , j = 1, 2 lead to different Schwarz methods, see [START_REF] Dolean | Optimized Schwarz methods for Maxwell equations[END_REF].

Remark 1. A direct computation shows that algorithms (3) and ( 8) have the same convergence factor, when setting ρ j := µ j and c j := 1 √ εj µj for j = 1, 2. Hence we can use all the results presented in [START_REF] Dolean | Optimized Schwarz methods for Maxwell equations with discontinuous coefficients[END_REF] for Maxwell's equations for the case of the Helmholtz equation (3). We thus focus in the remainder on the Helmholtz case, but keep in mind that all results we will obtain hold mutatis mutandis also for the Maxwell case.

Using Remark 1, we obtain from [START_REF] Dolean | Optimized Schwarz methods for Maxwell equations with discontinuous coefficients[END_REF] and [START_REF] Dolean | Schwarz methods for second order Maxwell equations in 3d with coefficient jumps[END_REF] Corollary 1. The solution of (5) for c 1 = c 2 is asymptotically

ρ * opt =        1 -O(h 1/4 ) if ρ 1 = ρ 2 , ρmin ρmax + O(h 1/2 ) if 1 √ 2 ≤ ρ1 ρ2 ≤ √ 2, 4 1 2 + O(h 1/2 ) if ρ1 ρ2 < 1 √ 2 or ρ1 ρ2 > √ 2. ( 9 
)
If ρ 1 = ρ 2 and c 1 = c 2 , we obtain after excluding the resonance frequency [START_REF] Dolean | Optimized Schwarz methods for Maxwell equations[END_REF] ρ * opt =

ρ min ρ max + O(h 1/2 ), (10) 
with ρ min = min{ρ 1 , ρ 2 } and ρ max = max{ρ 1 , ρ 2 }.

The detailed proof of Corollary 1 and the values of P j can be found in [START_REF] Veneros | Méthodes des décomposition de domaines pour des problèmes de propagation d'ondes heterogènes[END_REF].

We see from Corollary 1 that in most of the cases the optimized convergence factor ρ * opt has an asymptotic behavior independent of the mesh size h.

Scaling Results when Controlling the Pollution Effect

The core of our study is the asymptotic analysis of algorithms ( 3) and ( 8) when the mesh size h is related to the wave number ω to control the pollution effect [START_REF] Babuska | Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?[END_REF]. We will focus on the first case of Corollary 1, because this is the only case where the convergence can deteriorate in the mesh size h; see the first line in (9). We will consider three particular relationships between ω and h: ωh = C ω , C ω a constant, where the pollution effect is not controlled, ω 2 h = C ω where the pollution effect is provably controlled, and finally ω 3/2 h = C ω which is widely believed to suffice to control the pollution effect. 4) is maximal for the frequencies k = ω 1 , k = ω 2 and k = k max , and s j = (1+i)P j , then the solution of the min-max problem ( 5) is

Theorem 1. Let ρ 1 = ρ 2 , c 1 = c 2 and ωh = C ω . If |ρ opt | defined in (
P * 1 = p 1 h , P * 2 = p 2 h , ρ * opt = p 2 1 (2p 2 2 -2p 2 c r + c 2 r ) p 2 2 (2p 2 1 + 2p 1 c r + c 2 r ) 1 4 , (11) 
where {p 1 , p 2 } is solution of the system of equations

p 2 1 (2p 2 2 -2p2cr+c 2 r ) p 2 2 (2p 2 1 +2p1cr+c 2 r ) = ρ 2 p 2 2 (2p 2 1 -2p1cr+c 2 r ) p 2 1 (2p 2 2 +2p2cr+c 2 r ) , p 2 1 (2p 2 2 -2p2cr+c 2 r ) p 2 2 (2p 2 1 +2p1cr+c 2 r ) = ρ 2 (2p 2 2 -2p2cmax 2 +c 2 max 2 )(2p 2 1 -2p1cmax 1 +c 2 max 1 ) (2p 2 2 +2p2cmax 2 +c 2 max 2 )(2p 2 1 +2p1cmax 1 +c 2 max 1 ) , c r := rh := |ω 2 1 -ω 2 2 |h, c max1 := c 2 max -C 2 ω /c 2 1 , c max2 := c 2 max -C 2 ω /c 2 2 .
Proof. Evaluating |ρ opt | 4 from (4) at

s j := pj h (1 + i) for k = ω 1 , k = ω 2 and k = k max yields R 1 = (h 2 r 2 -2p2hr+2p 2 2 )p 2 1 p 2 2 (h 2 r 2 +2p1hr+2p 2 1 ) , R 2 = ρ 2 p 2 2 (h 2 r 2 -2p1hr+2p 2 1 ) (2p 2 2 +2p2hr+h 2 r 2 )p 2 Replacing rh by c r , c max 1 = c 2 max -C 2 ω /c 2 1 and c max 2 = c 2 max -C 2 ω /c 2 2
, the expressions can be simplified to

R 1 = p 2 1 (2p 2 2 -2p 2 c r + c 2 r ) p 2 2 (2p 2 1 + 2p 1 c r + c 2 r ) , R 2 = ρ 2 p 2 2 (2p 2 1 -2p 1 c r + c 2 r ) p 2 1 (2p 2 2 + 2p 2 c r + c 2 r ) , R 3 = (2p 2 2 -2p 2 c max 2 + c 2 max2 )(2p 2 1 -2p 1 c max 1 + c 2 max1 ) (2p 2 2 + 2p 2 c max 2 + c 2 max2 )(2p 2 1 + 2p 1 c max 1 + c 2 max1 )
.

Equioscillation between R 1 , R 2 and R 3 then gives the result [START_REF] Veneros | Méthodes des décomposition de domaines pour des problèmes de propagation d'ondes heterogènes[END_REF].

Remark 2. Note that Theorem 1 gives a closed form solution of the min-max problem [START_REF] Chevalier | An OO2 (Optimized Order 2) method for the Helmholtz and Maxwell equations[END_REF], not just an asymptotic one.

For the special case of equal transmission conditions, we have Corollary 2. Under the same assumptions as in Theorem 1, if s j = (1+i)P j with P 1 = P 2 , then the solution of the min-max problem ( 5) is given by

P * 1 = P * 2 = p h , ρ * opt = (2p 2 -2pc r + c 2 r ) (2p 2 + 2pc r + c 2 r ) 1 4 
, with p the solution of the equation

(2p 2 -2pc r + c 2 r ) (2p 2 + 2pc r + c 2 r ) = (2p 2 -2pc max 2 + c 2 max2 )(2p 2 -2pc max 1 + c 2 max1 ) (2p 2 + 2pc max 2 + c 2 max2 )(2p 2 + 2pc max 1 + c 2 max1 )
.

Proof. The proof follows along the same lines as the proof of Theorem 1.

Theorem 2. Let ρ 1 = ρ 2 , c 1 = c 2 and ω 2 h = C ω . If |ρ opt | defined in (4) is maximal for the frequencies k = ω 1 , k = ω 2 , k = k m := cm h 3/4
and k = k max , and s j = (1 + i)P j , P 1 = p1 h and P 2 = p2 √ h , then the asymptotic solution of the min-max problem (5) for h small is given by

P * 1 = c 3/4 max c 1/4 r 2 1/4 h 7/8 , P * 2 = 1 2 c 1/4 max c 3/4 r 2 3/4 h 5/8 , ρ * opt = 1 - r 1/4 2 1/4 c 1/4 max h 1/8 + O(h 1/4 ).
Interchanging the role of P 1 and P 2 leads to the same result.

Proof. The proof is based again on equioscillation.

Theorem 3. Let ρ 1 = ρ 2 , c 1 = c 2 and ω 3/2 h = C ω . If the frequencies k = ω 1 , k = ω 2 , k = k m := cm h 5/6
and k = k max are the local maxima of the convergence factor ρ opt from (4), and if s 1 = (1 + i)P 1 , s 2 = (1 + i)P 2 , with P 1 = p1 h 11/12 and P 2 = p2 h 3/4 , then the asymptotic solution of the min-max problem (5) for h small is given by

P * 1 = c 3/4 max c 1/4 r 2 1/4 h 11/12 , P * 2 = 1 2 c 1/4 max c 3/4 r 2 3/4 h 3/4 , ρ * opt = 1 - r 1/4 2 1/4 c 1/4 max h 1/12 + O(h 1/6 ). ω = Cω ω 2 h = Cω ω 3/2 h = Cω ωh = Cω ρ 1 = ρ 2 , c 1 = c 2 1 -O(h 1/4 ) (Corollary 1) 1 -O(h 1/8 ) (Theorem 2) 1 -O(h 1/12 ) (Theorem 3) < 1 (Theorem 1) ρ 1 = ρ 2 , c 1 = c 2 max{ 4 1 2 , ρ min ρmax } (Corollary 1) max{ 4 1 2 , ρ min ρmax } (Remark 3) max{ 4 1 2 , ρ min ρmax } (Remark 3) < 1 (Remark 3) ρ 1 = ρ 2 , c 1 = c 2 ρ min ρmax (Corollary 1) ρ min ρmax (Remark 3) ρ min ρmax (Remark 3) < 1 (Remark 3)
Table 1 Comparison of the convergence factors with different relationships between ω and h.

Interchanging the role of P 1 and P 2 leads to the same result.

Proof. The proof is similar to the proof of Theorem 2.

One can justify the choice of the frequencies k = ω 1 , k = ω 2 , k = k m and k = k max as the correct candidates for the |ρ opt | using asymptotic analysis, but this exceeds the space available, see [START_REF] Veneros | Méthodes des décomposition de domaines pour des problèmes de propagation d'ondes heterogènes[END_REF] for more details. Remark 3. One can obtain similar results also for the cases ρ 1 = ρ 2 but this will only reduce the order of the second asymptotic term, as in Theorems 2 and 3. For the relationship ωh = C ω one can also obtain a similar result to Theorem 1.

We give a summary of all these results in Table 1.

Conclusions

We studied the performance of optimized Schwarz methods for Helmholtz and Maxwell's equations for heterogeneous media, where aligning interfaces with heteronegeities can lead to methods that converge faster than without heterogeneities. This is in contrast to recent approaches like GenEO [START_REF] Spillane | Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps[END_REF] that lead to robust methods for heterogeneous media without alignment of interfaces, but they can not benefit from the heterogeneity. Using Fourier analysis, we showed that the convergence factor of the optimized Schwarz methods for the Helmholtz equation and the Maxwell's equations are the same, and it suffices therefore to study the algorithms only for the Helmholtz equation. We then studied in detail the performance for three different choices of the relationship between the wave number and the mesh size to control the pollution effect, and showed that increasing the resolution improves the performance of the optimized Schwarz methods. It was not possible to show all the proofs in detail in this short manuscript, but more information can be found in the PhD thesis [START_REF] Veneros | Méthodes des décomposition de domaines pour des problèmes de propagation d'ondes heterogènes[END_REF].