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Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model

Stefano Villa∗ Paola Goatin† Christophe Chalons‡

July 21, 2016

Abstract

We introduce a second order model for traffic flow with moving bottlenecks. The model
consists of the 2×2 Aw-Rascle-Zhang system with a point-wise flow constraint whose trajectory
is governed by an ordinary differential equation. We define two Riemann solvers, characterize
the corresponding invariant domains and propose numerical strategies, which are effective in
capturing the non-classical shocks due to the constraint activation.

Key words: Traffic flow models; Moving bottlenecks; Unilateral flux constraints; Riemann
Solvers; Finite Volume schemes.
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1 Introduction

Conservation laws with pointwise unilateral constraints on the flux have been studied widely in the
last decade. Their peculiarity and main challenge from the analytical and numerical points of view
is the possible presence of a non-classical shock (i.e. violating the classical Kružkov [18] or Lax [19]
entropy admissibility conditions) at the constraint location.

Scalar conservation laws with fixed flux constraints have been introduced in [12], where an
existence result is established for data with bounded total variation (BV ). Further results have
been obtained by [4, 11, 13]. In particular, [4] provides the first description of the numerical
treatment of the flux constraint in a finite volume setting. In the articles above, the problem
formulation is intended to provide a general mathematical framework to model local constraints
in traffic flow, such as toll gates, construction works and traffic lights. The approach has been
extended to systems in the case of the Aw-Rascle-Zhang (ARZ) second order model [6, 23]. [16]
provides the definition and analysis of two Riemann solvers, as well as the corresponding numerical
strategies to compute approximate solutions by a modified Godunov scheme. Existence results for
the ARZ model with fixed constraints are provided in [3, 5, 17].

More recently, the approach has been extended to moving constraints that, in the framework
of traffic flow models, are meant to describe the dynamics of moving bottlenecks caused by large
slow moving vehicles like trucks or buses. The resulting model consists of a strongly coupled
PDE-ODE system, where the PDE is a constrained scalar conservation law describing the global
traffic evolution and the ODE gives the trajectory of the slow vehicle, which in turn is affected by
downstream traffic conditions through the speed law. The existence of solutions with BV initial
data has been proved in [15], while two numerical strategies have been proposed in [9, 14] to
compute approximate solutions, which correctly capture the non-classical shock arising when the
constraint is enforced.

In this article, we consider the ARZ traffic flow model subject to moving constraints. We define
two constrained Riemann solvers, characterize the corresponding invariant domains and propose
numerical strategies, which are effective in capturing the non-classical shocks due to the constraint
activation. The present contribution is a significant step forward compared to the previous con-
tributions since we propose here a both theoretical and numerical comprehensive treatment of a
system of conservation laws with a moving constraint. Note also that one of the two constrained
Riemann solvers is non conservative.

The numerical approximation of non-classical shocks is well-known to be very challenging since
these discontinuities are very sensitive to the underlying numerical diffusion of the scheme, see for
instance [20] for more details. In [7], the authors define a conservative scheme which is based on
in-cell discontinuous reconstructions of the non-classical shocks for approximating the solutions of
a scalar conservation law with a non convex flux. The striking feature of the strategy is to allow for
a perfect control of the numerical diffusion associated with the non-classical discontinuities. More
precisely, it allows for the exact computation of such isolated simple waves. In [9], the authors
succeeded in extending this approach based on in-cell reconstructions to a constrained but still
scalar conservation law. Here, we extend it to the system case of the ARZ constrained traffic flow
model, which is much more difficult to deal with since in-cell reconstructions have to be proposed
for the two components of the unknowns vector. Note in addition that a non-conservative Riemann
solver associated with the ARZ model will be studied in details. At last, let us mention that the
extension of the in-cell discontinuous reconstruction strategy to the system case has already been
considered for non-constrained problems in the recent paper [2] for the non diffusive computation
of classical solutions of the barotropic gas dynamics equations in Lagrangian coordinates, and in
[1] for the computation of non-classical solutions associated with a model of elastodynamics.
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2 The ARZ model with moving constraints

Let V and R be respectively the maximal speed and the maximal density of the vehicles on a stretch
of road and let α ∈ (0, 1) be the coefficient expressing the reduction of the road capacity at the
bus position, so that αR is the maximal density at x = y(t) for which the velocity of the vehicles
is v = 0. We denote by Fα the upper bound of the flux at the bus position and we consider the
following PDE-ODE system:{

∂tρ+ ∂x(ρv) = 0,

∂t(ρw) + ∂x(ρvw) = 0,
x ∈ R, t > 0, (2.1a)

ρ(t, y(t))(v(t, y(t))− ẏ(t)) ≤ Fα, (2.1b)

ẏ(t) = ω(v(t, y(t)+)), (2.1c)

with initial conditions

ρ(0, x) = ρ0(x), (2.2a)

v(0, x) = v0(x), (2.2b)

y(0) = y0. (2.2c)

The phase space is defined by the domain

D = {(ρ, v) ∈ R+ × R+ : 0 ≤ v ≤ V, 0 ≤ v + p(ρ) ≤ p(R)}

away from the bus position, and

Dα = {(ρ, v) ∈ R+ × R+ : 0 ≤ v ≤ V, 0 ≤ v + p(ρ) ≤ p(αR)}

at the bus position. Above, ρ = ρ(t, x) and v = v(t, x) denote respectively the density and
the mean velocity of traffic. Note that the quantity w = v + p(ρ), usually referred to as La-
grangian marker, is transported at velocity v and depends on the density through a pressure law
p ∈ C2([0,+∞[; [0,+∞[) satisfying the following hypotheses:

p(0) = 0, (2.3a)

p′(ρ) > 0 for every ρ > 0, (2.3b)

ρ 7→ ρp(ρ) is strictly convex. (2.3c)

Basics. We recall in this paragraph the basic properties of system (2.1a). If we denote the flux
function by

f(ρ, v) =

(
f1(ρ, v)
f2(ρ, v)

)
=

(
ρv

ρv(v + p(ρ))

)
,

the eigenvalues of the Jacobian matrix Df in the (ρ, v) coordinates are given by

λ1(ρ, v) = v − ρp′(ρ), λ2(ρ, v) = v,

the eigenvectors are

r1(ρ, v) =

(
−1
p′(ρ)

)
, r2(ρ, v) =

(
1
0

)
,
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and we observe that
∇λ1 · r1 = 2p′(ρ) + ρp′′(ρ) > 0, ∇λ2 · r2 = 0,

which means that the first characteristic field is genuinely non-linear and the second is linearly
degenerate. We also recall that system (2.1a) belongs to the Temple class [21], and its Riemann
invariants are given by

W1 = v + p(ρ), W2 = v.

The Lax curves through a point (ρ̄, v̄) in the (ρ, v)-plane are therefore given by

v = L1(ρ; ρ̄, v̄) := v̄ + p(ρ̄)− p(ρ), v = L2(ρ; ρ̄, v̄) := v̄.

At last, let us briefly recall that the solution to the Riemann problem associated with the usual
system (2.1a) (with no constraint) is given by two simple waves separated by a single intermedi-
ate state. The first simple wave is a shock wave or a rarefaction wave associated with the first
characteristic field and such that the intermediate state belongs to the first Lax curve L1 passing
through the left initial state, while the second one is a contact discontinuity associated with the
second characteristic field and such that the intermediate state belongs to the second Lax curve L2

passing through the right initial state.

Bus trajectory and flux constraint. In (2.1b), (2.1c), y = y(t) denotes the bus trajectory,
which moves at speed ω : R+ → [0, Vb] given by

ω(v) :=

{
Vb if Vb < v,

v if Vb ≥ v,

with 0 < Vb < V . In case of no flux restriction due to the presence of the bus, namely when v ≤ Vb,
the solution to the Riemann problem associated with (2.1) is expected to be the same as the one
associated with (2.1a) (with no constraint) and briefly described above. On the contrary, when the
bus acts on the flow, namely when v > Vb around the bus position, the general idea to construct
the solution to the Riemann problem is similar in the sense that the left and right initial states
will be joined by simple waves associated with the two characteristic fields, but one has to check
carefully that the phase space Dα is preserved, namely that 0 ≤ v ≤ V and v + p(ρ) ≤ p(αR) at
the bus position. The first constraint is already satisfied when the bus is not present, so that one
has to take care of the second inequality which is also equivalent to

ρ(v − ẏ) ≤ ρ(p(αR)− p(ρ))− ρẏ.

Under this form, it is clear that the constraint reads as a constraint on the relative flux at the
bus position. In order to go further in that direction, let us determine under which condition the
quantity v + p(ρ) equals a constant K such that K ≤ p(αR), or equivalently

ρ(v − ẏ) = ρ(K − p(ρ))− ρẏ,

with K such that K ≤ p(αR). The function ρ→ φ(ρ;K) = ρ(K − p(ρ))− ρẏ is strictly concave in
ρ by assumption (2.3c) and non-decreasing in K since ρ ≥ 0. Moreover, we have φ(0;K) = 0 for all
K. Therefore, the maximal possible value Fα of the relative flux corresponds to K = p(αR) and

Fα = φ(ρα; p(αR)) = ρα(p(αR)− p(ρα))− ραẏ

with ρα such that φ′(ρα; p(αR)) = 0, that is to say

p(αR)− ραp′(ρα)− p(ρα)− ẏ = 0.
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Easy calculations allow to find that the largest admissible flux is given by Fα = ρ2
αp
′(ρα). Therefore,

the classical solution will remain admissible provided that the relative flux does not exceed the upper
bound Fα. This criterion will be the key ingredient to determine the two possible Riemann solutions
devised in the next section. As we will see, these solutions necessarily develop non-classical shocks,
in addition to the usual simple waves associated with the first and second characteristic fields.
To conclude this section, Figure 1 below illustrates the above considerations with the notations
wα := p(αR) and wmax := p(R).

ρα αR R ρ

ẏρ

Fα + ẏρ
ρv

v + p(ρ) = wα

v + p(ρ) = wmax

Fα

(a) Flux representation in the phase plane.

Fα

ρv − ẏρ

v + p(ρ) = wmax

v + p(ρ) = wα

ẏρ

ρ
R

αR

ρα

(b) Flux representation in the bus reference frame.

Figure 1: Representation of the phase plane in the fixed and in the bus reference frame.

3 The Riemann problem

Let (ρl, vl) and (ρr, vr) be two points in the domain D. We consider the Riemann problem for (2.1)
corresponding to the initial data

ρ(0, x) =

{
ρl if x < 0,

ρr if x > 0,
(3.1a)

v(0, x) =

{
vl if x < 0,

vr if x > 0,
(3.1b)

y(0) = 0. (3.1c)

We look for self-similar solutions of (2.1), (3.1). Therefore, we assume that the bus speed will be
constant: ẏ(t) = Vb for all t > 0.

Let I be the set

I = {ρ ∈ [0, R] : ρL1(ρ, ρl, vl) = ρ(vl + p(ρl)− p(ρ)) = Fα + ρVb} =

= {ρ ∈ [0, R] : ρ(L1(ρ, ρl, vl)− Vb) = Fα}.
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If I 6= ∅, let (ρ̂, v̂) and (ρ̌1, v̌1) be the points defined by

ρ̂ = max I, v̂ =
Fα
ρ̂

+ Vb, ρ̌1 = min I and v̌1 =
Fα
ρ̌1

+ Vb. (3.2)

These are respectively the points with maximal and minimal density of the Lax curve of the first
family passing through (ρl, vl) which satisfy the condition (2.1b) on the flux. Moreover, we define
the point (ρ̌2, v̌2) as

ρ̌2 =
Fα

vr − Vb
and v̌2 = vr. (3.3)

This is the point of maximal density of the Lax curve of the second family passing through (ρr, vr)
for which (2.1b) is satisfied. Finally we denote by (ρm, vm) the middle state of the classical Riemann
solver for (2.1a), (3.1a), (3.1b):

vm = vr, ρm = max
{
p−1

(
vl + p(ρl)− vr

)
, 0
}
.

All these points are depicted in Figure 2.

Rl ρ

Fα + Vbρ

ρv

Fα

(ρr, vr)

(ρm, vm)

(ρ̌2, v̌2)(ρ̌1, v̌1)

(ρ̂, v̂)

(ρl, vl)

v + p(ρ) = wl

Figure 2: Notations used in the definition of the Riemann solvers.

Let RS be the standard Riemann solver for (2.1a), see [6], and let

ρ̄((ρl, vl), (ρr, vr))(·) and v̄((ρl, vl), (ρr, vr))(·)

be respectively the ρ and v components of the classical solution RS((ρl, vl), (ρr, vr))(·).

Lemma 1 Let conditions (2.3) hold. If f1(RS((ρl, vl), (ρr, vr))(Vb)) > Fα+Vb ρ̄((ρl, vl), (ρr, vr))(Vb),
then I = {ρ̌1, ρ̂}.
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Proof. Let us consider the plane (ρ, ρv) and let wl = vl+p(ρl) be the value of the Riemann invariant
w at (ρl, vl). In these coordinates the set of points (ρ, v) such that v + p(ρ) = wl is the graph of
the function

ψ(ρ) := ρwl − ρp(ρ).

This function is strictly concave, by (2.3c). Then the cardinality of the set I is at most 2. Since
f1(RS((ρl, vl), (ρr, vr))(Vb)) > Fα+Vb ρ̄((ρl, vl), (ρr, vr))(Vb), there will be exactly two points (ρ̂, v̂)
and (ρ̌1, v̌1) belonging to the curve ψ and such that

ρ̌1 < ρ̄((ρl, vl), (ρr, vr))(Vb), ρ̂ > ρ̄((ρl, vl), (ρr, vr))(Vb), ψ(ρ̌1) = Fα+Vbρ̌1 and ψ(ρ̂) = Fα+Vbρ̂.

�

Lemma 2 Let wl ∈ [0, p(R)] be fixed and let ρv = Fα + Vbρ be the constraint. Let us consider
the function ρ → ψ(ρ) = ρwl − ρp(ρ). Let (ρσ, vσ) be a point such that ρσvσ = ψ(ρσ). Under the
hypotheses of Lemma 1, we have

ρσ > ρ̂ or ρσ < ρ̌1 if and only if ρσvσ < Fα + Vbρ
σ.

Proof. By the hypotheses of Lemma 1, there exists a point (ρm, vm) such that vm = L1(ρm; ρl, vl)
and ρmvm > Fα + Vbρ

m. Moreover we have I = {ρ̌1, ρ̂}.
If ρσ > ρ̂, there exists γ ∈ (0, 1) such that ρ̂ = γρσ + (1 − γ)ρ̌1. Assume by contradiction that
ψ(ρσ) ≥ Fα + Vbρ

σ, then by the strict concavity of ψ, we would have

ψ(ρ̂) = ψ(γρσ + (1− γ)ρ̌1) > γψ(ρσ) + (1− γ)ψ(ρ̌1) ≥
≥ γ(Fα + Vbρ

σ) + (1− γ)(Fα + Vbρ̌1) =

= γFα + γVbρ
σ + Fα + Vbρ̌1 − γFα − γVbρ̌1 =

= Fα + Vb(γρ
σ + (1− γ)ρ̌1) =

= Fα + Vbρ̂,

which contradicts the definition of (ρ̂, v̂). Similarly for ρσ < ρ̌1.
Conversely, if ρσ ∈ [ρ̌1, ρ̂], there exists γ ∈ [0, 1] such that ρσ = γρ̌1 + (1− γ)ρ̂. Hence

ψ(ρσ) ≥ γψ(ρ̌1) + (1− γ)ψ(ρ̂) = γ(Fα + ρ̌1Vb) + (1− γ)(Fα + ρ̂Vb) =

= Fα + Vb(γρ̌1 + (1− γ)ρ̂) = Fα + Vbρ
σ.

�

3.1 The first Riemann solver RSα1
Let us introduce the first Riemann solver for the constrained problem (2.1).

Definition 1 The Riemann solver

RSα1 : D ×D → L1(R,R+ × R+)

is defined as follows.
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1. If f1(RS((ρl, vl), (ρr, vr))(Vb)) > Fα + Vb ρ̄((ρl, vl), (ρr, vr))(Vb), then

RSα1 ((ρl, vl), (ρr, vr))(x/t) =

{
RS((ρl, vl), (ρ̂, v̂))(x/t) if x < y(t),

RS((ρ̌1, v̌1), (ρr, vr))(x/t) if x > y(t),

and y(t) = Vb t.

2. If f1(RS((ρl, vl), (ρr, vr))(Vb)) ≤ Fα + Vb ρ̄((ρl, vl), (ρr, vr))(Vb) and
Vb < v̄((ρl, vl), (ρr, vr))(Vb), then

RSα1 ((ρl, vl), (ρr, vr))(x/t) = RS((ρl, vl), (ρr, vr))(x/t) and y(t) = Vb t.

3. If v̄((ρl, vl), (ρr, vr))(Vb) ≤ Vb, then

RSα1 ((ρl, vl), (ρr, vr))(x/t) = RS((ρl, vl), (ρr, vr))(x/t) and y(t) = v(t, y(t)+) t.

Note that, due to the Rankine Hugoniot relations, the inequalities above are well defined also along
jump discontinuities, being equivalent along the right and left traces of the solution.

The first case refers to a situation in which the traffic is influenced by the bus and the bus
travels with its own velocity; in the second case the bus and the traffic do not influence each other;
the third case represents a road where the traffic is so slow that the bus travels with the speed of
the downstream traffic.

Remark that the solution RSα1 is conservative for both density and momentum of the vehicles.
Moreover, in case 1., the solution given by RSα1 does not satisfy the Lax entropy condition between
the states (ρ̂, v̂) and (ρ̌1, v̌1), because we have ρ̌1 < ρ̂. Therefore, we say that (ρ̂, v̂) and (ρ̌1, v̌1) are
connected by a non-classical shock.

3.2 The second Riemann solver RSα2
Let us introduce the second Riemann solver for the constrained problem (2.1).

Definition 2 The Riemann solver

RSα2 : D ×D → L1(R,R+ × R+)

is defined as follows.

1. If f1(RS((ρl, vl), (ρr, vr))(Vb)) > Fα + Vb ρ̄((ρl, vl), (ρr, vr))(Vb), then

RSα2 ((ρl, vl), (ρr, vr))(x/t) =

{
RS((ρl, vl), (ρ̂, v̂))(x/t) if x < y(t),

RS((ρ̌2, v̌2), (ρr, vr))(x/t) if x > y(t),

and y(t) = Vb t.

2. If f1(RS((ρl, vl), (ρr, vr))(Vb)) ≤ Fα + Vbρ̄((ρl, vl), (ρr, vr))(Vb) and
Vb < v̄((ρl, vl), (ρr, vr))(Vb), then

RSα2 ((ρl, vl), (ρr, vr))(x/t) = RS((ρl, vl), (ρr, vr))(x/t) and y(t) = Vb t.

3. If v̄((ρl, vl), (ρr, vr))(Vb) ≤ Vb, then

RSα2 ((ρl, vl), (ρr, vr))(x/t) = RS((ρl, vl), (ρr, vr))(x/t) and y(t) = v(t, y(t)+) t.

The Riemann solver RSα2 conserves only the number of the vehicles. Indeed, along the line
x = y(t) the Rankine-Hugoniot condition holds for the first flux component, because both (ρ̂, v̂)
and (ρ̌2, v̌2) belong to the line ρv = Fα + V̄ ρ, but not for the second component.
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4 Invariant domains

The study of invariant domains for RSα1 and RSα2 follows closely [16, Section 3]. First of all, let us
recall that the sets

Dv1,v2,w1,w2 = {(ρ, v) ∈ R+ × R+ : v1 ≤ v ≤ v2, w1 ≤ v + p(ρ) ≤ w2}

are invariant for (2.1a) for any 0 < v1 < v2 and 0 < w1 < w2 with v2 < w2. Moreover, we define
the function

hα : ]Vb,+∞[ −→ R+

h(v) = v + p

(
Fα

v − Vb

)
,

(4.1)

which gives the value of the invariant w at the point (ρ, v) ∈ ]0,+∞[× ]Vb,+∞[ such that ρ(v−Vb) =
Fα.

The following Lemma is a direct consequence of the strict convexity of the function ρ→ ρp(ρ),
see (2.3c).

Lemma 3 Let us suppose that the hypotheses (2.3) hold. For any α ∈ ]0, 1[, there exists v̄ = v̄(α) ∈
]Vb,+∞[ such that hα(v) is strictly decreasing in ]Vb, v̄[ and strictly increasing in ]v̄,+∞[.

Proposition 1 Let Vb ≤ v1 < v2, 0 < w1 < w2, v2 < w2 and α ∈ ]0, 1[ be fixed. If hα(v) ≥ w2 for
every v in [v1, v2], then the Riemann solvers RSα1 and RSα2 coincide with the standard Riemann
solver RS. Therefore, the domain Dv1,v2,w1,w2 is invariant for both RSα1 and RSα2 .

Proof. Let (ρ, v) ∈ Dv1,v2,w1,w2 . By the hypotheses we have

v + p(ρ) ≤ w2 ≤ hα(v) = p

(
Fα

v − Vb

)
+ v =⇒ p(ρ) ≤ p

(
Fα

v − Vb

)
,

which gives ρ(v − Vb) ≤ Fα by monotonicity of p. Therefore,

sup{ρ(v − Vb) : (ρ, v) ∈ Dv1,v2,w1,w2} ≤ Fα,

and for any (ρl, vl) and (ρr, vr) in Dv1,v2,w1,w2 , the classical solution RS((ρl, vl), (ρr, vr)) satisfies
the constraint for x = Vb t. Hence the solutions given by the two Riemann solvers RSα1 and RSα2
coincide with the classical solution. �

The next Theorems characterize the invariant domains of the Riemann solvers RSα1 and RSα2
when they are different from the standard Riemann solver. Figure 3 gives two examples of these
domains.

Theorem 1 Let 0 < v1 < v2, 0 < w1 < w2, v2 < w2 and α ∈ ]0, 1[ be fixed.

(i) If v2 ≤ Vb, the set Dv1,v2,w1,w2 is invariant for RSα1 .

(ii) If v1 ≥ Vb, let us assume that there exists v̄ ∈ [v1, v2] such that hα(v̄) < w2. Then the set
Dv1,v2,w1,w2 is invariant for RSα1 if and only if

hα(v1) ≥ w2 and hα(v2) ≥ w2. (4.2)
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(iii) If v1 < Vb < v2, let us assume that there exists v̄ ∈ [Vb, v2] such that hα(v̄) < w2. Then the
set Dv1,v2,w1,w2 is invariant for RSα1 if and only if

hα(v2) ≥ w2. (4.3)

Theorem 2 Let 0 < v1 < v2, 0 < w1 < w2, v2 < w2 and α ∈ ]0, 1[ be fixed.

(i) If v2 ≤ Vb, the set Dv1,v2,w1,w2 is invariant for RSα2 .

(ii) If v1 ≥ Vb, let us suppose that there exists v̄ ∈ [v1, v2], such that hα(v̄) < w2. Then the set
Dv1,v2,w1,w2 is invariant for RSα2 if and only if

hα(v1) ≥ w2, hα(v2) ≤ w2 and hα(v) ≥ w1 (4.4)

for every v ∈ [v1, v2].

(iii) If v1 < Vb < v2, let us suppose that there exists v̄ ∈ [Vb, v2], such that hα(v̄) < w2. Then the
set Dv1,v2,w1,w2 is invariant for RSα2 if and only if

hα(v2) ≤ w2 and hα(v) ≥ w1 (4.5)

for every v ∈ [Vb, v2].

ρ

Fα + Vbρ

ρv

w1

w2
Fα

v2 v1

Vbρ

ρ

Fα + Vbρ

ρv

w1

w2
Fα

v2 v1

Vbρ

Figure 3: Example of an invariant domain (the shaded area) for RSα1 (left) and RSα2 (right), for
v1 > Vb.

Let us define the sets

U := {(ρ, v) ∈ (0,+∞)× (0,+∞) : v ≤ Vb},
V := {(ρ, v) ∈ (0,+∞)× (0,+∞) : v ≥ Vb}.

The proofs of Theorems 1 and 2 will be developed in the next subsections.

4.1 Dv1,v2,w1,w2 ⊆ U

If v2 ≤ Vb, then Dv1,v2,w1,w2 ⊆ U . Let (ρl, vl) and (ρr, vr) be two points in Dv1,v2,w1,w2 . Since
Dv1,v2,w1,w2 is invariant for the standard Riemann solver RS, we have

f1(RS((ρl, vl), (ρr, vr))(Vb)) ≤ Vb ρ̄((ρl, vl), (ρr, vr))(Vb).

Therefore RSα1 and RSα2 coincide with RS and Dv1,v2,w1,w2 is invariant for both, proving points (i)
of Theorems 1 and 2.
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4.2 Dv1,v2,w1,w2 ⊆ V

We remark that Dv1,v2,w1,w2 ⊆ V if and only if v1 ≥ V̄ .

4.2.1 Proof of Theorem 1 (ii)

1. Let us suppose that hα(v1) ≥ w2 and hα(v2) ≥ w2.
Since Dv1,v2,w1,w2 is invariant for RS, it is sufficient to prove that, for every Riemann data
(ρl, vl) and (ρr, vr) in Dv1,v2,w1,w2 , even (ρ̂, v̂) and (ρ̌1, v̌1) are in Dv1,v2,w1,w2 .

Since v̂ + p(ρ̂) = vl + p(ρl), we find

w1 ≤ v̂ + p(ρ̂) ≤ w2. (4.6)

Moreover, from ρ̂v̂ = Fα + Vbρ̂ > Vbρ̂, we get v̂ > Vb, hence the function hα is well defined in
v̂ and its value is

hα(v̂) = v̂ + p

(
Fα

v̂ − Vb

)
= v̂ + p(ρ̂).

Let ṽ ∈ ]Vb,+∞[ be the minimum of the function hα which exists by Lemma 3. If v1 < v2 ≤ ṽ,
then hα(v1) > hα(v2) ≥ hα(ṽ). By hypothesis, there exists v̄ ∈ [v1, v2] such that hα(v̄) < w2,
but since v̄ ≤ v2, we find w2 > hα(v̄) ≥ hα(v2), in contradiction with (4.2).
Similarly, if ṽ < v1 < v2, hα is increasing in [v1, v2] and hence since v̄ ≥ v1, we find w2 >
hα(v̄) ≥ hα(v1), again in contradiction with (4.2).
Therefore it must hold v1 ≤ ṽ ≤ v2. If v̂ < v1 ≤ ṽ, then we would have hα(v̂) > hα(v1) ≥ w2,
which is a contradiction with (4.6). Similarly, if v̂ > v2 ≥ ṽ, then hα(v̂) > hα(v2) ≥ w2, again
in contradiction with (4.6).
In conclusion we have v1 ≤ v̂ ≤ v2 and (ρ̂, v̂) ∈ Dv1,v2,w1,w2 .
Since (ρ̌1, v̌1) satisfies the same hypotheses of (ρ̂, v̂), the proof is similar.

2. Let us suppose that Dv1,v2,w1,w2 is invariant for RSα1 and, by contradiction, that hα(v1) < w2.
Let (ρ∗, v∗) ∈ Dv1,v2,w1,w2 be the solution to the system{

v + p(ρ) = w2,

v = v1.

The point (ρ∗, v∗) satisfies the inequality ρ∗v∗ > Fα + Vbρ
∗ (see Figure 4a), indeed by the

hypotheses (2.3) we find

hα(v1) = v1 + p

(
Fα

v1 − Vb

)
< w2 = v∗ + p(ρ∗) = v1 + p(ρ∗).

Therefore the left trace of RSα1 ((ρ∗, v∗), (ρ∗, v∗)) at λ = Vb is (ρ̂, v̂), which does not belong to
Dv1,v2,w1,w2 . Indeed

v̂ = v1 + p(ρ∗)− p(ρ̂) < v1,

therefore the inequality hα(v1) ≥ w2 must hold.

3. Let us suppose that Dv1,v2,w1,w2 is invariant for RSα1 and, by contradiction, that hα(v2) < w2.
Let (ρ∗, v∗) ∈ Dv1,v2,w1,w2 be the solution to the system{

v + p(ρ) = w2,

v = v2.

11



The point (ρ∗, v∗) is such that ρ∗v∗ > Fα + Vbρ
∗ (see Figure 4b), indeed by (2.3) we find

hα(v2) = v2 + p

(
Fα

v2 − Vb

)
< w2 = v∗ + p(ρ∗) = v2 + p(ρ∗).

Hence the right trace of RSα1 ((ρ∗, v∗), (ρ∗, v∗)) at λ = Vb is (ρ̌1, v̌1), which cannot belong to
Dv1,v2,w1,w2 . Indeed,

v̌1 = v2 + p(ρ∗)− p(ρ̌1) > v2,

hence the inequality hα(v2) ≥ w2 must hold.

ρ

Fα + Vbρ

ρv

w1

w2
Fα

v2
v1

Vbρ

(ρ∗, v∗)

(ρ̂, v̂)

(a) Case hα(v1) < w2.

ρ

Fα + Vbρ

ρv

w1

w2

Fα

v2

v1

Vbρ

(ρ∗, v∗)

(ρ̌1, v̌1)

(b) Case hα(v2) < w2.

Figure 4: Representation of the points used in Section 4.2.1. The invariant domain is the colored
area. If by contradiction hα(v1) < w2 (case (a)), then the two points (ρ∗, v∗) and (ρ̂, v̂) cannot both
belong to Dv1,v2,w1,w2 . The same is for (ρ∗, v∗) and (ρ̌1, v̌1) if hα(v2) < w2 (case (b)).

4.2.2 Proof of Theorem 2 (ii)

Lemma 4 Let Vb ≤ v1 < v2, 0 < w1 < w2, v2 < w2 and α ∈ ]0, 1[ be fixed. Let us suppose that
there exists v̄ ∈ [v1, v2] such that hα(v̄) < w2. If the set Dv1,v2,w1,w2 is invariant for RSα2 , then
hα(v1) ≥ w2.

The proof is the same of part 2 of Section 4.2.1.

Lemma 5 Let Vb ≤ v1 < v2, 0 < w1 < w2, v2 < w2 and α ∈ ]0, 1[ be fixed. Let us suppose that
there exists v̄ ∈ [v1, v2] such that hα(v̄) < w2. If the set Dv1,v2,w1,w2 is invariant for RSα2 , then
hα(v) ≥ w1 for every v ∈ [v1, v2].

Proof. Assume by contradiction that there exists ṽ ∈ [v1, v2] such that hα(ṽ) < w1. Let (ρ∗, v∗) ∈
Dv1,v2,w1,w2 be the solution to the system{

v + p(ρ) = w2,

v = ṽ.
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We note that

hα(ṽ) = ṽ + p

(
Fα

ṽ − Vb

)
< w1 < w2 = v∗ + p(ρ∗),

therefore ρ∗(v∗ − Vb) > Fα. Hence the right trace of RSα2 ((ρ∗, v∗), (ρ∗, v∗)) in λ = Vb is (ρ̌2, v̌2)
which does not belong to Dv1,v2,w1,w2 (see Figure 5a). Indeed by definition we have

v̌2 = v∗ = ṽ =⇒ hα(v̌2) = hα(ṽ) < w1.

This is in contradiction with the invariance of the domain Dv1,v2,w1,w2 . �

Lemma 6 Let Vb ≤ v1 < v2, 0 < w1 < w2, v2 < w2 and α ∈ ]0, 1[ be fixed. Let us suppose that
there exists v̄ ∈ [v1, v2] such that hα(v̄) < w2. If the set Dv1,v2,w1,w2 is invariant for RSα2 , then
hα(v2) ≤ w2.

Proof. Assume by contradiction that hα(v2) > w2. Let (ρr, vr) ∈ Dv1,v2,w1,w2 be the solution to the
system (see Figure 5b) {

v + p(ρ) = w2,

v = v2,

and let (ρl, vl) ∈ Dv1,v2,w1,w2 be the solution to{
v + p(ρ) = w2,

v = v1.

The points (ρl, vl) and (ρr, vr) are connected by the standard Riemann solver with a rarefaction,
because vl = v1 < v2 = vr. We claim that ρl ≥ ρ̂ and ρr < ρ̌1.
Indeed, let ṽ be the minimum of the function hα. We have v1 ≤ ṽ, otherwise for every v ∈ [v1, v2]
we would have hα(v) ≥ hα(v1) ≥ w2 by Lemma 4.
If v̂ ≥ ṽ, then we clearly have v1 ≤ v̂. By the definition of (ρl, vl), we have w2 = vl + p(ρl) =
v̂ + p(ρ̂) = hα(v̂). Hence if v̂ < ṽ, we find

hα(v̂) = w2 ≤ hα(v1) =⇒ v̂ ≥ v1,

because hα(v1) ≥ w2. In both cases we have v̂ ≥ vl which is equivalent to ρl ≥ ρ̂.
Similarly, if v2 ≤ ṽ, for every v ∈ [v1, v2] we would have hα(v) ≥ hα(v2) > w2, which is a contradic-
tion. Therefore v2 > ṽ. If v̌1 ≤ ṽ, then clearly v2 > v̌1, while if v̌1 > ṽ, since

hα(v̌1) = v̌1 + p(ρ̌1) = vl + p(ρl) = w2 < hα(v2),

we find vr = v2 > v̌1 which is equivalent to ρr < ρ̌1, because

vr + p(ρr) = w2 = vl + p(ρl) = v̌1 + p(ρ̌1).

This proves the claim.
Since the classical solution RS((ρl, vl), (ρr, vr)) does not satisfy the constraint for Lemma 2, the
right trace of RSα2 ((ρl, vl), (ρr, vr)) at λ = Vb is (ρ̌2, v̌2).
Since v̌2 = vr = v2, we have

v̌2 + p(ρ̌2) = hα(v̌2) = hα(v2) > w2.

Therefore (ρ̌2, v̌2) does not belong to Dv1,v2,w1,w2 , in contradiction with the hypothesis of invariance
of this domain for the Riemann solver RSα2 . �
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ρ

Fα + Vbρ

ρv

w1

w2
Fα

v2
v1

ṽ
(ρ∗, v∗)

(ρ̌2, v̌2)

(a) Representation of the points used in Lemma
5. The invariant domain is the colored area. If,
by contradiction, there was ṽ ∈ [v1, v2] such that
hα(ṽ) < w1, the point (ρ̌2, v̌2) would not be in the
domain Dv1,v2,w1,w2 .

ρ

Fα + Vbρ

ρv

w1

w2

Fα

v2
v1

(ρl, vl)

(ρ̂, v̂)

(ρ̌1, v̌1)

(ρr, vr)

(ρ̌2, v̌2)

(ρσ, vσ)

(b) Representation of the points used in the proof
of Lemma 6. The invariant domain is the colored
area. If, by contradiction, the inequality hα(v2) >
w2 held, the point (ρ̌2, v̌2) would not be in the set
Dv1,v2,w1,w2 .

Lemma 7 Let Vb ≤ v1 < v2, 0 < w1 < w2, v2 < w2 and α ∈ ]0, 1[ be fixed and (4.4) hold. Then
the set Dv1,v2,w1,w2 is invariant for the Riemann solver RSα2 .

Proof. Since Dv1,v2,w1,w2 is invariant for RS, we have only to show that the left and right traces of
RSα2 ((ρl, vl), (ρr, vr)) at λ = Vb belong to Dv1,v2,w1,w2 .
Let (ρl, vl) and (ρr, vr) ∈ Dv1,v2,w1,w2 . If RSα2 ((ρl, vl), (ρr, vr)) coincides with RS((ρl, vl), (ρr, vr)),
there is nothing to prove. Otherwise, let (ρ̌2, v̌2) and (ρ̂, v̂) be respectively the right and left traces
of the solution at Vb.

If (ρ̂, v̂) 6∈ Dv1,v2,w1,w2 , let (ρ∗, v∗) ∈ Dv1,v2,w1,w2 be a point of L1(ρ; ρl, vl). Then by (4.4) we
have ρ∗v∗ ≤ Fα + Vbρ

∗, and the Riemann solver gives the classical solution.
If (ρ̌2, v̌2) 6∈ Dv1,v2,w1,w2 , then each point (ρ∗, v∗) ∈ Dv1,v2,w1,w2 belonging to L2(ρ; ρr, vr) satisfies

ρ∗v∗ ≤ Fα + Vbρ
∗. Therefore the Riemann solver gives again the classical solution. �

4.3 Dv1,v2,w1,w2 intersects both U and V

If v1 < Vb < v2, let us suppose that there exists v̄ ∈ [Vb, v2] such that hα(v̄) < w2.
We can restate the results that we have obtained until now as follows.

1. The domain Dv1,Vb,w1,w2 is invariant for RSα1 and RSα2 .

2. hα(v2) ≥ w2 if and only if DVb,v2,w1,w2 is invariant for RSα1 .

3. hα(v) ≥ w1 for every v ∈ [Vb, v2] and hα(v2) ≤ w2 hold if and only if DVb,v2,w1,w2 is invariant
for RSα2 .

Proposition 2 Let 0 < v1 < v2, 0 < w1 < w2, v2 < w2 and α ∈]0, 1[ be fixed. If the domains
Dv1,Vb,w1,w2 and DVb,v2,w1,w2 are invariant for RSα1 and RSα2 , then also Dv1,v2,w1,w2 is invariant for
both Riemann solvers.
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Proof. The domain Dv1,Vb,w1,w2 and DVb,v2,w1,w2 coincide respectively with

DUv1,v2,w1,w2
:= Dv1,v2,w1,w2 ∩ U and DVv1,v2,w1,w2

:= Dv1,v2,w1,w2 ∩ V.

If the solutions given by the two Riemann solvers RSα1 and RSα2 coincide with the classic one, then
the result is trivial.
Moreover we observe that, for every pair of initial data ((ρl, vl), (ρr, vr)) ∈ (R+ × R+)2, the points
(ρ̌1, v̌1), (ρ̌2, v̌2) and (ρ̂, v̂) belong to DVv1,v2,w1,w2

. Therefore, if (ρl, vl), (ρr, vr) ∈ DVv1,v2,w1,w2
, the

solutions given by the Riemann solvers RSα1 and RSα2 are contained in DVv1,v2,w1,w2
.

If vr < Vb, we have RS((ρl, vl), (ρr, vr))(Vb) = (ρr, vr) ∈ U . Therefore, the solutions given by the
Riemann solvers RSα1 and RSα2 coincide with the classical one.
If vr = Vb, then the points (ρl, vl) and (ρr, vr) are both in DUv1,v2,w1,w2

or both in DVv1,v2,w1,w2
. Hence

the solutions RSα1 ((ρl, vl), (ρr, vr)) and RSα2 ((ρl, vl), (ρr, vr)) are entirely contained in one of the
two sub-domains and therefore also in Dv1,v2,w1,w2 .
If vr > Vb, RS((ρl, vl), (ρr, vr))(Vb) can be equal to (ρm, vm), (ρl, vl) or, if ρl ≥ ρm, one of the
points of the rarefaction curve which connects (ρm, vm) to (ρl, vl). Both (ρm, vm) and (ρr, vr)
are in DVv1,v2,w1,w2

. If also (ρl, vl) belongs to DVv1,v2,w1,w2
, we can conclude by Theorem 1 (ii) and

Theorem 2 (ii).
If (ρl, vl) ∈ DUv1,v2,w1,w2

, we must have ρl ≥ ρm, because vl ≤ Vb ≤ vm, and the standard Riemann
solver connects these two points with a rarefaction. If (ρm, vm) satisfies the constraint, then the
same holds for each point (ρσ, vσ) of the rarefaction, because ρσ ≥ ρm and Lemma 2. Hence RSα1
and RSα2 coincide with the standard Riemann solver and the solutions are contained in Dv1,v2,w1,w2 .
If (ρm, vm) does not satisfy the constraint, let (ρ∗, v∗) be the solution to the system{

v + p(ρ) = vl + p(ρl),

v = Vb.

By consistency, we can decompose the solution to the Riemann problem (2.1), (3.1) given by RSα1 ,
as

RSα1 ((ρl, vl), (ρr, vr))(x/t) =

{
RSα1 ((ρl, vl), (ρ∗, v∗))(x/t) if x ≤ λ1(ρ∗, v∗)t,

RSα1 ((ρ∗, v∗), (ρr, vr))(x/t) if x > λ1(ρ∗, v∗)t,

and similarly for the second Riemann solver

RSα2 ((ρl, vl), (ρr, vr))(x/t) =

{
RSα2 ((ρl, vl), (ρ∗, v∗))(x/t) if x ≤ λ1(ρ∗, v∗)t,

RSα2 ((ρ∗, v∗), (ρr, vr))(x/t) if x > λ1(ρ∗, v∗)t.

If the classical solution does not satisfy the constraint in x = Vb t, then the left trace of RSαi for
i = 1, 2 at λ = Vb is (ρ̂, v̂). The solutions given by the two Riemann solversRSαi for i = 1, 2 present a
rarefaction between (ρl, vl) and (ρ∗, v∗) and another rarefaction linking (ρ∗, v∗) to (ρ̂, v̂). Moreover,
since DUv1,v2,w1,w2

and DVv1,v2,w1,w2
are invariant for both Riemann solvers, the point (ρ∗, v∗) belongs

to the intersection of the two domains and since Dv1,v2,w1,w2 = DUv1,v2,w1,w2
∪DVv1,v2,w1,w2

, the solution
is contained in the domain Dv1,v2,w1,w2 , which is therefore invariant. �

This concludes the proofs of Theorems 1 and 2.

5 Numerical schemes

The aim of this section is to propose a numerical strategy to compute the solutions to the con-
strained problem (2.1). We will more precisely propose two variants of the strategy which will
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correspond to the two Riemann solvers RSα1 and RSα2 . Importantly, a particular attention will be
given to the numerical treatment of the non-classical shocks arising at the bus position since the
numerical approximation of such moving discontinuities is well-known to be challenging. We refer
the reader to the introduction of this paper for more details.

Let h and kn be positive real numbers representing the increments for space and time discretiza-
tions and let us define the mesh points (tn, xj+1/2) by

xj+1/2 = jh for every j ∈ Z and tn+1 = tn + kn for every n ∈ N.

We divide the x-axis in a sequence {Cj}j∈Z of cells such that Cj = [xj−1/2, xj+1/2). We also define
the cell centers as

xj =

(
j − 1

2

)
h ∈ Cj for every j ∈ Z.

For every n ∈ N, we aim at constructing a piecewise constant approximation x 7→ u(tn, x) of the
conserved variables u = (ρ, z) = (ρ, ρw) = (ρ, ρ(v + p(ρ))) given by

u(tn, x) = unj for all x ∈ Cj , j ∈ Z, n ∈ N.

For completeness, we recall that the classical Godunov scheme can be written as

un+1
j = unj −

kn

h

(
Fnj+1/2 − F

n
j−1/2

)
(5.1)

for all j ∈ Z, where Fnj+1/2 = F (unj ,u
n
j+1) = f(RS(unj ,u

n
j+1)(0)), under the classical CFL stability

condition
2kn max

j∈Z

{∣∣λ1(unj )
∣∣ , ∣∣λ2(unj )

∣∣} ≤ h.
This classical Godunov scheme will be used except near the non-classical shocks since such discon-
tinuities require specific treatments, which are described in the next two sections for both solvers
RSα1 and RSα2 . Note that above, and in the following, we denote by RS, RSα1 and RSα2 the
Riemann solvers defined on the conserved variables (ρ, z). At last, the proposed numerical approx-
imation of the bus trajectory is described in Appendix A and we emphasize that it is exact when
the bus velocity is given by Vb.

5.1 The constrained Godunov scheme for RSα1
First of all, we define for every j ∈ Z the approximation u0

j of the initial data u0 on the cell Cj as
the mean

u0
j :=

1

h

∫ xj+1/2

xj−1/2

u0(x) dx.

In this section, we consider the Riemann solver RSα1 and our aim is to modify the classical Godunov
scheme near the non-classical shocks that may develop at the moving constraint location. We
follow the approach proposed in [1, 7, 9],x where an in-cell discontinuous reconstruction strategy
is developed and allows a sharp computation of the non-classical shocks. By sharp, we mean that
such isolated discontinuities are exactly computed with only one point of numerical diffusion, the
value of which corresponds to the mean value of the exact solution in the corresponding cell. It is
clearly the best result achievable by a conservative scheme.

Let us first consider the case in which the bus is not influenced by the preceding vehicles, so
that its position at the time tn is yn := y(tn) = y0 + Vbt

n ∈ Cm for some m ∈ Z and the value of
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the approximate solution at yn is unm = (ρnm, z
n
m).

Following [9] and referring to the definition of the Riemann solver RSα1 , a first idea to detect
whether a non-classical shock is expected to develop around yn or not is to check if the inequality

f1(unm) > Fα + Vbρ
n
m (5.2)

holds. If this inequality actually holds true, one is naturally tempted to consider that a non-classical
shock arises as the solution given by RSα1 to the Riemann problem with initial datum

u(0, x) =

{
unm−1 if x ≤ y(tn),

unm+1 if x > y(tn).

In this case, it is also natural to check whether also the inequality

f1(RS(unm−1,u
n
m+1)(Vb)) > Fα + Vb ρ̄(unm−1,u

n
m+1)(Vb) (5.3)

holds true or not.
Let us assume for a moment that (5.2) and (5.3) are relevant to detect whether a non-classical
shock occurs at the bus position or not (notice from now on that it will not be the case). The
proposed strategy to properly compute the non-classical discontinuity which is expected to occur
at the bus position consists in making a reconstruction of this non-classical discontinuity within the
m-th cell, and to modify the classical Godunov scheme accordingly. More precisely, the proposed
reconstruction will lead to a new definition of the left and right numerical fluxes Fnm±1/2, which we
describe below.

We introduce in the m-th cell a left state unm,l = (ρnm,l, z
n
m,l) and a right state unm,r = (ρnm,r, z

n
m,r)

as
unm,l = û and unm,r = ǔ1,

where û and ǔ1 are the points defined by (3.2), (3.3). Then we replace unm with the function
unrec = (ρnrec, z

n
rec) defined by

ρnrec = ρnm,l1[xm−1/2,x̄
ρ
m) + ρnm,r1[x̄ρm,xm+1/2),

znrec = znm,l1[xm−1/2,x̄
z
m) + znm,r1[x̄zm,xm+1/2),

where we have used the two points

x̄ρm = xm−1/2 + h dρ,nm and x̄zm = xm−1/2 + h dz,nm

defined for two suitable constants dρ,nm and dz,nm such that

dρ,nm ∈ [0, 1], dz,nm ∈ [0, 1]. (5.4)

Conditions (5.4) ensure that the reconstructed discontinuity is located in the cell Cm; see Figure 6.
Since the Riemann solver RSα1 is conservative with respect to u = (ρ, z), we also aim at preserving
this property in the process of reconstruction. With this is mind, we require the average value of
the reconstructed discontinuity to be equal to unm, which writes

ρnm,ld
ρ,n
m + ρnm,r(1− dρ,nm ) = ρnm,

znm,ld
z,n
m + znm,r(1− dz,nm ) = znm.
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(a) ρ component.
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(b) v component.

Figure 6: An example of a discontinuity reconstruction for the Riemann solver RSα1 .

Therefore, we get the following definition of the two constants dρ,nm and dz,nm , namely

dρ,nm =
ρnm − ρnm,r
ρnm,l − ρnm,r

and dz,nm =
znm − znm,r
znm,l − znm,r

. (5.5)

Note that these two constants can be different in general, which means that the reconstructed
discontinuities of the two components of u can be located at different positions.
The non-classical shock travels with the bus speed Vb > 0. As a consequence, if we denote ∆tρm+1/2
and ∆tzm+1/2 respectively the time needed by the ρ and the z component of the discontinuity to
reach the interface xm+1/2, we have

∆tρm+1/2Vb = h(1− dρ,nm ) ⇐⇒ ∆tρm+1/2 = h
1− dρ,nm
Vb

,

∆tzm+1/2Vb = h(1− dz,nm ) ⇐⇒ ∆tzm+1/2 = h
1− dz,nm
Vb

.

Therefore, considering the proposed reconstruction and since the waves emerging from the Riemann
problem associated with unm,r and unm+1 at the interface xm+1/2 propagate to the right, the flux at
interface xm+1/2 equals f(unm,r) until tn + ∆tρ,zm+1/2 (depending on the ρ and z components) and

f(unm,l) afterwards. One then proposes to replace the classical Godunov flux Fnm+1/2 by a new

numerical flux, whose components are denoted by F1(unm,u
n
m+1) and F2(unm,u

n
m+1) and given by

F1(unm,u
n
m+1) =

1

kn

[
min(∆tρm+1/2, k

n)f1(unm,r) + max(kn −∆tρm+1/2, 0)f1(unm,l)
]
,

F2(unm,u
n
m+1) =

1

kn

[
min(∆tzm+1/2, k

n)f2(unm,r) + max(kn −∆tzm+1/2, 0)f2(unm,l)
]
.

(5.6)

It is also natural to modify the left flux at interface xm−1/2 according to the left state unm−1 and the
new right state unm,l = û, i.e. we propose to replace Fm−1/2 with F (unm−1,u

n
m,l), which preserves the

consistency of the Godunov method. This concludes the description of the reconstruction method.

Let us now briefly go back to the proposed procedure (5.2), (5.3) to detect whether a non-
classical shock appears or not. It turns out that as it stands, it may introduce undesirable oscilla-
tions in some cases. The example showed in Figure 7 is one of these situations: at some iterations
the exact solution does not satisfy the constraint, while the numerical solution does, leading to an
incorrect computation of the non-classical shock and mild oscillations. In view of this example, we
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propose to remove the first condition (5.2) and to keep only the inequality (5.3) as necessary to
enforce the reconstruction procedure, together with (5.4) of course.

Figure 7: Comparison between the solution obtained with both conditions (5.2) and (5.3) (the dot-
dashed line) and the one obtained when only (5.3) is enforced (the continuous line): the first has
undesirable oscillation, while the latter is correct. The initial data are: (ρl, vl) = (7, 3), (ρr, vr) =
(6, 4), α = 0.4, Vb = 1.5, R = 15 and y0 = 0.

To sum up, our numerical scheme is defined by (5.1) together with

Fnj+1/2 =


F (unm−1,u

n
m,l) if j = m− 1 and (5.3)− (5.4) hold true,

(5.6) if j = m and (5.3)− (5.4) hold true,
f(RS(unj ,u

n
j+1)(0)) otherwise.

(5.7)

Let us now establish a nice property, which states that the scheme is able to exactly compute
isolated non-classical discontinuities and thus justifies the proposed reconstruction procedure. In
particular, this property also makes clear why the proposed numerical scheme performs so well in
computing the non-classical discontinuities, since such moving shocks are proved to be computed
with no extra numerical diffusion by construction.

Proposition 3 The scheme (5.1)-(5.7) is exact when the Riemann initial datum is made of a single
nonclassical shock between the left state û and the right state ǔ1 and provided that the bus position
is computed exactly (which is the case with the front tracking method introduced in Appendix A).
In particular, let dρ,nm and dz,nm be the two constants defined in (5.5). If unm−1 = û, unm+1 = ǔ1 and
there exists γ ∈ [0, 1] such that

unm = γ unm−1 + (1− γ) unm+1, (5.8)

then dρ,nm = dz,nm = γ.
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Proof. Let us start with an initial condition such that u0
j = û if j < m and u0

j = ǔ1 if j ≥ m. It is
clear on the one hand that (5.8) holds true with n = 0 and γ = 0, and on the other hand that

unj =
1

h

∫ xj+1/2

xj−1/2

uexa(tn, x) dx for all x ∈ Z (5.9)

with n = 0 and uexa = u0. In order to prove that the scheme is exact for such an initial datum, it
is thus sufficient to assume that (5.8) and (5.9) hold true for a given time tn, and to show that

un+1
j =

1

h

∫ xj+1/2

xj−1/2

uexa(tn+1, x) dx for all x ∈ Z. (5.10)

Note that since the exact solution is a discontinuity propagating with velocity Vb, (5.10) implies
immediately the validity of a convex combination like (5.8) at time tn+1.
Let us first notice that Fnm−1/2 = F (û), and that (5.8) holds true at time tn+1 for j 6= m,m + 1,
since our scheme is equivalent to the usual Godunov’s scheme and we are in the constant regions
of the exact solution. Next, since condition (5.8) holds, we have(

ρnm
znm

)
=

(
γ ρ̂+ (1− γ) ρ̌1

γ ẑ + (1− γ) ž1

)
.

Hence we find

dρ,nm =
ρnm − ρnm,ρ
ρnm,l − ρnm,r

=
γ ρ̂+ (1− γ) ρ̌1 − ρ̌1

ρ̂− ρ̌1
=
γ(ρ̂− ρ̌1)

ρ̂− ρ̌1
= γ,

dz,nm =
znm − znm,r
znm,l − znm,r

=
γ ẑ + (1− γ) ž1 − ž1

ẑ − ž1
=
γ(ẑ − ž1)

ẑ − ž1
= γ.

This means that the reconstructed discontinuity is located at the same position as the discontinuity
of the exact solution. As a consequence, the numerical flux Fnm+1/2 defined by (5.7) is also nothing

but the exact flux passing through the interface xm+1/2 so that un+1
m and un+1

m+1 also exactly coincide
with the average of the exact solution in the corresponding cell. Which concludes the proof. �

Finally, note that if

Vb ρ̄(unm−1,u
n
m+1)(Vb) < f1(RS(unm−1,u

n
m+1)(Vb)) ≤ Fα + Vb ρ̄(unm−1,u

n
m+1)(Vb),

which corresponds to the second case of Definition 1, the bus and the vehicles do not influence each
other. Hence, the bus position at the time tn+1 is yn+1 = yn + Vbk

n and the solution of the ARZ
system can be computed with the standard Godunov’s method. In the third case of Definition 1,
the solution of the ARZ system can also be computed with the standard Godunov’s method but
the bus position will be updated taking into account the flow velocity v using the front tracking
technique described in Appendix A.

5.2 The constrained Godunov schemes for RSα2
Let V n be the bus speed at time tn. The Riemann solvers RSα1 and RSα2 give the same solution
whenever the constraint is satisfied. Hence, if

f1(RS(unm−1,u
n
m+1)(V n)) ≤ Fα + V n ρ̄(unm−1,u

n
m+1)(V n),
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we can apply toRSα2 the techniques described forRSα1 . When the constraint is enforced, something
special has to be done to properly compute the non-classical shocks, in the spirit of the method
proposed in the previous section for RSα1 . Note that the non-classical shocks now join û and ǔ2

instead of ǔ1. Actually, we will follow exactly the same approach based on in-cell discontinuous
reconstructions but since the Riemann solverRSα2 is not conservative on the second component of u
(unlikeRSα1 ), the scheme will be based on the evolution of ρ and v, instead of ρ and z = ρw. Results
not reported here show that considering the evolution of the conservative variable u = (ρ, ρw) does
not lead to a good approximation of the non-classical shocks joining û to ǔ2.

First of all, we introduce the vector of non conservative variables v = (ρ, v) and the natural
changes of variables v = v(u) and u = u(v), with obvious notations. We then define for every
j ∈ Z the approximation u0

j of the initial data u0 on the cell Cj as follows,

u0
j := u(v0

j ) with v0
j =

1

h

∫ xj+1/2

xj−1/2

v(u0)(x) dx.

Again, let yn := y(tn) be the bus position at time tn and let m ∈ Z be such that yn ∈ Cm. If
the Riemann solver RSα2 does not give the classical solution, a non-classical shock is expected to
appear at x = y(t) and arise as the solution given by RSα2 to the Riemann problem with initial
datum

u(0, x) =

{
unm−1 if x ≤ yn,
unm+1 if x > yn.

As before, we will make a reconstruction of the discontinuity if the inequality

f1(RS(unm−1,u
n
m+1)(V n)) > Fα + V nρ̄(unm−1,u

n
m+1)(V n) (5.11)

holds. In this case we modify the Godunov’s scheme as follows.
We introduce in the m-th cell a left state unm,l = (ρnm,l, z

n
m,l) and a right state unm,r = (ρnm,r, z

n
m,r)

defined by
unm,l = û and unm,r = ǔ2,

where û and ǔ2 are given by (3.2), (3.3). We then replace unm by the function unrec = (ρnrec, z
n
rec)

defined by means of ρnrec and vnrec (recall that z = ρ(v + p(ρ)))

ρnrec = ρnm,l1[xm−1/2,x
ρ,n
m ) + ρnm,r1[xρ,nm ,xm+1/2), (5.12a)

vnrec = vnm,l1[xm−1/2,x
v,n
m ) + vnm,r1[xv,nm ,xm+1/2), (5.12b)

where we have used the two points

xρ,nm = xm−1/2 + h dρ,nm and xv,nm = xm−1/2 + h dv,nm

defined for dρ,nm and dv,nm in [0, 1] such that

ρnm,ld
ρ,n
m + ρnm,r(1− dρ,nm ) = ρnm,

vnm,ld
v,n
m + vnm,r(1− dv,nm ) = vnm.

(5.13)

We emphasize here that our in-cell reconstruction procedure is fully based on the ρ and v variables
(z = ρw just follows from the relation z = ρ(v+p(ρ)) and therefore generally does not just consists
in a single discontinuity) while the positions of the discontinuities in ρ and v are defined in such way
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that the average values of the reconstructed discontinuities equal ρnm and vnm respectively. More
precisely, solving (5.13) for dρ,nm and dv,nm , we find

dρ,nm =
ρnm − ρnm,r
ρnm,l − ρnm,r

and dv,nm =
vnm − vnm,r
vnm,l − vnm,r

. (5.14)

Clearly, the conditions dρ,nm ∈ [0, 1] and dv,nm ∈ [0, 1] are necessary to reconstruct the discontinuity
in the cell Cm. Notice again that these two constants are in general different.

As we did in the previous section for the first Riemann solver, we naturally assume that the
discontinuities in (5.12) propagate at the same speed of the non-classical shock. Therefore their
positions at time tn+1 are

xn+1,ρ
m = xρ,nm + V n kn and xn+1,v

m = xv,nm + V n kn.

Depending on the values of V n and kn, the ρ and v reconstructed discontinuities at time tn+1 may
be located in either the m-th or (m + 1)-th cell, that is to say xn+1,ρ

m and xn+1,v
m can be less or

larger than xm+1/2. Since our objective is to define the solution at time tn+1 by averaging ρ and
the non conservative variable v in the vicinity of the bus position (and to carry on using the con-
servative variables ρ and z = ρw “away” from the bus position), one is led to distinguish between
the following two cases in order to make the ρ and v variables evolve (note that ρ is a conservative
variable so that we can use a flux formulation).

Reconstruction of the ρ-component. Since the first variable ρ is still conserved by RSα2 , we
can apply the same strategy used in Section 5.1 for RSα1 . Denoting ∆tρm+1/2 = h(1− dρ,nm )/Vb, we
set

F1(unm−1,u
n
m) = F1(unm−1,u

n
m,l) ,

F1(unm,u
n
m+1) =

1

kn

[
min(∆tρm+1/2, k

n)f1(unm,r) + max(kn −∆tρm+1/2, 0)f1(unm,l)
]
,

and we apply the usual conservation formula

ρn+1
j = ρnj −

kn

h

(
F1(unj ,u

n
j+1)− F1(unj−1,u

n
j )
)

∀j ∈ Z.

Reconstruction of the v-component. We distinguish two cases:

(i) If xn+1,v
m < xm+1/2 (see Figure 8a), the average of v in the m-th cell at time tn+1 is given by

vn+1
m =

1

h
[(h dv,nm + V n kn)v̂ + (h− (h dv,nm + V n kn))v̌2] , (5.15)

The corresponding value of z is

zn+1
m = ρn+1

m (vn+1
m + p(ρn+1

m )), (5.16)

and to update the solution in the (m+ 1)-th cell, we use the right trace value ǔ2 to compute
the numerical flux at the interface xm+1/2, i.e.

un+1
m+1 = unm+1 −

kn

h
(F (unm+1,u

n
m+2)− F (ǔ2,u

n
m+1)).

The other cells are updated in the usual conservative way.
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(ii) If xn+1,v
m ≥ xm+1/2 (see Figure 8b), we first recall that vnm+1 = v̌2. Therefore the v component

of the solution at time tn+1 is:

vn+1
m = v̂,

vn+1
m+1 =

1

h
[(h (2− dv,nm )− V n kn) v̌2 + (h(dv,nm − 1) + V n kn) v̂]

(5.17)

The corresponding values of z are

zn+1
m = ρn+1

m (vn+1
m + p(ρn+1

m )) and zn+1
m+1 = ρn+1

m+1 (vn+1
m+1 + p(ρn+1

m+1)). (5.18)

The other cells are updated in the usual conservative way.

Cm−1 Cm Cm+1

v̂ v̌2

hdv,nm + V nkn h− (h dv,nm + V nkn)

hdv,nm

(a) Notations used in case 1v.

Cm−1 Cm Cm+1

v̂ v̌2

h dv,nm + V n kn 2h− (hdv,nm + V nkn)

h dv,nm

vnm+1

(b) Notations used in case 2v.

Figure 8: Representation of the reconstruction method (v-component).

Like in the previous section, the next proposition states that if the initial datum is a non-classical
shock, then the solution given by the in-cell discontinuous reconstruction method on density and
velocity is the non-classical shock itself.

Proposition 4 The scheme (5.1), (5.11)-(5.18) is exact when the Riemann initial datum is made
of a single non-classical shock between the left state û and the right state ǔ2 and provided that the
bus position is computed exactly (which is the case with the front tracking method introduced in
Appendix A). In particular, let dρ,nm and dv,nm be the two constants defined in (5.14). If vnm−1 = v̂,
vnm+1 = v̌2 and there exists γ ∈ [0, 1] such that

vnm = γ vnm−1 + (1− γ) vnm+1, (5.19)

then dρ,nm = dv,nm = γ.

Proof. The proof follows the same steps as the one associated with RSα1 , but is adapted to the non
conservative treatment of the v variable. Let us consider an initial condition such that v0

j = v̂ if

j < m and v0
j = v̌2 if j ≥ m, so that (5.19) holds true with n = 0 and γ = 0, and

vnj =
1

h

∫ xj+1/2

xj−1/2

vexa(tn, x) dx for all x ∈ Z (5.20)

for n = 0 and vexa = v0. In order to prove that the scheme is exact for such an isolated non-classical
shock, let us assume that (5.19) and (5.20) hold true for a given time tn, and let us show that

vn+1
j =

1

h

∫ xj+1/2

xj−1/2

vexa(tn+1, x) dx for all x ∈ Z. (5.21)
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This is clearly true away from the non-classical shock, namely for j 6= m,m + 1, since it corre-
sponds to the constant regions of the solution, where the proposed scheme coincides with the usual
Godunov’s scheme. Moreover, since condition (5.19) holds, we have(

ρnm
vnm

)
=

(
γ ρ̂+ (1− γ) ρ̌2

γ v̂ + (1− γ) v̌2

)
.

Hence we find dρ,nm = dv,nm = γ, meaning that the reconstructed discontinuity is located at the
same position as the discontinuity of the exact solution in the ρ and v variables. The proposed
update formulas for ρ and v then clearly coincide with the averages of the exact solutions in the
corresponding cells. Indeed, the averages are made in the non conservative variables ρ and v and
follow the reconstructed discontinuity. This concludes the proof. �

5.3 Treatment of the contact discontinuities

The Godunov scheme is known to fail in capturing correctly contact discontinuities, see [10]. There-
fore, we propose to modify the method as follows.

Basic notations. Let us denote

σ(ul,ur) =
ρrvr − ρlvl

ρr − ρl

the propagation speed of the shock joining two points ul and ur. For all j ∈ Z such that vnj−1 6= vnj ,
let unj−1/2 be the intermediate state of the standard solution to the Riemann problem centred in

xj−1/2, (ρnj−1/2, v
n
j−1/2) being the corresponding coordinates in the non conserved variables. Let us

define the value

λl,nj =

λ1(ρnj−1/2, v
n
j−1/2) if ρnj−1/2 ≤ ρ

n
j−1,

σ(unj−1,u
n
j−1/2) if ρnj−1/2 > ρnj−1,

which gives either the right propagation speed of a rarefaction wave or the propagation speed of a
shock centred in xj−1/2.
Similarly let us assume that vnj 6= vnj+1 and consider the Riemann problem centred in xj+1/2. Let
unj+1/2 be the intermediate state of the standard solution and let (ρnj+1/2, v

n
j+1/2) be the correspond-

ing point in the non conserved variables. Let us define the speed

λr,nj =

λ1(ρnj , v
n
j ) if ρnj ≥ ρnj+1/2,

σ(unj ,u
n
j+1/2) if ρnj+1/2 > ρnj ,

which gives either the left propagation speed of a rarefaction wave or the propagation speed of a
shock centred in xj+1/2.

The proposed modification. Let us first notice that a contact discontinuity appears in the
Riemann problems centred respectively in xj−1/2 or xj+1/2 whenever

vnj−1 + p(ρnj−1) 6= vnj + p(ρnj ) or vnj+1 + p(ρnj+1) 6= vnj + p(ρnj ). (5.22)

In order to capture exactly contact discontinuities, we fix the value of the velocity in the cell Cj
between tn and tn+1, i.e. we take

vn+1
j = vnj

if one of the following conditions holds.
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(i) A wave of the first family with negative speed joins unj−1 and unj and a contact discontinuity
connects unj to unj+1:

vnj−1 6= vnj , λl,nj ≤ 0 and vnj = vnj+1.

(ii) A contact discontinuity joins unj−1 to unj and a wave of the first family with positive speed
joins unj to unj+1:

vnj−1 = vnj , vnj 6= vnj+1 and λr,nj ≥ 0.

(iii) Two contact discontinuities join respectively unj−1 to unj and unj to unj+1:

vnj−1 = vnj and vnj = vnj+1.

(iv) A wave of the first family with negative speed joins unj−1 and unj and a wave of the first family
with positive speed joins unj to unj+1:

vnj−1 6= vnj , λl,nj ≤ 0, vnj 6= vnj+1 and λr,nj ≥ 0.

It is important to notice that the classical Godunov’s scheme does not provide us with such update
values on v since it does average ρ and z. We also remark that, due to Lax entropy inequalities,
the previous conditions can be summarized in the following ones:

M := max{σ(unj−1,u
n
j−1/2), λ1(unj−1/2)} ≤ 0,

m := min{σ(unj ,u
n
j+1/2), λ1(unj )} ≥ 0.

Let us impose

σ(unj−1,u
n
j−1/2) = λ1(unj−1/2) = 0 and σ(unj ,u

n
j+1/2) = λ1(unj ) = 0

respectively if vnj−1 = vnj and vnj = vnj+1. Applying such a correction to the proposed method for
RSα1 does not raise difficulties. To apply the above correction to RSα2 , assume that at time tn the
constraint is violated, i.e.

f1(RS(unm−1,u
n
m+1)(V n)) > Fα + V n ρ̄(unm−1,u

n
m+1)(V n)).

Then at time tn+1 a non-classical shock is expected at the bus position in the m-th or (m+ 1)-th
cell, where we have a convex combination of û and ǔ2, as a result of the discontinuity reconstruction
method. Now, we have to distinguish two cases as in the previous section.

Case 1: At time tn+1 the discontinuity is in the m-th cell.
In all cells but the (m− 1)-th, the m-th and the (m+ 1)− th, we check the condition (5.22).
After the bus, we know that the solution given by RSα2 contains a contact discontinuity on
the right of the non-classical shock. The condition (5.22) is too strong for the (m+ 1)-th cell,
because the velocity in the m-th cell is an average of v̂ and v̌2. Therefore we check the weaker
condition

vnm+1 = vnm+2

and in this case we fix the value of the velocity in the (m+ 1)-th cell: vn+1
m+1 = vnm+1.

The solution in the cells Cm−1 and Cm at time tn+1 is obtained with the discontinuity recon-
struction method and is kept unchanged.
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Case 2: At time tn+1 the discontinuity is in the (m+ 1)-th cell.
The argument is similar to the previous case. In order to capture the contact discontinuities,
we check the condition (5.22) and correct the Godunov method everywhere, except for the
cells Cm, Cm+1 and Cm+2.
For the cell Cm+2 we use the weaker condition

vnm+2 = vnm+3

and in this case we fix the value of the velocity in the (m+ 2)-th cell: vn+1
m+2 = vnm+2.

The solution in the m-th and in the (m+1)-th cell is given by the discontinuity reconstruction
method and the velocity are respectively v̂ and a convex combination between v̂ and v̌2.

Figure 9 illustrates the capability of this strategy in capturing non-classical shocks.

Figure 9: Solutions obtained with the discontinuity reconstruction method for the (ρ, v) coordinates.
The dot-dashed line is obtained without the correction for the contact discontinuity, while the
continuous line is obtained with the correction: in the first case, the velocity downstream the shock
is overestimated, in the latter it is correct. The initial data are (ρl, vl) = (ρr, vr) = (7, 3), Vb = 1,
α = 0.25 and y0 = 0.

Appendices

A A Front-Tracking technique to compute the bus trajectory

The bus trajectory is given by the solution of the following ODE

ẏ(t) =

{
Vb if Vb ≤ v(t, y(t)+),

v(t, y(t)+) otherwise.
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Fix n ∈ N. Let yn = y(tn) be the bus position at time tn and let us define m ∈ Z such that
yn ∈ Cm = [xm−1/2, xm+1/2). Let us assume that

V n ρ̄(unm−1,u
n
m+1)(V n) ≥ f1(RS(unm−1,u

n
m+1)(V n)), (A.1)

where

V n = ẏ(tn) =

{
Vb if Vb ≤ vnm,
vnm if Vb > vnm.

The inequality (A.1) implies that

V n ≥ v̄(unm−1,u
n
m+1)(V n),

where we recall that v̄(unm−1,u
n
m+1) is the v component of the classical solutionRS(unm−1,u

n
m+1)(V̄ n).

Since the bus would travel faster than the preceding vehicles, it has to adapt its speed to the traffic
and it will keep this speed until the traffic will not change its velocity. This is due to an interac-
tion between the bus trajectory and a wave coming from the local Riemann problems centered at
xm±1/2. We distinguish the two cases:

(i) the bus trajectory interacts with a wave coming from xm+1/2;

(ii) the bus trajectory interacts with a wave coming from xm−1/2.

We adapt the algorithms introduced in [8, 9].

A.0.1 Case (i)

Let us consider the classical Riemann problem for (2.1a) with initial data

(ρ, z)(tn, x) =

{
unm if x ≤ xm+1/2,

unm+1 if x > xm+1/2,

and let uint
m+1/2 = (ρint

m+1/2, ρ
int
m+1/2(vint

m+1/2 + p(ρint
m+1/2))) be the intermediate state of the classical

solution RS(unm,u
n
m+1)(·). Since the bus trajectory is only affected by speed changes, it keeps

constant speed across contact discontinuities. Therefore, we focus on interactions with waves of the
first family.

1. Let us consider a shock centered at (tn, xm+1/2).
This case happens whenever ρnm < ρint

m+1/2 (and vnm > vint
m+1/2, therefore the bus will slow

down). The propagation speed σm+1/2 of the shock is given by the Rankine-Hugoniot condi-
tion, namely

σm+1/2 =
ρnm v

n
m − ρint

m+1/2 v
int
m+1/2

ρnm − ρint
m+1/2

.

Since V n > σm+1/2, let (t∗, x∗) be the interaction point between the shock and the bus
trajectory. Solving in t∗ the equation

yn + (t∗ − tn)V n = xm+1/2 + σm+1/2(t∗ − tn),

we find

t∗ =
xm+1/2 − yn

V n − σm+1/2
+ tn, x∗ = yn + t∗V n.
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If t∗ ≥ kn, then no interaction between the bus and the shock wave occurs within the interval
[tn, tn+1). Otherwise, the new position of the bus at time tn+1 is

yn+1 = yn + V nt∗ + min(vnm+1, Vb)(k
n − t∗).

2. Let us consider the case of a rarefaction wave: ρnm ≥ ρint
m+1/2. During the motion, the bus takes

the speed of the vehicles in front of it until their speed is lower then the maximal velocity of
the bus. Therefore, setting

ξ(t, x) = λ1(ρ(t, x), v(t, x)) =
x− xm+1/2

t− tn
,

we have

ẏ(t) =


V n = min(vnm, Vb) if ξ(t, y(t)) ≤ λ1(ρnm, v

n
m),

min(v(t, y(t)), Vb) if λ1(ρnm, v
n
m) < ξ(t, y(t)) < λ1(ρint

m+1/2, v
int
m+1/2),

min(vnm+1, Vb) if ξ(t, y(t)) ≥ λ1(ρint
m+1/2, v

int
m+1/2).

(A.2)

Let (t∗, x∗) be the first point of interaction between the bus and the rarefaction. Solving with
respect to t∗ the equation

yn + V n(t∗ − tn) = xm+1/2 + λ1(ρnm, v
n
m)(t∗ − tn),

we find

t∗ =
xm+1/2 − yn

V n − λ1(ρnm, v
n
m)

+ tn, x∗ = yn + V nt∗. (A.3)

To compute explicitly the bus trajectory along the rarefaction, we focus on a specific pressure
function p:

p(ρ) = ργ for γ ≥ 1,

see [6]. Long but tedious computations lead to the following:

Proposition 5 If the bus interacts with a rarefaction wave centered in (tn, xm+1/2), then its
trajectory is

y(t) = xm+1/2 + ωnm(t− tn) + C∗(t− tn)
1

γ+1 (A.4)

for t ∈ [t∗, t∗∗], where wnm = vnm + p(ρnm),

C∗ =
x∗ − xm+1/2 − ωnm(t∗ − tn)

(t∗ − tn)
1

γ+1

and t∗, x∗ are defined in (A.3) and

t∗∗ =

[
(γ + 1)

min{Vb, vnm+1} − ωnm
C∗

]− γ+1
γ

(A.5)

is the last interaction time between the bus and the rarefaction.
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Proof. Deriving the equation (A.4), we find

ẏ(t) = ωnm +
C∗

γ + 1
(t− tn)

− γ
γ+1 .

Let (t∗∗, x∗∗) be the last point of interaction between the bus trajectory and the rarefaction
wave. By (A.2), the bus will take the speed v ∈ [vnm, v

n
m+1] of the vehicles in front of him,

until this speed is lower than its maximal speed Vb. Hence the point (t∗∗, x∗∗) satisfies the
equation

ẏ(t∗∗) = min{Vb, vnm+1},

which gives (A.5). Fore more details, see [22]. �

If t∗ ≥ kn, then no interaction between the bus and the rarefaction wave occurs in the interval
[tn, tn+1) and the bus position at time tn+1 is

yn+1 = yn + V nkn.

If t∗ < kn, then we have to consider two cases: whether t∗∗ ≥ kn the bus position at time
tn+1 is

yn+1 = y(tn+1),

where y(t) is the trajectory (A.4); otherwise

yn+1 = x∗∗ + (kn − t∗∗) max{min(Vb, v) : v ∈ [vnm, v
n
m+1]}.

A.0.2 Case (ii)

Let us consider the classical Riemann problem for (2.1a) with initial data

(ρ, z)(tn, x) =

{
unm−1 if x ≤ xm−1/2,

unm if x > xm−1/2.
(A.6)

Let uint
m−1/2 = (ρint

m−1/2, ρ
int
m−1/2(vint

m−1/2 + p(ρint
m−1/2))) be the intermediate state of the classical

solution RS(unm−1,u
n
m)(·).

Again, we concentrate on interactions with waves belonging to the first family. Moreover, a
wave solution to (2.1a), (A.6), can interact with the trajectory of the bus only if its propagation
speed is positive.

1. Let us assume that ρnm−1 < ρint
m−1/2, so that the wave coming from xm−1/2 is a shock with

propagation speed σm−1/2 given by

σm−1/2 =
ρint
m−1/2 v

int
m−1/2 − ρ

n
m−1 v

n
m−1

ρint
m−1/2 − ρ

n
m−1

. (A.7)

Let us suppose that the bus speed V n = min(Vb, v
n
m) at time tn is equal to vnm. This means

that vnm ≤ Vb. Since yn ≥ xm+1/2, an interaction with the shock can happen if and only if
vnm ≤ σm−1/2, which is absurd. On the other hand the case V n = Vb holds when Vb ≤ vnm.
Since vnm < vnm−1, we have

V n
new = min(Vb, v

n
m−1) = Vb.
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2. Let us suppose that ρnm−1 ≥ ρint
m−1/2, so that unm−1 and uint

m−1/2 are connected by a rarefaction
wave centered at xm−1/2.
Let us recall that the bus speed at the instant tn is V n = min(Vb, v

n
m).

Proposition 6 If V n < λ1(ρintm−1/2, v
int
m−1/2), so that an interaction occurs between the bus

and the rarefaction wave centered in xm−1/2, then the bus speed before the interaction is
V n = Vb and the bus keeps its maximal speed during all the interaction.

Proof. We have V n = vnm if and only if vnm ≤ Vb, which is in contradiction with the assumption
V n < λ1(ρint

m−1/2, v
int
m−1/2). Therefore we must have V n = Vb > vnm.

Let (ρ̄, v̄) be the density and speed values at the last interaction point of the bus with the
rarefaction: we must have

λ1(ρ̄, v̄) = min{Vb, v̄}.

Since v̄ > λ1(ρ̄, v̄), when the interaction occurs the bus cannot take the speed of the vehicles
but it keeps its maximal speed Vb. Moreover the bus interacts only with the points (ρ, v) on
the rarefaction wave such that

λ1(ρ̄, v̄) ≤ λ1(ρ, v) ≤ λ1(ρint
m−1/2, v

int
m−1/2).

Since for all these points we have v > v̄ > Vb, the bus keeps its maximal speed Vb during the
whole interaction. �

Therefore in both cases the bus speed remains constant and the bus position at time tn+1 is given
by

yn+1 = yn + kn min(Vb, v
n
m).

Figure 10: Bus trajectory corresponding to the data (ρl, vl) = (9, 1), (ρr, vr) = (2, 8), Vb = 4,
α = 0.5, R = 15 and y0 = −0.1.
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