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GLOBAL WEAK SOLUTIONS TO THE COMPRESSIBLE QUANTUM
NAVIER-STOKES EQUATION AND ITS SEMI-CLASSICAL LIMIT

INGRID LACROIX-VIOLET AND ALEXIS F. VASSEUR

ABSTRACT. This paper is dedicated to the construction of global weak solutions to the
quantum Navier-Stokes equation, for any initial value with bounded energy and entropy.
The construction is uniform with respect to the Planck constant. This allows to perform
the semi-classical limit to the associated compressible Navier-Stokes equation. One of
the difficulty of the problem is to deal with the degenerate viscosity, together with the
lack of integrability on the velocity. Our method is based on the construction of weak
solutions that are renormalized in the velocity variable. The existence, and stability of
these solutions do not need the Mellet-Vasseur inequality.

1. INTRODUCTION

Quantum models can be used to describe superfluids [12], quantum semiconductors [6],
weakly interacting Bose gases [8] and quantum trajectories of Bohmian mechanics [16].
They have attracted considerable attention in the last decades due, for example, to the
development of nanotechnology applications.

In this paper, we consider the barotropic compressible quantum Navier-Stokes equa-
tions, which has been derived in [5], under some assumptions, using a Chapman-Enskog
expansion in Wigner equation. In particular, we are interested in the existence of global
weak solutions together with the associated semi-classical limit. The quantum Navier-
Stokes equation that we are considering read as:

pt + div(pu) = 0,
(pu) + div(pu @ u) + Vp? — 2div(\/vpS, + /EpSk) = /pf + Vrdiv(y/pM),

where

(1.1)

VVpS, = pDu, div(y/kpSy) = kpV <A7\£ﬁ> , (1.2)

and with initial data

p(0,x) = po(z), (pu)(0,x) = (pouo)(x) in €, (1.3)
where p is the density, v > 1, u®u is the matrix with components u;u;, Du = % (Vu + VuT)
is the symetric part of the velocity gradient, and Q = T is the d—dimensional torus, here

d = 2 or 3. The vector valued function f, and the matrix valued function M are source
terms.
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The relation (1.2) between the stress tensors and the solution (y/p, /pu) will be proved
in the following form. For the quantic part, it will be showed that

2\ /RpSy, = 2 (\/5 <v2\/,5 — AV e vp1/4))) . (1.4)

For the viscous term, the matrix valued function S, is the symmetric part of a matrix
valued function T,, where

VpT, = vV (pu) — 2vy/pu - V/p. (1.5)

Whenever, p is regular and away from zero, the quantic part of (1.2) is equivalent to (1.4),
and the matrix function T, is formally ,/vpVu. However, the a priori estimates do not

allow to define 1/,/p and Vu.

The energy of the system is given by

ul? p7
BB = [ (o5 + -2 4+ 2605 ) d,
with dissipation of entropy (in the case without source term)
Dg(S,) = 2/ IS, |2 de,
Q
which is formally:

QV/p]ID)u\Q dx.
Q

In [2, 4], Bresch and Desjardins introduced a new entropy of the system, now known as
the BD entropy:

u+ vVinpl? Y
anlp.) = [ (PRI 4 29 B ) de

with associated dissipation (again without source term)

4
Danlp. = [ (FI9572F 4 kol ¥ n 2 + 2plal?) d,
Q

where A is the antisymmetric part of the matrix Vu. The function In p is not controled by
the a priori estimates. But we can use two other quantities, & and Dg, which are defined
as follows:

u2
olp v = [ (sl + @+ 42N BE + ) da,
DY(/p. /pu) = / (V1972 + v (1914 + (92 /2) + T [) da.
Q

From Jiingel [9] the functions & and DY, are equivalent, respectively, to E(\/p,/pu) +

Epp (/P> /pu) and Dg(\/p,/pu,S,) + Dpp(p,u), whenever each term can be defined,
and S, is the symmetric part of T, with T,, = ,/vpVu. Namely there exists a universal



GLOBAL SOLUTIONS TO THE QUANTUM NAVIER-STOKES EQUATION 3

constant C, such that for any such (p,u):

(BB 5) + Esp(p.w) < E(v/B: /) < CUE(/Bi /) + Enp(pyu),
5 (Du(S,) + Dp(pw)) < DY/5, /7w To) < CulDe(S,) + Disn(p,w).

*

The aim of this paper is to construct weak solutions for the system (1.1) using the a
priori estimates provided by the energy and BD entropy inequalities. The main idea is to
introduce a slightly stronger notion of weak solution that we call renormalized solutions.
They are defined in the following way. For any function ¢ € W2*(R?), there exists
two measures Ry, R, € M(RT x Q) such that the following is verified in the sense of
distribution:

O (pe(u)) + div(pup(u)) + ¢'(u) - Vo
— 2div(y/p¢’ (w)(vVVSy + VESk)) (1.6)
— VB (W) - |+ V/Rdiv(yB (M) + R,
with S,; verifies (1.4), and S, is the symmetric part of T, such that for every i, j, k between
1 and d:
VIpgi(w)[Ty]jk = v0;(pei(wur) — 2v/pure;(u)dj/p + Ry, (1.7)
and
IR, mert x0) + [[Roll @t x0) < Clle” || zos.
The precise definition of weak solutions and renormalized weak solutions is laid out in
definitions 2.1 and 2.2. Note that, taking a sequence of function ¢, such that ¢, (y)
converges to y;, but ||¢”| L~ converges to 0, we can retrieve formally the equation (1.1).

We will show that it is actually true that any renormalized weak solution is, indeed, a
weak solution.

For every
fe [l @A), Me [R5 L))",
and every (y/po, /pouo) such that £y(y/po,/pouo) is bounded, we define

Mo(/pg, v/Pouo, f,M) = E(v/po, veou) + | fllr e+ r2@)) + Ml 2@+ r2@)-  (1.8)

The main theorem of the paper is the following.

Theorem 1.1. (1) There exists a universal constant C, > 0 such that the following is

true. Let \/po, \/povo, f, M be such that Mo(\/p,,\/Pouo, f, M) is bounded. Then,
for any k > 0, there exists a renormalized solution (\/p,+/pu) of (1.1) with

Eo(V/Bt), VAU(E)) < Mo(y/Fys /Boto, f,M),  for >0,
| PR R OuO) b < Mol T, 110

Moreover, for every p € W™ (R?),
IR ance xety + R llnacees xy < Cllg” oo Mo(y/ iy v/Fotio, £, M),
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Moreover, p € CO(RT; LP(Q)) for 1 < p < sup(3,7), and pu € CO(Rt; L3/2(Q) —
weak) N CO(R; LA (Q) —weak).

(2) Any renormalized solution of (1.1) is a weak solution of (1.1) with the same initial
value.

(3) Consider any sequences k, > 0, converging to £ > 0, v, > 0 converging to v >
0, (\/Po.ns /POnY01» fry M) such that Mo(\/Pons \/Pont0ms fr, M) is uniformly
bounded, and an associated weak renormalized solution (\/pn,~/Pntn) to (1.1).
Then, there exists a subsequence (still denoted withn), and (\/p,/pu) renormalized
solution to (1.1) with initial value (\/po,\/pouo) and Planck constant k, such that
pn converges to p in CO(RY; LP(Q)) for 1 < p < sup(3,7), and ppu, converges

2y
to pu in CO(R*; L¥2(Q) — weak) N CO(R*; L3+1(Q) — weak). The function T, ,
converges weakly in L? (R xQ) to T,.. Moreover, for every function p € W2 (R?),
VPnp(un) converges strongly in LY (RY x Q) to \/pp(u) for 1 < p <6.

Note that all the results hold for any values of x, including the Navier-Stokes case x = 0.
For k > 0 we can have from the a priori estimates, better controls on the solutions, and
convergence in stronger norms. The stability part of the result includes the follwoing case
of the semi-classical limits 0 < x,, — 0.

Corollary 1.1. The semi-classical limit. Consider (\/po,/poto, f, M) such that the quan-
tity Mo(\/ﬁo, VPouo, f, M) is bounded, and consider an associated weak renormalized so-
lution (\/Pr,/Prtx) to the quantum Navier-Stokes equations (1.1) with x > 0.Then,
there exists a subsequence (still denoted with r), and (\/p,\/pu) renormalized solution
to the Navier-Stokes equations ((1.1) with k = 0) with same initial value such that p,
converges to p in CO(RY; LP(Q)) for 1 < p < sup(3,7), and pyu, converges to pu in
COURT; L3/2(Q) — weak) N CO(R; L%(Q) —weak). The function T,, converges weakly
in L*(RT x Q) to T,. Moreover, for every function ¢ € W2*(R%), \/puip(us) converges
strongly in LY, (RT x Q) to \/pp(u) for 1 <p <6.

loc

For this problem, the a priori estimates include control on the gradient of some density
quantities. This provides compactness on both the density p and the momentum pu.
The difficulty is due to the fact that we have only a control of pu? in L®(RT, L'(Q)).
This cannot prevent concentration phenomena in the construction of solutions in the term
pu @ u. When x = 0, the same problem arises for the term ,/puV,/p, since the only a
priori estimates available on both /pu and V,/p are in L*(R*, L*(Q)).

This problem can be avoided by the introduction of additional terms as drag forces or
cold pressure, as proposed by Bresch and Desjardins [3]. In the case of drag forces, the
system is

Pt + dlv(pu) = 07
(pu)r + div(pu @ u) + Vp' — 2div(\/vpS, + /EpSk) (1.9)
= —rou — riplulu+ /pf + Vrdiv(y/pM),
still endowed with (1.5) and (1.4). The solutions of this kind of augmented systems can be

explicitly constructed via a Faedo-Galerkin method. This was first performed by Zatorska
in [17] for the classical case (k = 0) with chemical reactions and where the drag forces
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were replaced by cold pressure terms as V(p~"), for N big enough. In the quantum case
solutions have been constructed in [7] in the case with cold pressure, and in [15] in the
case of drag forces as (1.9).

When considering the system without additional terms (as drag forces or cold pressure),
it has been shown in [13] that, in the classical case x = 0, solutions of (1.1) verify formally
that

/ plul? In(1 + |u)?) dz (1.10)
Q

is uniformly bounded in time, provided that the bound is valid at t = 0. It was also
shown that a sequence of solutions, such that this quantity is uniformly bounded at t =0
(together with the energy and BD entropy), will converge, up to a subsequence, to a
solution of the Navier-Stokes equation.

The standard way to construct weak solutions of systems verifying the weak stability
is to construct solutions to an approximated problem (as the Faedo Galerkin method)
for which the a priori estimates are still uniformly valid. Usually, those solutions are
smooth so that every formal computation is actually true. However, in this context, the
approximated problem needs to be compatible with the usual energy, the BD entropy,
and the additional mathematical inequality (1.10). Only recently, such an approximated
problem has been found [10] in dimension two, and in dimension three with unphysical
stress tensors. Moreover, the regularity of the associated solutions is limited (not C*°). For
solutions constructed via a Faedo-Galerkin method, the energy and BD entropy estimates
can be verified at the approximated level, since u is an admissible test function. This is
not the case for the mathematical inequality (1.10). In [14], the construction of solutions
to (1.1) with kK = 0 was obtained following a different strategy. It was shown that limits
of solutions to (1.9) when k converges to 0 verify (1.10), even if it is not verified for x > 0.
The idea was to show that the quantity

/Q pio(Jul) da

are uniformly bounded for smooth and bounded functions ¢. This allowed to recover (1.10)
for k = 0 thanks to a sequence of approximations ¢, of the function y — 3% In(1 + y?).

Spririto and Antonelli showed in [1] that, formally, an estimate on (1.10) can still be
obtained on solutions to (1.1) for a range of k close (or bigger) than v. But this estimate
cannot be used for the semi-classical limit.

The notion of renormalized solutions is inspired from [14]. However, this notion is not
used to recover an estimate on (1.10), which is known to be not verified for some range of
k. The idea is that we can obtain the stability of renormalized solutions, since the notion
avoids the problem of concentration. Consider, for instance, the term

Prtin@(tn).

Since p, and ppu, are compact in LP, for a p > 1, we can show that, up to a subsequence,
pn converges almost everywhere to a function p, and u, converges almost everywhere on
{(t,z) | p(t,z) > 0} to a function u. Hence p,u,p(u,) converges almost everywhere to
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pup(u). The function ¢ prevent concentration, and so p,u,@(u,) converges strongly to
pup(u).

The challenge is then to show that the renormalized solutions, are indeed, weak solutions
in the general sense (see Definition 2.1). It is obtained by considering a sequence of
bounded functions ¢,,, uniformly dominated by y — |y|, and converging almost everywhere
to y — y;, for a fixed direction ¢. This provides the momentum equation for pu; at the
limit n — oo. The key point, is that, while performing this limit, the functions p,u are
fixed. Considering, for example, the term

pupy (u).

The function ¢, (u) converges almost everywhere to u;. And, thanks to the Lebesgue’s
dominated convergence Theorem, puw, (u) converges in L! to puu;. Note that the bound-
edness of puu; in L' is enough for this procedure. Choosing the sequence of ¢,, such that
||| oo converges to 0, we show that the extra terms R, and R, converge to 0 when n
converges to oo.

The main difference with [14] is that we do not need to reconstruct the energy inequality
nor the control on (1.10) via the sequence of functions ¢,. Hence, we do not need an
explicit form of the terms involving second derivatives of ¢ in the definition of renormalized
solutions. Those terms (for which we do not have stability) are dumped in the extra terms
R, and R,.

2. PRELIMINARY RESULTS AND MAIN IDEAS

We are first working on the System (1.9) with drag forces. The definitions will be valid
for all the range of parameter, rg > 0,71 > 0,k > 0,v > 0. The energy and the BD
entropy on solutions to (1.9) provide controls on

m 2
&V o) = /g (p% + (26 + 42) |V /pl” + p7 + ro(p — lnp)> 4z,
DE(/p, v/70) =
| (A9672R o (|94 4 1925 + T2 ol + i) d
Q

From these quantities, we can obtain the following a priori estimates. For the sake of
completeness we show how to obtain them in the appendix.

VP EL®RTLAQ)),  Vype L®RYLAQ),  Vp?e L2 (RT; LA(Q))
Voue LPRYLA(Q)), T, e LX(RTLY(Q),  VeVi/pe AR LH(Q),
KV e AR LNQ), /et e e LURY; 1Y),

re?ue AR LAQ),  rolnpe LORY;LY(Q)).

(2.1)

Note that those a priori estimates are not sufficient to define Vu as a function. The state-
ment that \/pVu is bounded in L? means that there exists a function T, € L?(R*; L?(2))
such that:

Vi/pT, = divipu) — \/pu- V.
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which is, formally, pVu. The definition of weak solutions and renormalized weak solutions
for the system (1.9) are as follows.

Definition 2.1. We say that (,/p, /pu) is a weak solution to (1.9), if it verifies the a
priori estimates (2.1), and for any function ¢ € C2°(R* x Q):

| [+ viyazar <o,

0 Q

/ / (puyy + (pu @ u — 2\/vpS, — 2\/kpSy — \/EpM) - Vi + F1p) dx dt = 0,
0 Q

with S, the symmetric part of T, verifying (1.5), S,; verifying (1.4), and
F = =207V p"? — rou — riplul*u + \/pf, (2:2)
and for any 1 € C°(R):

jim [ pt.2ji@)do = [ pola)ita) da,

t—=0 Jo

lim [ p(t, z)u(t,x)(x) dx:/ﬂpo(m)uo(x)ﬂ(x)dx.

t—0 Q

Definition 2.2. We say that (\/p,/pu) is a renormalized weak solution to (1.9), if it
verifies the a priori estimates (2.1), and for any function ¢ € W2 (R?), there exists two
measures R, R, € M(RT x Q), with

IRl pe+ x0) + [Rollpme+x) < Clle” | Lo ),
where the constant C' depends only on the solution (/p,/pu), and for any function

e CP(RT x Q),
/OO/ (ptr + pu - V) dx dt = 0,
0 Q

/0 h /Q (po(w)s + (pp(u)u — (2y/TpS, 42y FSut/FIM)E () - Vi)

+F - ' (u)) dzdt = (Ry, ) ,

with S, the symmetric part of T, verifying (1.7), S, verifying (1.4), f given by (2.2), and
for any ¢ € C°(R):

iy | .20 do = [ po(a)ita) da,

t—0 QO

i [ pltau(t. 0 (@) do = | plauo(e)ite) de

t—0 Q
Let us define
M, (\/pys /Pouo, f,M) = E.(v/po, v/pouo) + [ fl| 1 w+:22(0)) + Ml 2+, 12(0)-
The main theorem proved in this paper is the following.

Theorem 2.1. (1) There exists a universal constant C, > 0 such that the following is
true. Let \/po,/poto, [, M be such that Mr(\/ﬁo, Vpouo, f,M) is bounded. Then,
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for any k >0, 19 > 0, ry > 0, there exists a renormalized solution (\/p,/pu) o
(1.9) with

<t>w<> u(t) < M (VB VB0, [, 1), for 150,
/ DE(V/A(E), V() dt < M, (s /Tt .10

Moreover, for every p € W™ (R?),

IRl e+ <) + 1 Roll e+ xe) < Cell” |l Mo(y/po, +/potio, £, M).
Moreover, p € CO(RT; LP(Q)) for 1 < p < sup(3,7), and pu € CO(RT; L3/2(Q) —
weak) N CO(R™; LA (Q) — weak).

(2) Any renormalized solution of (1.9) is a weak solution of (1.9) with the same initial
value.

(3) Ifro > 0,71 >0, and k > 0, then any weak solution to (1.9) is also a renormalized
solution to (1.9) with the same initial value.

(4) Consider any sequences ky, > 0, 1o, > 0, 71, > 0, 1, > 0, converging respec-
tively to k > 0, 79 > 0, 11 > 0, and v > 0, (\/Po.n)s /PO.nU0,ns frs M) such that
Mrn(\/ﬁom,\/m, frnsMy,) is uniformly bounded, and an associated weak Tenor-
malized solution (\/pn,/Pntn) to (1.9). Then, there exists a subsequence (still
denoted with n), and (\/p,/pu) renormalized solution to (1.9) with initial value
(v/Po,v/Pouo) Planck constant k, and drag forces coefficients ro,r1 such that p,
converges to p in CORT; LY (Q)) for 1 < p < sup(3,7), and pyu, converges to

loc
2

pu in CO(RY; L3/2(Q) — weak) N CO(R; LA+t () —weak). The function T, ,, con-

verges weakly in L2(RT x Q) to T,. Moreover, for every function @ € W% (R%),

VPnp(un) converges strongly in LY (Rt x Q) to \/pp(u) for 1 < p < 10v/3.

Remark 2.1. We can actually show in (1) of the previous theorem that there is one solution
verifying

¢7Z7kyj Z \/_u]gol l ) vk,l-

But this is not needed to show that a renormahzed solution is a weak solution. We cannot
do the same for the term R,.

Note that Theorem 2.1 together with [15] implies Theorem 1.1. Indeed, [15] provides
the construction of weak solutions to (1.9) with positive rg, 71, x. Part (3) in Theorem
2.1 insures that this solution is actually a renormalized solution. Considering sequences
ron > 0 and 71, > 0 both converging to 0, part (4) of Theorem 2.1 provides at the limit
a renormalized solution to (1.1).

3. FROM WEAK SOLUTIONS TO RENORMALIZED SOLUTIONS IN THE PRESENCE OF DRAG
FORCES

This section is dedicated to the proof of part (3) of Theorem 2.1. In the whole section
we will assume that £k > 0, rg > 0, and r; > 0, and we will consider a fixed weak solution
(v/P» /pu) as in Definition (2.1). Let us define g, for any function g as

ge(t,x) = ne * g(t, ), t> e,



GLOBAL SOLUTIONS TO THE QUANTUM NAVIER-STOKES EQUATION 9

where )
ne(t,x) = —zymt/e, z/e),

with 7; a smooth nonnegative even function compactly supported in the space time ball
of radius 1, and with integral equal to 1.

Formally, we can show that a weak solution is also a renormalized solution by multiply-
ing the equation by ¢'(u). However, solutions of (1.9) have a limited amount of regularity.
This has to be performed carefully. Let us explain the difficulties. First let us focus on
the term

div(\/77S, ):
One way to obtain the renormalized equation from the weak one, is to consider the family
of test functions ¢’ (u:). We need to pass to the limit in the expression

/0°° /Q U\TpS VY (W) de dt.

But we cannot pass into the limit for the term /vpV ' (u.) = \/vp¢” (u:)Vu.. Note that
this term is different from T,.. The problem is that Vu is not bounded in any functional
space.

An other difficulty is to obtain, in the sense of distribution, the equality

¢’ (u)(pu) = (pp(u)) + (' (w)u — ¢ (u))ep.
Indeed, we have absolutely no estimate available on O;u. Following Di Perna and Li-

ons, [11], this can be obtained using commutators estimates which requires more a priori
estimates than can be formally intuited.

To solve these problems, we need to introduce a cut-off function in p, ¢,,(p) where ¢,,
is defined for every m > 0 as

( 1
07 for 0 < Yy < YRR
2m
1 1
2my — 1, for — <y < —,
2m m
= 1 3.1
W= Loy (3.1)
m
2—y/m, for m<y<2m,
0, for y > 2m
We will now work on
Um = ¢m(p)u (3'2)
instead of u. Note that
_ ¢m(p)

Vo T, + 4/pdn, (p) 0"/ uv p'/*.

Ve
For m fixed, d’%}fz) and /p¢;,(p) are bounded, and so Vv, is bounded in L?, thanks to

the a priori estimates obtained from x > 0 and 7 > 0 in (2.1).
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Obtaining the equation on v,, is pretty standard, thanks to the extra regularity on the
density provided by the quantum term, and the BD entropy. However, to highlight where
are the difficulties, we will provide a complete proof.

3.1. Preliminary lemmas. In this subsection, we introduce two standard lemmas to

clarify the issues. The second one use the commutator estimates of Di Perna and Lions
[11].

Lemma 3.1. Let g € LP(R*T x Q) and h € LY(RT x Q) with 1/p+1/q =1 and H €
WLe(R). We denote by O a partial derivative with respect to one of the dimension (time
or space). Then we have:

/ /gehdxdt:/ /gﬁgdaﬁdt,

0 Ja 0o Ja

lim/ /gehdazdt:/ /ghd:ﬂdt,
e=0Jo Jo 0o Jo

dg. = [94].,

lim |H(g.) = H(g)lls mixqy =0,  forany 1<s < oo,

e—0 loc

OH(g) = H'(9)0g € L"(R" x Q) aslongas dg€ L"(R" x Q).

This lemma is very standard and then we omit the proof. We use also in the sequel the
following lemma due to Lions (see [11]).

Lemma 3.2. Let 0 be a partial derivative in one direction (space or time). Let g,0g €
LP(RT x Q), h € LYRY x Q) with 1 < p,q < oo, and % + % < 1. Then, we have

1[0(gh)]. — 8(gho)ll v+ x) < ClOGN Lo r+ ) 7]l L+ x0)

for some constant C > 0 independent of e, g and h, and with r given by % =14 %. In

o p
addition,

[0(gh)]. — O(gh:) = 0 in L"(R" x Q)
as e — 0 if r < oo.

3.2. Equation on v,,. This subsection is dedicated to show that for any ¢ € C>°(RT xQ),
and any m > 0, we have

7 [ {ownior =0 (s Vouio) + é0 Lre(r)) st =0, (33)

/OMAZ{Btwpvm+Vw. (P U — G (P)V/P (2978, + 2V/S, + VM)

D
o (—%tr(ﬂr»dn(p)pu — JRPMY () + ¢m<p>F> } di dt =0,
where F' is defined in (2.2), vy, in (3.2), S, is in (1.4), and S, is the symmetric part of T,
defined in(1.5).

(3.4)

We begin with a list of a priori estimates. Note that they depends on all the parameters
rg > 0,7, >0, kK >0, and m.
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Lemma 3.3. There exists a constant C > 0 depending only on the fized solution (\/p,/pu),
and Cy, depending also on m such that

oMl s r+ <2y + llowll oz @ qy + lolul® + V/o(ISu| + 1Skl + M| + £ £s/3 @+ xa)
+HPW2VP7/2HL5/4(RWQ) + llroull L2+ xa) + Irplulull s/ xay < C
IV ém(p) ||l 2+ xq) + [10:m(P) | L2(r+ x) < O

Proof. From (2.1), \/p € L>°(R*,L*(Q)), V,/p € L>(R",L*()) and V?,/p € L*(R*" x
Q). Hence, using Gagliardo-Nirenberg inequality, \/p € L>®(R*+; L5()), and Vp €
L2(RT; L5(9)). Since Vp = 2,/pV/p, Vp € LA(R*, L3(Q)). And p? € L=(R*; L3/2(Q)),
so V(p?) = 2pVp € L*(R; L3/?(Q)). This gives

0 € T2(RY; L) U L®(RY; IY2(Q)).
By interpolation, p? lies in all the space LP(L%) with

a 2(1—-a) 1
’ _+7:_7
3 3 q

o 1
2 p

for 0 < o < 1. For o = 4/5, we obtain p?> € L?(R* x ). We have

pu = pPlApt .

p
From the 7, term of Dy, p'/*u € L*(RT x Q), and we have p** € LX/3RT x Q).
Hence pu € L2(RT x Q). The term |S,| + [Sk| + [M] + |f| + /plu> € L*(RT x Q) and
VP € LORY xQ), so plul>+/p(ISy| + S|+ M| + | f]) € L3R+ x Q). From the a priori
estimates, we have Vp?/? € L2(Rt x Q), and p"/2 € L®(R*, L?(Q)). Using Galgliardo-
Nirenberg inequality we have p?/2 € L'O/3(Rt x Q). So p?/2Vp?/? € LO/4(R* x Q).

The estimate on rou comes directly from the a priori estimates. Since \/plul? is in
L2(RT,L%(2)) and p'/*u is in LA(R* x Q), we have p'/*u,/plu|? € L¥3(RT x Q). Then
using p'/* € L?°(R* x Q) we obtain the result for 7 p|u|?u.

From Lemma 3.1, V. (p) = 4p3/4¢. (p)Vp'/*. But y — 4y*/*¢! (y) is bounded, and
by (2.1) Vp/*t € LART x Q), 50 Vo (p) € L*(RT x Q). From Lemma 3.1, and (1.5),

Orpm(p) = & (P)Orp = — ¢ (p)div(pu) = — ¢y, (p) (V p/vTr(T,) + 2¢/pu - V/p)
= — VPO (p)(V1/VTr(T,) + 4p'u - Vo't

Hence 9 (p) € L*(RT x Q).
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We use the first equation in Definition 2.1 with test function [¢/,(5,)v]..From Lemma
3.1, and (1.5) we get the following.

0= [ [ {0000 + pu- VO da
—— [ [ {0000 + v ()} da

/ / {aﬂwm (5. — vélu(7.) | V2e(T,) }dwdt-

NG (T u) +2y/pu-V/p,
We have p € L>(RT x Q) and 9:[¢,, (p)] € LY*(R* x Q), since dip € L*(RT x Q) and
1 is C' compactly supported. From Lemma 3.3, pu € L5/?(RT x Q), and V[¢,(p)1] €
L3R x Q), since v is regular and compactly supported, and V¢, (p) € L*(RT x Q).
So we can pass to the limit ¢ — 0 using Lemma 3.1. We obtain:

0= [ [ {wonie) - vonto) | Yomwer) + 25 vy5|} asa

Since ¥V (p) lies in L*(RT x Q) and is compactly supported, and u is in L?(R* x ),
using the Lemma 3.1 we find

0= [ [ {awonto) = v |6 VLT + - Vo (o) | doe,

which is (3.3).

For ¢ small enough, we consider the function ¢, (p), as test function in the Definition
2.1. In the same way than above, from Lemma 3.3 and Lemma 3.1, passing into the limit
in €, we get

/Ooo/Q {&lﬁpvm + Vi - (pu ® U — Om ()P (2\/;&/ + 2V/KS, + \/EM))
0 01 (0) + 1 V6(0) pu -+ 1 (—/RAMV 10 (p) + Gun(p) )} drdt =0,
Using (3.3) this gives (3.4).

3.3. Equation of renormalized solutions. We use the function ¢/ (T, ). as a test
function in (3.4). Using Lemma 3.1, we find:

[ [ (o [T pon + 9 [37m0] : (pu s ) dode

=- /Ow/52¢80/(m5) <at[/)vm]a + div(pu ® Um)a) dx dt

Thanks to Lemma 3.3, we can use Lemma 3.2, with g = p and h = v,;,, and then g = pu
and h = v,,. Note that v,, € L*(RT x Q). So, the expression above as the same limit
when € goes to zero than

- / h / ! (Tm.) (8 (pTme) + div (puTi.)) dz .
0 Q
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Thanks to the first equation in Definition 2.1 this is equal to
o
[ ] ) (p0rm + - Vo) dode
0
o
—— [ [ 6 o0retmme) + pu Veolwn.)) dade
o Ja

— / / o) (pOvts + pu - Vb)) da dt,
0 Q

which converges, when ¢ goes to 0, to

| [ ) (0 pu- w0 doe. (3.5)

Note that

_ Pm(p) ” Pm(p) Pm(p) -
—V( ) )p—i—\/;\/ﬁTy—i-Q p Vpu-Vy/p

= 4/pd (p)p" u- V!t

Note that /p¢;,(p) is bounded. So, thanks to the third line of (2.1), we have Vo, €
L*(R* x ), and so V¢ (v,) € L*(RT x Q).
So, thanks to Lemma 3.1 we can pass into the limit in the other terms and find

/OOO/Q {—V (w@,(vm)))¢m(p)\/ﬁ (2\/;SV + 2\/ES/@ + \/EM)

09 (0m) (~ LT, b (D) = VRIS 0(p) + 6mp)F ) | di it (3)

Putting (3.5) and (3.6) together gives

| [ toton) (0t + pu- 909

=V (Um)dm(p)v/P (2VVSy + 2v/ESy + VEM)
~9¢" (0m) VUm@m (p)v/p (2VVSy + 2v/KSk + VEM)
7
+¢ (vm) (—\%Tr(’ﬂ‘u)dn(p)pu — VEPMV ¢ (p) + dm(p) F > } da dt.
We now pass into the limit m goes to infinity. From the a priori estimates (2.1), rolnp
lies in L®(R*; L1(€)), so p > 0 almost everywhere, and
¢m(p) converges to 1, for almost every (¢,z) € RT x Q,
vy, converges to u, for almost every (t,z) € RT x Q,

lpdn, (p)| < 2, and converges to 0 for almost every (t,x) € R x Q.
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Now, using that ¢,, is compactly supported in R*, we get

VPV = ¢m—\/?qu+4pl/4u,0¢h(p)Vpl/4

- ¢m—\/(ﬁp) [V(pu) = 2/pu-V/p] + 4p" *updr, (0) V'

= ¢m(p)&

N
which, thanks to the dominated convergence theorem, converges to T, /\/v in L?(RT x Q).
Hence, passing into the limit m — oo, we find

/000 /Q {e(w) (0 + pu - V) = Vi (u)y/p (2VVS, + 2v/5Sy + VM)
T,
\/;

This gives the second equation in the definition of renormalized solutions with

% (2075, + 2V/AS, + VAM).

+4p"  upd!,, () Vo',

— " (W) —= (2V/VSy, + 2V/ESk + VEM) + w’(u)F} dz dt.

R, = %DI/(U)

We want now to show (1.7). As above, multiplying (1.5) by [¢,(p)¢}(u)],, and passing
into the limit & goes to 0, we find

bm () (W) /VPT, = vV (6 ()} (u) pu) — 4pgh, (p)V o'/ u /o) (u)
)T () — 2 D)) T V.

Passing into the limit m goes infinity, we recover (1.7), with
B = — ()2
@ @i (u) \/;\/IBU
Hence, (,/p,/pu) is a renormalized solution.

4. FROM RENORMALIZED SOLUTIONS TO WEAK SOLUTIONS IN THE GENERAL CASE

This section is dedicated to the proof of (2) in Theoren 2.1. We consider (y/p, /pu), a
renormalized solution as defined in Definition 2.2, in the general case where o > 0, 71 >0
and £ > 0, but v > 0. We want to show that it is also a weak solution as defined in
Definition 2.1. Let ® : R — R be a nonnegative smooth function compactly supported,

equal to 1 on [—1,1], and ®(z) = Jo @(s)ds. Then we define for y € R

en(y) = n®(yr/n)®(y2/n) - - - ®(ya/n)-
Note that ¢, lies in W2(R9) for any fixed n, ¢, converges everywhere to y — y1, @, is
uniformly bounded in n and converges everywhere to (1,0, --,0), and [|@,"|| @) < C/n
converges to 0, when n converges to infinity. Hence R, and E% both converge to 0 in
the sense of measure when n converges to infinity. We use this function ¢,, in the second
equation of the Definition 2.2. Using the Lebesgue’s Theorem for the limit n — oo, we get
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the equation on puy in the Definition 2.1. permuting the directions, we get the full vector
equation on pu in Definition 2.1.

We use again the Lebesgue’s dominated convergence Theorem to pass into the limit in
(1.7) with 7 = 1 and the function ¢,, to obtain (1.5). Hence, the renormalized solution is
also a weak solution.

5. STABILITY AND EXISTENCE OF WEAK RENORMALIZED SOLUTIONS

This section is dedicated to the proof of (4) and (1) in Theorem 2.1. We consider
SeqUENces 7., T ,n, Kn, Vn, Pn, Un as in the hypothesis of Theorem 2.1. We begin to show
the following lemma:s:

Lemma 5.1. Up to a subsequence, still denoted n, the following properties hold.
(1) The sequence py, converges strongly to p in CO(R*; LY (€2)) for 1 < p < sup(3,7).
(2) The sequence ppu, converges to pu in CO(RT; L3/2(Q) — weak), and strongly in

LY (RT;LY(Q)) for 1 <p < oo, and 1 < g < 3/2.

(3) The sequences Ty 1, Sy ny Sy converge weakly in L*(RY x Q) to Ty, S,,Sy.

(4) For every function H € W2>(R%), and 0 < o < 5v/3, we have that p&H (uy,)
converges strongly in LT (RT x Q) to p*H(u) for 1 <p < 5v/(3a).

(5) If limy 01,0 = 11 > 0, then p'/3u, converges to p'/3u in L (R*;LI(Q)) for
1<p<4,and1<q<18/5.

(6) If limy oo o, = 70 > 0, then Téfun converges to r(l]/Qu m LfOC(R+ x Q) for
1<p<2.

(7) Consider a smooth and increasing function h : RT — R such that h(y) = y*/* for
y < 1 and h(y) = y'/? fory > 2. If lim,_o0 ky, = k& > 0, then Vh(py,) converges
to Vh(p) in L2 (R*; LP()), for 1 < p < 6.

loc
Proof. From (1) to (4), we use only a priori estimates which are non dependent on 7y,
r1, and k. Then p,u, is uniformly bounded in L>°(R*;L32(Q)). From the continuity
equation d;p,, is uniformly bounded in L®(RT; W~13/2(Q)). Moreover Vp, is uniformly
bounded in L®(RT; L3/2(Q)), p, is uniformly bounded in L>°(R*; L3(Q)N L7(Q)). Hence,
using Aubin Simon’s Lemma p,, is compact in CO(R*; L (Q2)) for 1 < p < sup(3,7).

loc

From the second equation in the Definition 2.1, the sequence 0;(ppuy) is uniformly
bounded in L?(R*; H~V(Q)) for a N big enough. From (1.5), V(pnu,) is uniformly
bounded in L2 . (R*; L3/2(Q)). Together with p,u, uniformly bounded in L>(R¥; L3/2(Q2))
this gives the strong compactness of p,u, in Lf, (RT; LY(Q)) for 1 < p < oo, and 1 < ¢ <
3/2.

The sequences T, ,,,S, ,,, Sk, are uniformly bounded in L*(R* x ), and so, up to a
subsequence, converge weakly in L2(RT x Q) to functions T,,S,,S,.

From (1) and (2), up to a subsequence still denoted n, p, and p,u, converge almost
everywhere respectively to p and pu. So, for almost every (¢,z) such that p(¢t,z) > 0,
un(t,x) converges to u(t,z), and so py(t,z)*H (u,(t,z)) converges to p(t,x)*H (u(t,x)).
But for almost every (¢,z) such that p(t,z) = 0, |pn(t,2)*H (un(t,z))| < Cpu(t,z)®
which converges to 0 = p(t,2)*“H (u(t,x)) since o > 0. So, we have convergence almost
everywhere. And p®H (uy,) is uniformly bounded in L>/G®)(R* x Q). Indeed p?/? €
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L®(RT, L2(Q)) N L2(R*, L5(Q)),and by interpolation, p¥/2 € LO/3(L19/3) | Hence, we
have strong convergence in Li, (RT x Q) to p*H (u) for 1 < p < 5v/(3a).

We assume that lim;,, oo 71, = r1 > 0. We have p,ll/?’un = ,1/4 / . Since NI
uniformly bounded in L>°(R*, L%(Q)) (From Sobolev, since Vb, is unlformly bounded in
L>®(R*, L(R))), we have py/ " uniformly bounded in L*°(R+, L36(Q2)). Moreover, 1/4 +
1/36 = 5/18.  Then the functions p,ll/3un are uniformly bounded in L*(R*; L'8/5(Q)).
We denote 1y,-0y the function which is equal to one on {t,z[p(t,r) > 0} and zero on
{t,z|p(t,x) = 0}. The function 1{p>0}p,1/3un converges almost everywhere to 1{p>0}p1/3u
so the convergence holds in Lj (RT;L(Q)) for 1 < p < o0, and 1 < ¢ < 18/5. Note that
for almost every (¢,z) such that p(t,z) = 0, we have p,(t,2)"*2 = (pp(t,z) — p(t, z)) /2.
So, for every 1 < p < 00, and 1 < ¢ < 36:

14— o}ﬂn UnHL"l ®+La () < (L= o}Pn 2 (R+;LQ(Q))||prlz/4unHL4(]R+><Q)

loc

1/12
< C|(pn )1/1 HL” (R+;L9()) =Cl|pn — PHLCJ/IQ(M.Lq/m(Q))
loc ’

converges to 0 when n goes to infinity, where
1 1 1 1 1 1

po 4 p a4
So p}z/gunz 1{p0}p,11/3z;n + 1{p>0}p,11/3un converges to p'/3u in LY (RT;L9(Q)) for 1 <
p < oo, and 1 < g < 18/5.

Let us assume that lim, .70, = 70 > 0. Then Inp, is uniformly bounded in
L>®(R*; LY(Q)). The function — log is convex, so the limit p verifies the same, and p > 0
for almost every (t,z) € RT x Q. So u, converges almost everywhere to u, and u,, is uni-
formly bounded in L*(R* x ). Hence u,, converges to u in LI (Rt x ), for 1 <p < 2.

Now we assume that lim,,_,o K, = £ > 0. We have

IV (Vh(pn))| = 12¢/Bnb () V2 /Pn + (8y/onb (pn) + 161" () pnr/pn) (V py/* @ Vpl/4))
< C(IV2/pul + Vo).

So V(Vh(p,)) is uniformly bounded in L*(R* x ). Moreover , using the continuity
equation and (1.5), we get

Ouh(pn)| = K (pa)yBrTE 22 2+ B Vi (o)l

< C(|Tun| + plul® + [Vo ),
which is uniformly bounded in L10 (R, LY(Q)). Note that we cannot bound it in L*(R™ x
1) as in the previous section, since we cannot use that 71, is bounded by below. We

have shown that 9;Vh(p,) is uniformly bounded in L*(R*; W~=26/5(Q2)). Hence, using the
Aubin Simon lemma, we find that Vh(p,,) converges strongly to Vh(p) in L2 (R*; LP(Q)),

loc

for 1 <p<6. O

Proof of part (4) of Theorem 2.1 We are now ready to show the part (4) in Theorem 2.1.
Using (1) and (2) of Lemma 5.1, we can pass into the limit in the continuity equation.
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Using (1) (2) (3) and (4) of Lemma 5.1 we can pass into the limit into the first line of the
second equation of Definition 2.2. The sequence R, , is uniformly bounded in measures,
so it converges to a measure I, with the same bound. The function f, converges weakly
in L2(R* x Q) to f and, thanks to (4) of Lemma 5.1, 1,/pn¢’ (uy) converges strongly in

L2(R* x Q) to 1\/p¢'(u), so we can pass into the limit in this term. sz/2 converges

weakly in L2(R* x Q) to Vp?/2, and wp%/ 2 converges strongly to p?/2 thanks to (1) in
Lemma 5.1. So we can pass into the limit in the pressure term. If r(,, converges to 0, then
T0,nln = 7"37/5 ré{f u, converges to 0 in LQ(RJr x ), since 7"37/5 Uy, is uniformly bounded in
LA(RT x Q). Otherwise, using (6) in Lemma 5.1, it converges to rou in L (RT x Q). We
can treat the term 7y, in the same way using (5) in Lemma 5.1. So the two equations of
Definition 2.2 are verified at the limit. Thanks to (1) and (2) of Lemma 5.1, we can pass
into the limit for the initial values. It remains to pass into the limit in (1.7), and (1.4).
The measures anso are uniformly bounded in measures, so they converge to a measure
with the same bound. The functions V,/p, converge weakly to V,/p in L (RT x Q). So,
using (1) (3) and (4) of Lemma 5.1, we can pass into the limit in (1.7). If x,, converges to
0, then \/k,S, converges to 0 weakly in L?(R* x Q). Otherwise, VQ\/p_n converges weakly
in L*(R* x Q) to V?,/p and, thanks to (1) of Lemma 5.1, \/p,V?\/p, converges weakly

to \/ﬁvz\/ﬁ. Note that

VoV (pi/* @ pl) = g(pn)V (h(pn) @ pi/*),

with 4h’(pn)p}/4g(pn) = 1. Especially, |g(p,)] <1 —i—p}/4. So, thanks to (1) of Lemma 5.1,

g(pn) converges strongly to g(p) in L*(RT, L%(Q)), Vp}/4 converges weakly to Vp!/* in
LAR*, L*(Q)), and Vh(p,) converges strongly to Vh(p) in L2(RT, L*(2)) thanks to (7)
in Lemma 5.1. Hence we can pass into the limit in (1.4). This ends the proof of (4) in
Theorem 2.1.

Proof of part (1) in Theorem 2.1. Consider sequences ro, > 0, r1,, > 0 and &, > 0,

converging respectively to 79 > 0, 71 > 0 and k > 0. For n fixed, thanks to [15], there
exists a weak solution in the sense of Definition 2.1 to the system. Thanks to (2) in
Theorem 2.1, these solutions are renormalized solutions in the sense of Definition 2.2.
Thanks to the stability result (4) in Theorem 2.1, the limit is a renormalized solution for
the system with coefficients rg, 1 and k.

APPENDIX A. A PRIORI ESTIMATES

The construction of weak solutions for 7o > 0,71 > 0, and x > 0 has been done in [15]
in the case f = 0 and M = 0, using a Faedo-Galerkin method. The construction can be
straightforwardly extended to the case with source terms f and M, as long as the a priori
estimates still hold. Note that, during the construction, the a priori estimates are proved
to hold at the level of the Galerkin approximated solutions. To simplify the presentation,
we will show in this section, that the a priori estimates hold for any smooth solutions.
This can be used to show existence of weak solutions as in [15] (see also [7] in the case of
cold pressure). Note that we need the construction, and the a priori estimates only in the
case where 1,71, k are all positive. We actually proved that it is still valid in the case of
some of these coefficients are 0 in (4) of Theorem 2.1.
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We consider a smooth solution (/p, /pu) of (1.9). Multiplying the continuity equation
by vp7~!/(v — 1) and the second equation by wu, integrating in = the sum of these two
quantities give
OE(/p, \/ﬁu)—l—DE(Sy)—i-?“oHuH%g(Q)+7“1/ plul* dz = / \/ﬁfudx—\/E/M : /pVudz.

Q Q
(A1)

The equation on v = u + vV In p reads

A (pv) + div(pu @ v) + Vp? — 2div(vy/pAu + /kpSk) = /pf + Vrdiv(y/pM).
Multiplying this equation by v, and adding the continuity equation multiplied by vp7 = /(y—

1) + v gives, after integrating in x:

00 { Eunp,u) + v [ (0 ~1up)de | + Do)+ rollullegey + 1 [ plltd
@ @ (A.2)

= le/ 2y/plul?u - V/pdr + 21// fVypde — \/EV/ VpV2(In p) : M dz.
Q Q Q
We consider two cases.

A.1l. If M is symmetric. Then, since
M : Vu =M : Du,
from (A.1), we find

1
OE(F\/B) + 5De(6,) + rollllay + 1 [ plultda

1f (Dl 2@

K
< =M1 720y + E(Vpsou) + 1 Ol 2z 1 | @+ 22 @))-
v £l 21 me+22(0)

The Gronwall’s lemma gives that

1 o0
sup (/30 /p00u(0) + 5 | DeS)dt+rolulfagesey +r1 [ [ ol doae

teR+
K
< QZHMH%%RWQ) + QHJCH%,l(RﬁL?(Q)) + E(VPg, VPotho)-
We have

7“11// /2\/,5|u|2u-v\/,5dxdt‘ §3W’1/ /\/ﬁ|u|2\/,5|Vu|dxdt
0 Q 0 Q

1// /p|Vu|2dx—|—gm“1/ /r1p|u|4d:vdt
o Ja 4" Jo Ja

& 9 K
v [ [ ol dwdt -+ (14 Jor) (221 ey + 2001 ey + E G g
0 Q v

IN

IN

1 [ 9 K
< 5/ Dpp(p,u) dwdt + (1 + Jvr1) (2_”MH%2(R+XQ) + 2011 e+ 12(0)) + E(/Pys ﬁouo)) :
0 14

and

< VI 2@ E0(V/A(), Vo(t)u(t))

V/va\/ﬁdx
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and

OO 2 L[ 2

\/EV/O /Q]\/ﬁv (Inp) : M| dxdt < Z/o Dpp(p,u) dt + v|[Ml|72g+«q)-
Doing as above gives that
1 o
sup Eup(VAt)VAOUD) + 7 [ Dapdtt rolulfageney +r [ [ plul doa
teERT R+ 0 Q
<C(1+ ’f)(HM”%%RWQ) + HfH%l(RﬁB(Q))) + €80 (VPy: VPouo) + E(\/pg, v/Pgto)-

A2. If vry <1/9. We have

rlu/ /2\/5|u|2u-v\/,5dxdt‘ < 31/r1/ / Volul?\/p|Vul dr dt
0 Q 0 Q

< — p|Vul*dx + —vr; riplul”® dz dt.
2Jo Ja 2 " Jo Ja

So considering F(t) = Epp + E, we find directly:
O F (1) < Co(1+ K) M) 72 () + I1F (D) p20) V F (1)

We end the proof in the same way.
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