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Abstract

We propose new statistical tools to analyze and to estimate archeological phases from
the posterior distribution of a sequence of dates. All the functions are implemented in the
R package ArchaeoPhases. The required inputs are simulated samples from the posterior
distribution of the dates. Such Markov Chains Monte Carlo samples are provided, for
instance, by ChronoModel or Oxcal, two softwares build for the chronological modeling of
archeological dates. We give a practical introduction to the package ArchaeoPhases using
published data and comment the statistical results.

Keywords: Bayesian modeling, Gap interval, Gap test, MCMC samples, Tempo plot, Time
range, Transition interval.

1. Introduction

The statistical modeling within the Bayesian framework is widely used by archaeologists for
constructing chronologies. This consists in the estimation of a sequence of dates where

• the observations are the measurements coming from possibly different dating methods,

• the prior information comes from geological, historical, environmental or any other
considerations.

Bayesian inference is a probabilistic estimation method, in the sense that the information on
the estimated parameters is given by a probability distribution called posterior probability.
Usually the analytic expression of the posterior distribution is not easily computable. How-
ever, inferences may be drawn using a sample from the posterior density. More precisely, it
is possible to compute a Markov chain whose target distribution is the posterior distribution.
Indeed, Markov chain Monte Carlo (MCMC) algorithms provide a way of drawing samples
from the joint posterior distribution in high-dimensional Bayesian models.

Two main softwares are available to estimate chronologies: Chronomodel (see Lanos, Philippe,
Lanos, and Dufresne (2016); Vibet, Philippe, Lanos, and Dufresne (2016); Lanos and Philippe
(2017)) and Oxcal (see Ramsey (2016, 2009)). Both softwares return the marginal posterior
distribution of all the estimated dates with elementary statistics (mean, standard deviation,
HPD region,. . . ). It is also possible to export the output from MCMC simulations (see
Section 3 for the details). Thus, we can explore the joint distribution of the sequence of
dates. We propose new statistical tools for analysing archaeological phases based on this joint
distribution. For example we construct:
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• Time intervals to characterize archaeological phases or periods, called time range in-
tervals.

• Time intervals to characterize the transition between two successive phases or periods,
called transition intervals.

• Testing procedures to check the presence of a gap between two successive phases
or periods. A gap interval is estimated if we accept its existence.

• Tempo plots as defined by Thomas Dye (see Dye (2016)), that is ”a statistical graphic
designed for the archaeological study of rhythms of the long term that embodies a theory
of archaeological evidence for the occurrence of events” and their associated activity
plots.

The CRAN package ArchaeoPhases provides a list of functions for calculating these statis-
tics. The inputs are samples simulated from the posterior distribution of dates (e.g. the
Markov Chains simulated by Chronomodel or by Oxcal). For non-R users, a web application,
ArchaeoPhases, has also been developed in order to take advantages of these functions without
having to know R. This application is freely available on https://archaeology-bayesian-modelling.

shinyapps.io/ArchaeoPhases and within the package ArchaeoPhases (app_ArchaeoPhases()).

In Section 2, we describe new statistical tools for analysing groups of estimated dates in a
Bayesian framework. Section 3 provides a short description of the data published by Bosch,
Mannino, Prendergast, O’Connell, Demarchi, Taylor, Niven, van der Plicht, and Hublin (2015)
used to illustrate ArchaeoPhases. We construct a Bayesian model with Chronomodel and with
Oxcal in order to estimate four Paleolithic phases. We also explain how the MCMC samples
can be extracted from both softwares. In Section 4, we give a practical introduction to the
first steps with ArchaeoPhases (version 1.0, Febuary 2017). Then in Section 5, we analyse
the MCMC output of the modeling done with Chronomodel and estimate the four Paleolithic
phases of Ksar Akil’s site.

2. Statistical aspects

We define a chronology as a sequence of calendar dates τ1, . . . , τn. The archaeological question
about a chronology is not only a matter of estimation of calendar dates τ1, . . . , τn but also
the characterization of historical/geological periods called archaeological phases.

The estimation of the phase can only be done from the estimated dates associated to this
phase.
We define a phase (denoted P ) by a collection of dates, τi for i ∈ I where I is a subset of
{1, . . . , n} and n the total number of calendar dates.

A phase is commonly summarized by two parameters: its start and its end. Two different
approaches are considered in order to estimate these two dates.

1. The start and the end are modeled, and so additional parameters are incorporated in the
model. This is the approach implemented in Oxcal where the parameters are denoted
ta and tb. This requires to do prior assumption on the distribution of the dates on the
estimated period [ta, tb].

https://archaeology-bayesian-modelling.shinyapps.io/ArchaeoPhases
https://archaeology-bayesian-modelling.shinyapps.io/ArchaeoPhases
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2. The start (resp. the end) is estimated by the minimum (resp. the maximum) of the
dates included in the phase. Thus the approach does not integrate a model of the
phase, but it is only a post-processing step based on the estimation of a sequence of
dates. These statistics are implemented in ChronoModel and Oxcal.

Our approach is in the same spirit of the second one in the sense that we propose statistical
tools of post-processing without additional modeling.

Notation : we denote by M the set of measurements coming from dating methods. We
assume that MCMC samples from the joint posterior distribution p(τ1, . . . , τn |M) of all the
dates τ1, . . . , τn are available (using for instance ChronoModel or Oxcal).

2.1. Time Range interval of a phase

We propose to characterize a phase using a time interval called a time range interval. A
time range interval summarizes the dates defining the phase by a time period having fixed
posterior probability. It gives also an idea of the start, the end and the duration of a phase.

Definition 1. Let P = {τi i ∈ I ⊂ {1, . . . , n}} be a phase. The 100(1−γ)% phase time range
is the shortest interval [a, b] such that

P (τi ∈]a, b[, ∀i ∈ I)|M) = 1− γ (1)

This means that the time interval [a, b] contains all the dates {τi i ∈ I} with a fixed posterior
probability 1− γ (e.g., 95 %, 68 % . . . ).

We denote α = min(τi, ∀i ∈ I) and β = max(τi, ∀i ∈ I). Equation 1 can be also rewritten of
the form

P (a ≤ α ≤ β ≤ b |M) = 1− γ (2)

Therefore the construction of the time range interval depends only on the joint posterior
distribution of (α, β).

The collection of intervals [a, b] satisfying Equation 2 is described by this set of intervals:

{[a(ε) ; b(ε)], ε ∈ [0, γ]}

where

• a(ε) = F−α (ε |M) with F−α (· |M) is the quantile function of the posterior distribution
of α,

• b(ε) = F−β (1−γ1−ε |α ≥ a(ε),M) with F−β (· |α ≥ a(ε),M) is the quantile function of the
conditional distribution of β given α ≥ a(ε) and M.

Indeed, α ≤ β happens almost surely, so we have

P (a(ε) ≤ α ≤ β ≤ b(ε) |M) = P (a(ε) ≤ α, β ≤ b(ε) |M)

= P (β ≤ b(ε) | a(ε) ≤ α,M)P (a(ε) ≤ α |M)

=
1− γ
1− ε

(1− ε)
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The last equality comes from the definition of a(ε) and b(ε). Therefore the shortest interval
is obtained by taking [a(ε∗), b(ε∗)] where

ε∗ = argminε∈]0,γ[ (b(ε)− a(ε))

In practice, the values of a(ε) and b(ε) are estimated by the empirical quantiles calculated on

the MCMC outputs. Using the output of the MCMC algorithm (τ
(k)
1 , . . . , τ

(k)
n )k=1,...,NMCMC

,
we produce (α(k), β(k))t=1,...,NMCMC

the MCMC sample corresponding to the posterior distri-
bution of (α, β),

α(k) = min(τ
(k)
i , i ∈ I) and β(k) = max(τ

(k)
i , i ∈ I).

a(ε) is estimated by the empirical quantile of the sample {α(1), . . . , α(NMCMC)} (sample cor-
responding to the marginal posterior distribution of α). b(ε) is estimated by the empirical
quantile of {β(t), t ∈ T} where T = {j |α(j) ≥ a(ε)}

2.2. Transition interval between two successive phases

The transition interval between two successive phases is the shortest interval that covers
the end of the oldest phase and the start of the youngest phase. The start and the end are
estimated by the minimum and the maximum of the dates included in the phase. It gives an
idea of the transition period between two successive phases. From a computational point of
view this is equivalent to the phase time range calculated between the end of the oldest phase
and the start of the youngest phase.

Definition 2. Consider a succession of two phases, P1 and P2. Assume P1 is older than P2.
We denote by αi (respectively βi) the minimum (respectively the maximum) of the group of
dates Pi (i = 1, 2). The 100(1−γ)% transition interval is the shortest interval [a, b] such that

P (a ≤ β1 ≤ α2 ≤ b |M) = 1− γ (3)

The construction of this interval is obtained by the same step as the range time interval by
replacing (α, β) by (β1, α2).

2.3. Testing procedure for gap between two successive phases

Successive phases may also be separated in time. Indeed there may exist a gap between
them. This testing procedure check whether a gap exists between two successive phases with
fixed probability. If a gap exists, it is an interval that covers the end of one phase and the
start of the successive one with fixed posterior probability.

Definition 3. Consider a succession of two phases, P1 and P2. Assume P1 is older than P2.
We denote by αi (respectively βi) the minimum (respectively the maximum) of the group of
dates Pi (i = 1, 2).

The 100(1− γ)% gap between these successive phases (if it exists) is the longest interval [a, b]
such that

P (β1 ≤ a ≤ b ≤ α2 |M) = 1− γ (4)
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The first step consists in the construction of all the couples a(ε), b(ε) such that

P (β1 ≤ a(ε) , b(ε) ≤ α2 |M) = 1− γ

where

• a(ε) = F−β1(1−ε |M) and F−β1(· |M) is the quantile function of the posterior distribution
of β1,

• b(ε) = F−α2
(γ−ε1−ε |β1 < a(ε),M) and F−α2

(· |β1 < a(ε),M) is the quantile function of the
conditional distribution of α2 given β1 < a(ε) and M.

Indeed

P (β1 ≤ a(ε) , b(ε) ≤ α2 |M) = P (β1 ≤ a(ε) |M)P (b(ε) ≤ α2 |β1 ≤ a(ε) ,M)

= (1− ε)(1− γ − ε
1− ε

) = 1− γ

Testing procedure : If the set E = {ε | a(ε) < b(ε)} is empty, then we conclude that, with
probability 1− γ, no gap exists between these successive phases. Otherwise, the gap interval
is the longest interval [a(ε∗), b(ε∗)] where

ε∗ = argmaxε∈E (b(ε)− a(ε))

2.4. Tempo Plot: Rhythms of occurrence of events

Dye (2016) proposes a graphical tool, called tempo plot, to evaluate the rhythms of occur-
rence of events. We propose a Bayesian interpretation of the estimate. The quantity of interest
cannot be viewed as a counting process because the date of the events (τ1, . . . , τn) are not
observed. They are estimated from a Bayesian chronological model (e.g Oxcal, ChronoModel).
For each date t, the aim is to estimate the number of events N(t) which occurs before the
date t, we have

N(t) =

n∑
i=1

I]−∞,t](τi)

As N(t) is a function of the parameters (τ1, . . . , τn), we can easily estimate N(t) from the
joint posterior distribution of (τ1, . . . , τn). The Bayes estimate of N(t) (under quadratic loss)
is the posterior mean of N(t) i.e.,

N̂(t) = E(N(t) |M) (5)

= E(

n∑
i=1

I]−∞,t](τi) |M)

=

n∑
i=1

P (τi < t |M).
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Using the output of the MCMC algorithm (τ
(k)
1 , . . . , τ

(k)
n )k=1,...,NMCMC

, we can approximate

the Bayes estimate N̂(t) by taking

=
n∑
i=1

1

NMCMC

NMCMC∑
k=1

I]−∞,t](τ
(k)
i )

=
n

NMCMC

NMCMC∑
k=1

F (k)(t)

where F (k) is the empirical cumulative distribution of the sample (τ
(k)
1 , . . . , τ

(k)
n ) (output of

the iteration number of k of MCMC algorithms)

F (k)(t) =
1

n

n∑
i=1

I]−∞,t](τ
(k)
i )

The NMCMC functions nF (k)(.) y provide a sample from the posterior distribution of N .
Therefore we can easily build a credible confidence region for the function N . Indeed for
each t we take the smaller posterior interval approximated from the sample nF (k)(t), k =
1, . . . , NMCMC . An alternative is to use Gaussian approximation to get the confidence inter-
vals.

Alternative to Tempo plot consist in representing the activity, that is the first derivative of
N̂ defined in (5).

3. Bayesian modeling of the Ksar Akil’s stratigraphy

We present an illustrative example of the use of the ArchaeoPhases package. The aim is to
estimate phases or groups of dates using the MCMC output of the Bayesian modeling.

We estimate the archaeological chronology by two Bayesian models implemented in Oxcal and
ChronoModel. Note that these softwares do not allow to choose the same Bayesian model.
Indeed, the concept of ”Event model”, that allows to combine dates, is only implemented in
ChronoModel (see Lanos and Philippe (2017)). We do not intend to discuss the choice of
modeling nor to compare the results obtained by the modeling done with Oxcal and the one
with ChronoModel.

As both softwares are not connected with R, The modeling must first be carried out using one
of both softwares, in order to extract the MCMC samples of the joint posterior distribution.
Hereafter, we explain how one should do to export the MCMC output required for the use of
the ArchaeoPhases package.

3.1. The Ksar Akil’s Paleolithic stratigraphy

At Ksar Akil (Lebanon), a deep Paleolithic stratigraphic sequence was investigated in order
to established the chronology of the site (see Bosch et al. (2015)). This stratigraphic sequence
included Initial Upper Paleolithic (IUP), from layer XXV (the bottom of the sequence) to
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layer XXI, Ahmarian, from layer XX to layer XIV, Upper Paleolithic (UP), from layer XV to
layer VI, and Epi-Paleolithic (EPI), from layer V to layer I. In addition, 16 shell ornaments
were found throughout the stratigraphy and dated by AMS radiocarbon technique.

The aim of this modeling was to establish the chronology of the succession of these Pale-
olithic phases: IUP, Ahmarian, UP and EPI using these 16 radiocarbon dates and the prior
information coming from the stratigraphy.

3.2. Modeling with Oxcal

The authors used an original modeling with Oxcal. The description of the model is given in
Bosch et al. (2015) and the script is available in the Supporting Information material. See
Bosch et al. (2015) for the modeling details.

Extracting the MCMC sample of the joint distribution

Once the modeling is done with Oxcal, the MCMC Sample command should be added to the
script.

MCMC_Sample([Name], [Interval], [Max]) {...} ) ;

This command allows all of the MCMC samples to be saved to a file at defined intervals and
with a maximum number of samples taken (default 1000); the file can be found as a document.
This file only includes those samples generated within the run analysis.

3.3. Modeling with Chronomodel

Chronomodel has a user-friendly graphical interface easily manipulated in order to define the
hierarchical model developed in Lanos and Philippe (2017).

From the information given by Bosch et al. (2015), we propose a Bayesian model for the
Ksar Akil’s stratigraphy implemented in ChronoModel (version 1.5). In this model, the study
period is set from -50 000 to -25 000. A target event is the death of a shell. Each event
is associated with only one radiocarbon date. Events are named according to the layer in
which the shells were found (for instance, as they were four shells found in layer XVI, the four
associated events were named ”Layer XVI.1”, ... ”Layer XVI.4”). Stratigraphic constraints
are also included in the model, they are symbolised by the black arrows in Figure 1a.
These 16 events are gathered in Paleolithic phases according to the layer in which the shells
were found (see Figure 1b.).

For this modeling, 3 chains are run in parallel. For each chain, 1 000 iterations are used
during the Burn-in period, 20 batches of 500 iterations are used in the Adapt period, 100 000
iterations are drawn in the Acquire period by only 1 out of 10 are kept in order to break the
correlation structure.

Extracting the MCMC sample of the joint distribution

Now, the Markov Chains simulated by ChronoModel have to be extracted and then imported
into R in order to use the ArchaeoPhases package.
Once your modeling is done with ChronoModel and once the RUN command is launched, you
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a b

Figure 1: ChronoModel interface showing the modeling step. (a) Rectangular nodes represents
the events of interest associated with one radiocarbone date. The color of the bottom of each
node corresponds to the color of the phase in which the event is gathered. An arrow between
two events symbolises a time order relationship. (b) Groups of events representing the four
Paleolithic phases.

may save all MCMC samples in format BC/AD.

To do that, use on the right hand side of the window in the Results tab (see Figure 2).
Several CSV files are created: a file called ”events.csv” containing the MCMC samples of all
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events, a file called ”phases.csv” containing the date of the minimum (alpha) and the date of
the maximum (beta) of all phases if at least one phase is modeled, and a file per phase (if
any) containing the MCMC samples of the parameters of the phase (the minimum and the
maximum date) and all events included in it.
All thoses files may be imported into R in order to use the ArchaeoPhases package.

Figure 2: ChronoModel interface showing the results of a modeling.

3.4. Needs for ArchaeoPhases

To understand chronologies, one can gather dates with common criteria into groups or phases.
These groups are characterised by the date of the minimum of the group and the date of the
maximum of the group (see Figure 1b. for our example).
For chronologies estimated with ChronoModel, the minimum (called alpha) and the maximum
(called beta) of each group of dates or each phase are computed and saved in the file called
”phases.csv”.
For chronologies constructed with Oxcal, as the function MCMC Sample() does not allow to
save the MCMC samples of the minimum and the maximum (functions First() and Last()),
we need to create a file containing these values. To do that, we can use the function
CreateMinMaxGroup() of the ArchaeoPhases package.
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4. First steps with ArchaeoPhases

4.1. Installing the package ArchaeoPhases

When R is launched, you need to install (only the first time) the package ArchaeoPhases
using the following code :

R> install.packages(’ArchaeoPhases’, dependencies = TRUE)

Then the first step is to load the library:

R> library("ArchaeoPhases")

4.2. Importing data into R software

To import the data file into R, you may use ImportCSV() function. For CSV files extracted
from ChronoModel sotfware, there is no need to specify any other parameters than the name
of the file (and the path to it). Otherwise, you may change the specification after ”sep=” and
”dec=”. The parameter ”comment.char=” is used to define how comments are written in the
file to be imported. Comments of all csv files generated by ChronoModel are specified by ’#’.

4.3. Diagnostic tools

The output of any Bayesian modeling is simulated chains, the convergence of the MCMC
samples should always be checked before any other analysis (for a more detail on the diag-
nostic of Markov chain, see Robert and Casella (2009)). ChronoModel has its own diagnostic
tools, however it is not the case for Oxcal.
In order to use any function from package coda, data as to be transformed in a mcmc.list

using the function coda.mcmc(). This function as two parameters: the data and the number
of parallel chains. The dataset KADatesChronoModel contains the MCMC samples of the
16 dates of Ksar Akil’s site (see Section 3.1). Three Markov chains have been generated by
ChronoModel application.

R> data(KADatesChronoModel)

R> Dates_mcmc = coda.mcmc(data = KADatesChronoModel, numberChains = 3)

Now, we can trace the history plot of each parameter and see whether the chains have reach
equilibrium before the Acquire period. The column 1 containing the iteration number is with-
drawn.

R> plot(Dates_mcmc[,-1])

A part of the results is given in Figure 3. The 3 chains seem to have properly reach their
equilibrium. The Gelman-Rubin diagnostic can also be tested :
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R> gelman.diag(Dates_mcmc[,-1])

> gelman.diag(Dates_mcmc[,-1])

Potential scale reduction factors:

Point est. Upper C.I.

Layer.V 1.0 1.0

Layer.XVI 1.0 1.0

Layer.VI 1.0 1.0

Layer.XVI.1 1.0 1.0

Layer.XI 1.0 1.0

Layer.XVI.2 1.0 1.0

Layer.XVI.3 1.0 1.0

Layer.XII 1.0 1.0

Layer.XVII 1.0 1.0

Layer.XVIII 1.0 1.0

Layer.XVII.1 1.0 1.0

Layer.XIX 1.0 1.0

Layer.XVII.2 1.0 1.0

Layer.XX 1.0 1.0

Layer.XVII.3 1.0 1.0

Layer.XXII 1.0 1.0

Multivariate psrf

1

The values of the Gelman-Rubin criterion close to 1 assess the convergence of the Markov
chains.

4.4. Examining a series of dates

The data frame called ”KADatesChronoModel.RData” contains the MCMC samples of each
of the 16 dates corresponding to the death of the 16 shells found at Ksar Akil. The name
given to thoses dates are the name of the layer in which they where found. In the following,
the iterations of the three parallel chains are used as if there were only chain.
Using the function MultiCredibleInterval, we can estimate the 95% credible interval of
each date.

R> MultiCredibleInterval(KADatesChronoModel, position = c(2:17), level = 0.95)

which gives the following results :

> MultiCredibleInterval(KADatesChronoModel, position = c(2:17), level = 0.95)

Level CredibleIntervalInf CredibleIntervalSup

Layer.V 0.95 -29014 -27017



12 ArchaeoPhases: Analysis of Archaeological Phases

Figure 3: Traces and density of several parameters of the Bayesian modeling.

Layer.XVI 0.95 -39237 -37593

Layer.VI 0.95 -31486 -29168

Layer.XVI.1 0.95 -40028 -38384

Layer.XI 0.95 -37412 -35038

Layer.XVI.2 0.95 -40335 -37813

Layer.XVI.3 0.95 -40362 -37846

Layer.XII 0.95 -38524 -36763

Layer.XVII 0.95 -41017 -39083

Layer.XVIII 0.95 -41406 -40102

Layer.XVII.1 0.95 -40832 -39001

Layer.XIX 0.95 -41606 -40498

Layer.XVII.2 0.95 -40773 -39596

Layer.XX 0.95 -42136 -40864

Layer.XVII.3 0.95 -41229 -39592

Layer.XXII 0.95 -43297 -41161

The function MultiHPD gives an estimation of the 95% HPD regions of each date (results not
shown).

R> MultiHPD(KADatesChronoModel, position = c(2:17), level = 0.95)
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All those intervals may be drawn on a graph using the function MultiDatesPlot. The fol-
lowing lines show an example of its use, Figure 4 presents the graph of the credible intervals
and Figure 5 displays the graph of a series of HPD regions.

R> MultiDatesPlot(KADatesChronoModel, position = c(2:17), level = 0.95,

intervals="CI", title=" 95% CI of Ksar Akil dates")

R> MultiDatesPlot(KADatesChronoModel, position = c(2:17), level = 0.95,

intervals="HPD", title=" 95% HPD regions of Ksar Akil dates")

Now, the rhythm of occurrence of the dates may be investigated using two functions TempoPlot
and TempoActivityPlot.

Figure 4: Graph of the credible interval of the series of dates included in Ksar Akil

R> TempoPlot(KADatesChronoModel, position = c(2:17), level = 0.95, title=" Tempo

plot")

R> TempoActivityPlot(KADatesChronoModel, position = c(2:17), level = 0.95)

Figure 6 displays the tempo plot and the activity plot of the site of Ksar Akil.

From these graphs, we can see that the highest part of the sampled activity is dated between
-45 000 to -35 000 but two dates are younger, at about -32 000 and -28 000.
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Figure 5: Graph of the HPD regions of the series of dates included in Ksar Akil
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Figure 6: Tempo plot [top] and activity plot [bottom] of Ksar Akil
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5. Analysis of archaeological phases

As said in Section 2, a phase or a group of dates is defined by the date of the minimum and
the date of the maximum of the group. In this part, we will use the data containing these
values for each group of dates.

R> data(KAPhasesChronoModel)

R> attach(KAPhasesChronoModel)

5.1. Examining an archaeological phase

From the output of the MCMC algorithm, we can estimate the duration of the groups as the
value of the maximum - minimum at each iteration. We can also estimate the phase time
range as the shortest interval that contains all the dates of the group at a given confidence
level (see Section 2 for the statistical details).

If interested in the summary statistics of the characteristics of a phase / group of dates, use
the function PhaseStatistics(). For instance, let’s examine the summary statistics of the
phase Ahmarian.

R> PhaseStatistics(Ahmarian.alpha, Ahmarian.beta, level = 0.95)

The output of the R console is then :

> PhaseStatistics(Ahmarian.alpha, Ahmarian.beta, level = 0.95)

Minimum Maximum Duration

mean -41463.00 -38249.00 3214.00

MAP -41441.00 -38250.00 3201.00

sd 334.00 403.00 517.00

Q1 -41659.00 -38496.00 2875.00

median -41437.00 -38249.00 3202.00

Q2 -41238.00 -38001.00 3535.00

level 0.95 0.95 0.95

CredibleInterval Inf -42130.00 -39076.00 2200.00

CredibleInterval Sup -40851.00 -37456.00 4242.00

HPDRInf 1 -42092.00 -39063.00 2183.00

HPRDSup 1 -40801.00 -37437.00 4227.00

PhaseStatistics() results in a matrix of several summary statistics according to the marginal
posterior density of the minimum, the maximum and the duration of the phase Ahmarian.
The default confidence level is 0.95.

The following code gives the endpoints of the time range of the phase Ahmarian (the group
of dates that constitute the phase Ahmarian) and recall the given confidence level.

R> PhaseTimeRange(Ahmarian.alpha, Ahmarian.beta, level = 0.95)

The output of the console is
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> PhaseTimeRange(Ahmarian.alpha, Ahmarian.beta, level = 0.95)

level TimeRangeInf TimeRangeSup

0.95 -42189.00 -37461.00

Function PhasePlot may be used to draw a plot of the marginal posterior density of the
minimum and the maximum of a phase on a same graph.

R> PhasePlot(Ahmarian.alpha, Ahmarian.beta, level = 0.95,

title ="Characterisation of phase Ahmarian")

The result is shown on Figure 7. Marginal posterior densities of the minimum and the maxi-
mum of the phase Ahmarian (curves) are presented with the shortest credible interval (solid
line under the curve) at the desired level (default = 95 %) and their mean value (a dot under
the curve) using the same color. In addition, the time interval of the phase at the desired
level (default = 95 %) is also presented by a solid line above the curves.

PhaseDurationPlot draws the marginal posterior density of the duration of the phase with
its shortest credible interval and its mean value. By default, the confidence level is fixed at
0.95 and graphs are in color but these details may be changed. Figure 8 displays the result.

R> PhaseDurationPlot(Ahmarian.alpha, Ahmarian.beta, level = 0.95,

title ="Duration of Phase Ahmarian")

Figure 7: Plot of the characteristics of phase Ahmarian
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Figure 8: Marginal posterior density of the duration of phase Ahmarian

5.2. Examining the succession of two phases

Let’s use for this example the succession of phases IUP and Ahmarian. As these phases are
in temporal order, we can estimate, if it exists, the gap (or hiatus) and the transition interval
between both phases (see Section 2 for more details). To test if there exists a gap at 95%
between these successive phases, let’s use the function PhasesGap.

R > PhasesGap(IUP.beta, Ahmarian.alpha, level = 0.95)

Then the output is

> PhasesGap(IUP.beta, Ahmarian.alpha, level = 0.95)

level HiatusIntervalInf HiatusIntervalSup

"0.95" "NA" "NA"

This code gives the endpoints of the gap interval between both phases. The default confidence
level is 0.95. For this confidence level, no hiatus exists between phases IUP and Ahmarian.
However, for a confidence level fixed at 0.50, there exists a gap of almost 100 years between
both phases. To test if there exists a gap at 50% between these successive phases, let’s use
the following line:

R> PhasesGap(IUP.beta, Ahmarian.alpha, level = 0.50)

Now the output is

> PhasesGap(IUP.beta, Ahmarian.alpha, level = 0.50)

level HiatusIntervalInf HiatusIntervalSup
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0.5 -41759.0 -41666.0

Now, to estimate the transition interval at 95% between these successive phases, let’s use the
function PhasesTransition():

R> PhasesTransition(IUP.beta, Ahmarian.alpha, level = 0.95)

And the result is:

> PhasesTransition(IUP.beta, Ahmarian.alpha, level = 0.95)

0.95 TransitionRangeInf TransitionRangeSup

0.95 -43241.00 -40728.00

At 95%, the transition between these two phases starts at -43 241 and ends at -40 728.
All these pieces of information may be illustrated on a graphic using the function SuccessionPlot().
Figure 9 presents the resulting graph.

R> SuccessionPlot(IUP.alpha, IUP.beta, Ahmarian.alpha, Ahmarian.beta,

R> level = 0.95, title="Characterisation of a succession of phases")

Figure 9: Plot of the succession of phases IUP and Ahmarian and 95% intervals. Curves
represent the densities of the minimum and the maximum of each phase. The oldest phase
is drawn in blue, the youngest phase in violet. When a group is defined by only one date,
then the minimum date equals the maximum date of the group. Hence, in that case, only
one curve is presented. Segments correspond to time range of the phase of the same color,
two-coloured segments correspond to transition interval or to the gap range. A cross instead
of a two-coloured segment means that there is no gap range at the desired level of confidence.
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5.3. Examining a series of phases

We may also be interested in a series of phases, as for instance the following phases of Ksar
Akil: IUP, Ahmarian, UP and EPI. We could, for example, wish to know the time range of
these different phases, or we could want to draw the different minimums and maximums on
a same graph. We could also wish to know the credible interval of all minimums.

To do that, the ”Multi” functions are available. For data extracted from ChronoModel software
or using the function CreateMinMaxGroup(), only the vector of positions of all phases’ mini-
mums are needed, as the maximums are the column next to the minimums’. By default, the
argument of position_maximum is equals to position_minimum + 1. Otherwise, the vector
of positions of the phases’ maximums should be specified.
For example, let’s estimate the time range of phases IUP, Ahmarian, UP and EPI, whose
minimums are respectively in position 2, 4, 6 and 8.

R> MultiPhaseTimeRange(KAPhasesChronoModel, position_minimum = c(2,4,6,8))

> MultiPhaseTimeRange(KAPhasesChronoModel, position_minimum = c(2,4,6,8))

Level TimeRangeInf TimeRangeSup

EPI.alpha EPI.beta 0.95 -29071 -27102

UP.alpha UP.beta 0.95 -38559 -29335

Ahmarian.alpha Ahmarian.beta 0.95 -42189 -37461

IUP.alpha IUP.beta 0.95 -43217 -41106

Phase ”EPI” whose minimum output is in column 2 has a time range = [-29 071, -27 102] at
a confidence level of 95% and the phase ”IUP” whose minimum output is in column 8 has a
time range = [-43 217, -41 106].
The function MultiPhasePlot() generates a plot presented in Figure 10 that illustrates the
characteristics of these phases.

R> MultiPhasePlot(KAPhasesChronoModel, position_minimum = c(2,4,6,8),

title="Phases EPI, UP, Ahmarian et IUP")

Curves represent the densities of the minimum or the maximum of each phase. Segments
above the curves correspond to the time range of the phases. Characteristics of a phase (min-
imum and maximum densities, time range) are drawn using the same color. When a group
is defined by only one date, then the minimum date equals the maximum date of the group.
Hence, in that case, only one curve is presented.
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Figure 10: Plot of the series of Ksar Akil’s phases and their associated time range at 95%.
The marginal posterior densities of phase IUP are drawn in green, those of phase Ahmarian
are in red, those of phase UP are in purple and those of phase EPI are in light blue. As there
is only one date in the phases EPI and IUP, the minimum and the maximum of these phases
have the same value at each iteration. Hence, we can see only one curve for each of these
phases. Time ranges are displayed by segments above the curves of the same color as the
densities of the phase.



22 ArchaeoPhases: Analysis of Archaeological Phases

5.4. Examining a succession of phases in temporal order

We may also be interested in a succession of phases. This is actually the case of the succession
of IUP, Ahmarian, UP and EPI that are in stratigraphic order. Hence, we can estimate the
transition interval and, if it exists, the gap between these successive phases. This may be
done using the following code :

R> MultiPhasesGap(KAPhasesChronoModel, position_minimum=c(8,6,4,2))

R> MultiPhasesTransition(KAPhasesChronoModel, position_minimum=c(8,6,4,2))

For these functions, the order of the phases is important. The vector of positions of the mini-
mums should start with the minimum of the oldest phase and end with the one of the youngest
phase. For data extracted from ChronoModel or using the function CreateMinMaxGroup(),
the vector of positions of the phases’ maximums is deduced from the vector of the minimum.
For other data, this vector should be specified.

> MultiPhasesGap(KAPhasesChronoModel, position_minimum=c(8,6,4,2))

Level HiatusIntervalInf HiatusIntervalSup

IUP.beta & Ahmarian.alpha "0.95" "NA" "NA"

Ahmarian.beta & UP.alpha "0.95" "NA" "NA"

UP.beta & EPI.alpha "0.95" "-29180" "-28977"

> MultiPhasesTransition(KAPhasesChronoModel, position_minimum=c(8,6,4,2))

0.95 TransitionRangeInf TransitionRangeSup

IUP.beta & Ahmarian.alpha 0.95 -43241 -40728

Ahmarian.beta & UP.alpha 0.95 -39075 -36686

UP.beta & EPI.alpha 0.95 -31504 -26960

At a confidence level of 95%, there is no gap between the succession of phases IUP, Ahmarian
and UP, but there exists one of 203 years between phase UP and phase EPI. The function
MultiSuccessionPlot() draws the characteristics of such a succession. Figure 11 presents
the resulting plot.

R> MultiSuccessionPlot(KAPhasesChronoModel, position_minimum =c(8,6,4,2),

title = "Ksar Akil - Succession of phases: IUP, Ahmarian, UP, EPI ")

In that plot, curves represent the densities of the minimum or the maximum of each phase.
When a group is defined by one only date, the minimum equals the maximum date of the
group. Hence, in that case, only one curve is presented. Segments above the curves correspond
to time range of the phase associated to a level confidence of 95%. Two-coloured segments
correspond to transition interval or to the gap range associated to a level confidence of 95%.
A cross instead of a two-coloured segment means that there is no gap between the succession
of phases at the desired level of confidence.
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Figure 11: Plot of the succession of phases from Ksar Akil. The characteristics of phase IUP
are drawn in green, those of phase Ahmarian are in purple, those of phase UP are in light blue
and those of phase EPI are in red. Again, as there is only one event in the phases EPI and
IUP, the minimum and the maximum of these phases have the same values at each iteration.
Hence, we can only see one curve for each of these phases. Time range are displayed by
segments above the curves. Two-coloured segments correspond to transition interval or to
the gap range associated to a level confidence of 95%. As there are no gaps at 95% between
phases IUP and Ahmarian, and Ahmarian and UP, a cross is drawn instead.
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5.5. Summary

We can summary the characteristics of the different phases of Ksar Akil, using the data
published by Bosch et al. (2015) and the modeling done with ChronoModel, by the following
table :

Phase Time range Transition range Gap range
Inf Sup Inf Sup Inf Sup

IUP -43 217 -41 106 NA NA NA NA
Ahmarian -42 189 -37 461 -43 241 -40 728 NA NA
UP -38 559 -29 335 -39 075 -36 686 NA NA
EPI -29 071 -27 102 -31 504 -26 960 -29 180 -28 977

Table 1: Endpoints (Inf and Sup values) are given for each interval associated with a level of
confidence at 95%.
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