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BIFURCATION ANALYSIS OF A VIBROPERCUSSION SYSTEM BY THE METHOD OF AMPLITUDE SURFACES

An amplitude surface is introduced to analyze the bifurcation behavior of a system upon change in two characteristic parameters. A bifurcation analysis of a vibropercussion system with changing force amplitude and frequency is performed as an example of using amplitude surfaces. Bifurcations of codimension two are revealed.

Introduction and Description of a Mechanical

System. Amplitude surfaces are used here to analyze the bifurcations of nonlinear mechanical systems upon change in two characteristic parameters. In mechanics, the bifurcation analysis is frequently based on amplitude-frequency characteristics [START_REF] Avramov | Regions of random oscillations of discrete mechanical systems with piecewise-linear elastic characteristics[END_REF][START_REF] Avramov | Resonance in random oscillations of discrete mechanical systems with piecewise-linear elastic characteristics[END_REF][START_REF] Avramov | Features of forced oscillations in nonlinear power trains[END_REF][START_REF] Belomyttsev | An algorithm for solution of a nonlinear boundary-value problem for ordinary differential equations in the nonuniqueness region[END_REF]]. An amplitude surface is a three-dimensional generalization of an amplitude-frequency characteristic. The amplitude surfaces of a vibropercussion system can be constructed by a numerical method. Such a surface makes it possible to reveal various codimension two bifurcations formed by joining tangent-bifurcation lines.

Let us consider a vibropercussion system with two constraints whose reactions are determined by the nonlinear dependence R c n ( ) . ξ ξ ξ = + In terms of ordinary dimensionless variables [START_REF] Babitskii | The Theory of Vibropercussion Systems[END_REF][START_REF] Shaw | A periodically forced piecewise linear oscillator[END_REF], the equations of motion of the vibropercussion system has the form ω αω
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where ωis the frequency of perturbation, α is the coefficient of viscous resistance, and 2λis the distance between the constraints. Note that the function H x ( ) = -1 for --< <-2 1 1 λ

x describes motion between the two constraints. Equation (1) accounts for the action of a constant force on a material point. System (1) can be rearranged for the state variables ( , ) ( , ) y y x x 1 2 = ′ , which are used below.

2. The Method of Amplitude Surfaces. Amplitude surfaces are convenient for the geometrical representation of the bifurcation behavior of limit cycles upon change in two characteristic parameters of the system. Let such parameters be ωand f and the amplitude surface be the dependence of the semi-range S of periodic motions on ω and f. Therefore, a function

S G f = ( , )
ω represents the amplitude surface in the parameter space ( , , ) S f R ω ∈ 3 . Each point on the amplitude surface corresponds to a certain limit cycle.

Following [START_REF] Kawakami | Bifurcation of periodic responses in forced dynamic nonlinear circuits: computation of bifurcation values of the system parameters[END_REF], let us group the limit cycles of system (1) according to the values of the multiplicators ( , ) ρ ρ 1 2 as follows: directly unstable cycles ( , ) ρ ρ

1 2 1 0 1 > < < , inversely unstable cycles ( , ) ρ ρ 1 2 1 1 0 < --< < , and stable cycles (| | , , ) ρ i i < = 1 1 2 .
Cycles of one type can transform into cycles of other type through local bifurcations. As is known, system (1) can give rise to codimension one tangent bifurcations and period-doubling bifurcations. Note that ρ 1 = 1 for tangent bifurcations and ρ 1 = -1 for period-doubling bifurcations. Let us find what the geometrical representation of bifurcations is from the standpoint of the amplitude surface. Note that amplitude surfaces contain period-doubling and tangent-bifurcation lines. It is clear that the tangent-bifurcation line is one along which stable cycles of order N join with directly unstable cycles of the same order and the period-doubling line is where three types of cycles join together: stable cycles of order 2N, inversely unstable cycles of the same order, and stable cycles of order 2N. Note that bifurcation lines can join at codimension two bifurcation points [START_REF] Allam | Crossroad area-dissymetrical spring area-symmetrical spring area and double crossroad area-double spring area transitions[END_REF][START_REF] Guckenheimer | Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields[END_REF][START_REF] Mira | The dovetail bifurcation structure and its qualitative changes[END_REF].

Let us now describe the amplitude-surface algorithm. First, the amplitude-frequency characteristic is designed to find bifurcation points. Second, these bifurcation points are used to draw bifurcation lines on the parameter plane ( , )

ω f R ∈ 2 .
Finally, the amplitude surface is constructed based on the amplitude-frequency characteristic and the bifurcation lines. Thus, the amplitude-surface algorithm includes two algorithms: one is intended for designing amplitude-frequency characteristics and the other for drawing bifurcation lines on the plane ( , ) ω f . To plot the amplitude-frequency characteristic, let us take advantage of the algorithm from [START_REF] Belomyttsev | An algorithm for solution of a nonlinear boundary-value problem for ordinary differential equations in the nonuniqueness region[END_REF][START_REF] Seydel | Nonlinear Computation[END_REF]. Omitting the description of this algorithm, let us dwell on the bifurcation-line algorithm for system [START_REF] Avramov | Regions of random oscillations of discrete mechanical systems with piecewise-linear elastic characteristics[END_REF]. The solutions of Eqs. [START_REF] Avramov | Regions of random oscillations of discrete mechanical systems with piecewise-linear elastic characteristics[END_REF] 
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where
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is the Jacobian matrix and E is a unit matrix, describe cycles undergoing bifurcations.

A bifurcation line can be represented by a mesh function ( , ), ( , ),... , ω ω

1 1 2 2 f f ( , ). ω M M f
Each point of the mesh function is the solution of the system of equations ( 2), [START_REF] Avramov | Features of forced oscillations in nonlinear power trains[END_REF]. Therefore, to obtain the bifurcation line M, it is necessary to solve system (2), (3). It can be solved numerically as follows. First, system (2), ( 3) is resolved for one of the vectors v 1

0 1 0 2 = ( , , ) ω y y and v 2 0 1 0 2 = ( , ,
). ω y y

If the vector of unknowns is either v 1 or v 2 , then either f or ω, respectively, is specified prior to solving the equations. The variable specified is called a parametrizing variable [START_REF] Seydel | Nonlinear Computation[END_REF]. The parametrizing variable is selected before the computation of each point of the bifurcation line by the algorithm described in [START_REF] Seydel | Nonlinear Computation[END_REF]. Equations ( 2) and (3) are solved by Newton's method. Let us determine the Jacobian matrix appearing in Newton's method. Let π ω 1 = and π 2 = f for brevity; then the Jacobian matrix can be written in the form 01 02 
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Since the finite-difference formulas used to find the derivatives in (4) degrade the convergence of Newton's method, we will take advantage of the following method to determine the elements of the Jacobian matrix.

It is well known that the submatrix
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is the solution of the system of differential variational equations
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To derive the submatrix [P], let us set up two systems of differential equations for the vectors
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π π i = 1 or 2 by differentiating (1) with respect to π i . Written in a matrix form, these systems look like this:
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The solutions of Eqs. ( 6) with zero initial conditions for t N = 2π are the elements of the submatrix [P] from (4). Let us now derive the submatrices [Q] and [R] appearing in [START_REF] Belomyttsev | An algorithm for solution of a nonlinear boundary-value problem for ordinary differential equations in the nonuniqueness region[END_REF]. Using (4), we find 
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The formula for ∂ ∂

W i π (i = 1, 2
) is similar. To determine the second derivatives appearing in [START_REF] Allam | Crossroad area-dissymetrical spring area-symmetrical spring area and double crossroad area-double spring area transitions[END_REF], let us set up systems of differential equations for the vectors consisting of these second derivatives by differentiating ( 5) with respect to y 0μ and π i .

Written in a matrix form, these systems look like this: 
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Equations ( 8) have zero initial conditions. Let us solve Eqs. [START_REF] Guckenheimer | Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields[END_REF] 
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where q y ( ) 2 is a nonlinear function, δ( ) ⋅ is the delta function, τ j j p ( , ), = 1 1 and T p ν ν ( , ) = 1 2 are values of t found from the nonlinear equations
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The solutions of Eqs. ( 8) are represented as
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The right-hand sides of relations (1) satisfy the matrix equations [ ] 
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The linear differential equations ( 12) have semianalytic solutions owing to the delta functions appearing in them. To write the solutions of Eqs. [START_REF] Shaw | A periodically forced piecewise linear oscillator[END_REF], we use the method of variations of constants and the Ostrogradskii-Liouville formula, 
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Thus, formulas (4)-(17) allow determining numerically the Jacobian matrix. The solutions of system (2), (3) and the bifurcation line in the form of a mesh function are found by Newton's method. Let us further analyze the bifurcation behavior of a vibropercussion system with the following parameters: c = 0, α = 0.005, and λ = 5. In this case, the system remains essentially nonlinear and approximately describes the oscillations of the power train in an internal-combustion engine [START_REF] Avramov | Features of forced oscillations in nonlinear power trains[END_REF]. The function H x ( )becomes simpler and formulas ( 5)-( 17) remain the same. The software package used to analyze the vibropercussion system allows any value of c.

Codimension Two Bifurcation Points.

Codimension two bifurcation points emerge on the parametric plane ( , ) ω f where the bifurcation lines join [START_REF] Guckenheimer | Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields[END_REF]. To help visualizing the situation, Fig. 1 and2 show fragments of amplitude surfaces. The bifurcation points shown have been obtained in a numerical analysis of limit cycles of the principal resonance and subharmonic second-order oscillations. These oscillations occur because of period-doubling bifurcations of limit cycles of the first order. As is seen from Figs. 1 and2, the amplitude surface includes joined sheets. A sheet with directly unstable cycles is denoted by D and a sheet with inversely unstable cycles by I.

The points L 1 , L 2 , and L 3 were earlier discovered in mappings [START_REF] Allam | Crossroad area-dissymetrical spring area-symmetrical spring area and double crossroad area-double spring area transitions[END_REF][START_REF] Mira | The dovetail bifurcation structure and its qualitative changes[END_REF] and are called codimension two tangent bifurcation points. The tangent-bifurcation lines at these points are denoted by tg1-tg6 and the period-doubling lines by pd1-pd6. Note that the points L 1 , L 2 , and L 3 differ by the arrangement of the period-doubling lines. According to [START_REF] Allam | Crossroad area-dissymetrical spring area-symmetrical spring area and double crossroad area-double spring area transitions[END_REF], the region on the amplitude surface near L 1 is called a spring area. This area contains a sheet of directly unstable cycles bounded by tangent-bifurcation lines tg1 and tg2. According to [START_REF] Allam | Crossroad area-dissymetrical spring area-symmetrical spring area and double crossroad area-double spring area transitions[END_REF], the regions near L 2 and L 3 are called crossroad and saddle areas, respectively. The amplitude surface near L 4 was earlier observed in a one-dimensional polynomial mapping [START_REF] Mira | The dovetail bifurcation structure and its qualitative changes[END_REF]. The point L 5 was earlier discovered in a mapping of dimension two. This point is where the two tangent-bifurcation lines tg9 and tg10 join. And the point L 6 is where the four tangent-bifurcation lines E 1 , E 2 , E 3 , and E 4 meet. These lines and the corresponding sheets satisfy the following relations: E P P E P P 
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4. Principal Resonance. Let us consider bifurcations of limit cycles with the period of a perturbation action. A fragment of the amplitude surface representing this bifurcation behavior is shown in Fig. 3. Let us select the parameters so that the cycle appears on the right of the period-doubling line D 6 . As ω decreases, the cycle intersects this line, and stable cycles become inversely unstable. The bifurcations D 5 and D 6 give rise to period-doubling cycles, which are not analyzed here. Because of the tangent bifurcation K 4 , the stable cycles near the period-doubling line D 5 turn into directly unstable cycles. The sheet of these cycles is bounded by the tangent-bifurcation lines K 3 and K 4 , which join at the codimension two bifurcation point P 1 . The stable cycles near the bifurcation line K 3 have the maximum amplitude of oscillations compared with the other cycles shown on the amplitude surface. Crossing the period-doubling line D 4 , these cycles go over into inversely unstable cycles. Analyzing Fig. 3, let us trace the bifurcation behavior of the system. Note that the tangent-bifurcation lines K 1 and K 2 meet at the codimension two bifurcation point P 3 and the lines K 5 and K 6 at the codimension two bifurcation point P 5 . The domain of the amplitude surface containing the bifurcation lines K 5 , K 6 , D 2 , and D 7 and the codimension two bifurcation point P 5 is called a crossroad area. The lines K 5 and K 7 join at the codimension two bifurcation point P 6 .

Conclusions.

A new method has been proposed for the bifurcation analysis of mechanical systems. The method is based on amplitude surfaces, which allow visualizing the bifurcations of mechanical systems. The amplitude-surface algorithm has been detailed and used to analyze the bifurcation behavior of a vibropercussion system, as an example. Owing to the results presented here, various bifurcations of vibropercussion systems have been revealed. They are codimension two bifurcations formed by joined tangent-bifurcation lines on the amplitude surface and corresponding to the principal resonance and subharmonic oscillations of the second order.