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Abstract

We propose new statistical tools to analyze and to estimate archeological phases from
the posterior distribution of a sequence of dates. All the functions are implemented in the
R package RChronoModel. The required inputs are simulated samples from the posterior
distribution of the dates. Such MCMC samples are provided, for instance, by ChronoModel
or Oxcal, two softwares build for the chronological modeling of archeological dates. We
give a practical introduction to the package RChronoModel using published data and
comment the statistical results.
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1. Introduction

The statistical modeling within the Bayesian framework is widely used by archaeologists for
constructing chronologies. This consists in the estimation of a sequence of dates where

• the observations are the measurements coming from possibly di↵erent dating methods,

• the prior information comes from geological, historical, environmental or any other
considerations.

Bayesian inference is a probabilistic estimation method, in the sense that the information on
the estimated parameters is given by a probability distribution called posterior probability.
Usually the analytic expression of the posterior distribution is not easily computable. How-
ever, inferences may be drawn using a sample from the posterior density. More precisely, it
is possible to compute a Markov chain whose target distribution is the posterior distribution.



Indeed, Markov chain Monte Carlo (MCMC) algorithms provide a way of drawing samples
from the joint posterior distribution in high-dimensional Bayesian models.

Two main softwares are available to estimate chronologies: Chronomodel (see Lanos, Philippe,
Lanos, and Dufresne (2016); Vibet, Philippe, Lanos, and Dufresne (2016)) and Oxcal (see
Ramsey (2016, 2009)). Both softwares return the marginal posterior distribution of all the
estimated dates with elementary statistics (mean, standard deviation HPD region,. . . ). It is
also possible to export the output from MCMC simulations (see section 4 for the details).
Thus, we can explore the joint distribution of the sequence of dates. For example we can
construct:

• Tempo plots as defined by Thomas Dye (See Dye (2016)), that is ”a statistical graphic
designed for the archaeological study of rhythms of the long term that embodies a theory
of archaeological evidence for the occurrence of events” and their associated activity

plots.

• Time intervals to characterize archaeological phases or periods, called time range in-

tervals.

• Time intervals to characterize the transition between two successive phases or periods,
called transition intervals.

• Testing procedures to check the presence of a gap between two successive phases
or periods. A gap interval is estimated if we accept its existence .

The CRAN package RChronoModel provides a list of functions for calculating these statistics
from the Markov Chains simulated by Chronomodel or by Oxcal.

In Section 2, we propose new statistical tools for analysing some groups of estimated dates in
a Bayesian framework. Section 3 provides a short description of the dataset used to illustrate
RChronoModel. The data was published by Bosch, Mannino, Prendergast, O’Connell, De-
marchi, Taylor, Niven, van der Plicht, and Hublin (2015). Section 4 specifies how the MCMC
samples can be extracted from Chronomodel or by Oxcal. In Section 5, we give a practical
introduction to the use of RChronoModel functions (version 0.4, published in January 2017).

For non-users of R software, a web application, ArchaeoPhases, has also been developed in
order to take advantages of these functions without having to know R. This application is freely
available on https://archaeology-bayesian-modelling.shinyapps.io/ArchaeoPhases

2. Statistical aspects

We define a chronology as a sequence of calendar dates ⌧1, . . . , ⌧n. The archeological question
about a chronology is not only a matter of estimation of calendar dates ⌧1, . . . , ⌧n but also
the characterization of historical/geological periods called archaeological phases.

The estimation of the phase can only be done from the estimated dates associated to this
phase.
In the following, we define a phase (denoted P ) by a collection of dates, ⌧i for i 2 I where I
is a subset of {1, . . . , n} and n the total number of calendar dates.

A phase is commonly summarized by two parameters: its start and its end. Two di↵erent
approaches are considered in order to estimate these two dates.



1. The start and the end are modeled, and so additional parameters are incorporated in the
model. This is the approach implemented in Oxcal where the parameters are denoted
ta and tb. This requires to do prior assumption on the distribution of the dates on the
estimated period [ta, tb].

2. The start (resp. the end) is estimated by the minimum (resp. the maximum) of the
dates included in the phase. Thus the approach does not integrate a model of the
phase, but it is only a post-processing step based on the estimation of a sequence of
dates. These statistics are implemented in ChronoModel and Oxcal.

Our approach is in the same spirit of the second one in the sense that we propose statistical
tools of post-processing without additional modeling.

Notation : we denote by M the set of measurements coming from dating methods. We
assume that MCMC samples from the joint posterior distribution p(⌧1, . . . , ⌧n |M) of all the
dates ⌧1, . . . , ⌧n are available (using for instance ChronoModel or Oxcal).

2.1. Time Range interval of a phase

We propose to characterize a phase using a time interval called a time range interval. A
time range interval summarizes the dates defining the phase by a time period having fixed
posterior probability. It gives also an idea of the start, the end and the duration of a phase.

Definition 1. Let P = {⌧i i 2 I ⇢ {1, . . . , n}} be a phase. The 100(1��)% phase time range
is the shortest interval [a, b] such that

P (⌧i 2]a, b[, 8i 2 I)|M) = 1� � (1)

This means that the time interval [a, b] contains all the dates {⌧i i 2 I} with a fixed posterior
probability 1� � (e.g. 95 %, 68 %. . . ).

We denote ↵ = min(⌧i, 8i 2 I) and � = max(⌧i, 8i 2 I) The equation (1) can be also
rewritten of the form

P (a  ↵  �  b |M) = 1� � (2)

Therefore the construction of the time range interval depends only on the joint posterior
distribution of (↵,�).

The collection of intervals [a, b] satisfying (2) is described by this set of intervals:

{[a(✏) ; b(✏)], ✏ 2 [0, �]}

where

• a(✏) = F�
↵ (✏ |M) with F�

↵ (· |M) is the quantile function of the posterior distribution
of ↵

• b(✏) = F�
� (1��

1�✏ |↵ � a(✏),M) with F�
� (· |↵ � a(✏),M) is the quantile function of the

conditional distribution of � given ↵ � a(✏) and M.



Indeed, ↵  � happens almost surely, so we have

P (a(✏)  ↵  �  b(✏) |M) = P (a(✏)  ↵,�  b(✏) |M)

= P (�  b(✏) | a(✏)  ↵,M)P (a(✏)  ↵ |M)

=
1� �

1� ✏
(1� ✏)

The last equality comes from the definition of a(✏) and b(✏). Therefore the shortest interval
is obtained by taking [a(✏⇤), b(✏⇤)] where

✏⇤ = argmin✏2]0,�[ (b(✏)� a(✏))

In practice, the values of a(✏) and b(✏) are estimated by the empirical quantiles calculated on

the MCMC outputs. Using the output of the MCMC algorithm (⌧ (k)1 , . . . , ⌧ (k)n )k=1,...,NMCMC ,
we produce (↵(k),�(k))t=1,...,NMCMC the MCMC sample corresponding to the posterior distri-
bution of (↵,�),

↵(k) = min(⌧ (k)i , i 2 I) and �(k) = max(⌧ (k)i , i 2 I).

a(✏) is estimated by the empirical quantile of the sample {↵(1), . . . ,↵(NMCMC)} (sample
corresponding to the marginal posterior distribution of ↵). b(✏) is estimated by the empirical
quantile of {�(t), t 2 T} where T = {j |↵(j) � ✏}

2.2. Transition interval between two successive phases

The transition interval between two successive phases is the shortest interval that covers
the end of the oldest phase and the start of the youngest phase. The start and the end are
estimated by the minimum and the maximum of the dates included in the phase. It gives an
idea of the transition period between two successive phases. From a computational point of
view this is equivalent to the phase time range calculated between the end of the oldest phase
and the start of the youngest phase.

Definition 2. Consider a succession of two phases, P1 and P2. Assume P1 is older than
P2. We denote by ↵i (resp. �i) the minimum (resp. the maximum) of the group of dates Pi

(i = 1, 2). The 100(1� �)% transition interval is the shortest interval [a, b] such that

P (a  �1  ↵2  b |M) = 1� � (3)

The construction of this interval is obtained by the same step as the range time interval by
replacing (↵,�) by (�1,↵2).

2.3. Testing procedure for gap between two successive phases

Successive phases may also be separated in time. Indeed there may exist a gap between
them. This testing procedure check whether a gap exists between two successive phases with
fixed probability. If a gap exists, it is an interval that covers the end of one phase and the
start of the successive one with fixed posterior probability.



Definition 3. Consider a succession of two phases, P1 and P2. Assume P1 is older than
P2. We denote by ↵i (resp. �i) the minimum (resp. the maximum) of the group of dates Pi

(i = 1, 2).

The 100(1� �)% gap between these successive phases (if it exists) is the longest interval [a, b]
such that

P (�1  a  b  ↵2 |M) = 1� � (4)

The first step consists in the construction of all the couples a(✏), b(✏) such that

P (�1  a(✏) , b(✏)  ↵2 |M) = 1� �

where

• a(✏) = F�
�1
(1�✏ |M) and F�

�1
(· |M) is the quantile function of the posterior distribution

of �1

• b(✏) = F�
↵2
(��✏
1�✏ |�1 < a(✏),M) and F�

↵2
(· |�1 < a(✏),M) is the quantile function of the

conditional distribution of ↵2 given �1 < a(✏) and M.

Indeed

P (�1  a(✏) , b(✏)  ↵2 |M) = P (�1  a(✏) |M)P (b(✏)  ↵2 |�1  a(✏) , M)

= (1� ✏)(1� � � ✏

1� ✏
) = 1� �

Testing procedure : If the set E = {✏ | a(✏) < b(✏)} is empty, then we conclude that, with
probability 1� �, no gap exists between these successive phases. Otherwise, the gap interval
is the longest interval [a(✏⇤), b(✏⇤)] where

✏⇤ = argmax✏2E (b(✏)� a(✏))

2.4. Tempo Plot: Rhythms of occurrence of events

Dye (2016) proposes a graphical tool, called tempo plot, to evaluate the rhythms of occur-
rence of events. We propose a Bayesian interpretation of the estimate. The quantity of interest
cannot be viewed as a counting process because the date of the events (⌧1, . . . , ⌧n) are not
observed. They are estimated from a Bayesian chronological model (e.g Oxcal, ChronoModel).
For each date t, the aim is to estimate the number of events N(t) which occurs before the
date t, we have

N(t) =
nX

i=1

I]�1,t](⌧i)

As N(t) is a function of the parameters (⌧1, . . . , ⌧n), we can easily estimate N(t) from the
joint posterior distribution of (⌧1, . . . , ⌧n). The Bayes estimate of N(t) (under quadratic loss)
is the posterior mean of N(t) i.e.

N̂(t) = E(N(t) |M) (5)

= E(
nX

i=1

I]�1,t](⌧i) |M)

=
nX

i=1

P (⌧i < t |M).



Using the output of the MCMC algorithm (⌧ (k)1 , . . . , ⌧ (k)n )k=1,...,NMCMC , we can approximate

the Bayes estimate N̂(t) by taking

=
nX

i=1

1

NMCMC

NMCMCX

k=1

I]�1,t](⌧
(k)
i )

=
n

NMCMC

NMCMCX

k=1

F (k)(t)

where F (k) is the empirical cumulative distribution of the sample (⌧ (k)1 , . . . , ⌧ (k)n ) (output of
the iteration number of k of MCMC algorithms)

F (k)(t) =
1

n

nX

i=1

I]�1,t](⌧
(k)
i )

The NMCMC functions nF (k)(.) y provide a sample from the posterior distribution of N .
Therefore we can easily build a credible confidence region for the function N . Indeed for
each t we take the smaller posterior interval approximated from the sample nF (k)(t), k =
1, . . . , NMCMC . An alternative is to use Gaussian approximation to get the confidence inter-
vals.

Alternative to Tempo plot consist in representing the activity, that is the first derivative of
N̂ defined in (5).

3. The example of Ksar Akil

At Ksar ’Akil (Lebanon), a deep Paleolithic stratigraphic sequence was investigated in order
to established the chronology of the site (See Bosch et al. (2015)). This stratigraphic sequence
included Initial Upper Paleolithic (IUP), from layer XXV (the bottom of the sequence) to
layer XXI, Ahmarian, from layer XX to layer XIV, Upper Paleolithic (UP), from layer XV to
layer VI, and Epi-Paleolithic (EPI), from layer V to layer I. In addition, 16 shell ornaments
were found throughout the stratigraphy and dated by AMS radiocarbon technique.

The aim of this modeling was to establish the chronology of the succession of phases: IUP,
Ahmarian, UP and EPI using these 16 radiocarbon dates and the information coming from
the stratigraphy.

For the modeling with ChronoModel, the study period was set to -50 000 to -25 000. Target
events were the death of the shells. Each event was then associated with one radiocarbon
date. Each layer was modeled by a phase including all events (death of shells) found within
each layer in the stratigraphy. Then IUP, Ahmarian, UP and EPI phases gathered all the
events of the layers included in these phases.

The Markov Chains simulated by ChronoModel were then extracted to illustrate the use of
RChronoModel. This procedure is described in Section 4.

4. Extracting the MCMC sample of the joint distribution



4.1. From Oxcal

Once your modeling is done with Oxcal, add the MCMC Sample command to your script.

MCMC_Sample([Name], [Interval], [Max]) {...} ) ;

This command allows all of the MCMC samples to be saved to a file (default is MCMC Sample.csv)
at defined intervals and with a maximum number of samples taken (default 1000); the file
can be found as a Document

4.2. From ChronoModel

Once your modeling is done with ChronoModel and once the RUN command is launched, you
may save all MCMC samples in format BC/AD.

To do that, use on the right hand side of the window in the Results tab (See figure 1).
Several CSV files will be created: a file called ”events.csv” containing the MCMC samples of
all events, a file called ”phases.csv” containing the parameter of the minimum (alpha) and the
parameter of the maximum (beta) of all phases if at least one phase is modeled, and a file per
phase (if any) containing the MCMC samples of the parameters of the phase and all events
included in it.

Figure 1: ChronoModel interface showing the results of a modeling.



5. The use of RChronoModel

5.1. Installing the package RChronoModel

When R is launched, you need to install (only the first time) the package RChronoModel

using the following code:
R> install.packages(’RChronoModel’, dependencies = TRUE)

Then the first step is to load the library:
R> library(RChronoModel)

and then to define your working directory. Usually, the working directory is the directory
where the data exported from ChronoModel or Oxcal is saved. For example, if the data are
stocked in a directory called ”ChronoModel/data” on the desktop of the computer, the work-
ing directory will be changed using the following command:
R> setwd("~/Desktop/ChronoModel/data")

5.2. Importing data into R software

To import the data file into R, you may use ImportCSV function. For CSV files extracted
from ChronoModel sotfware, there is no need to specify any other parameters than the name
of the file (and the path to it). Otherwise, you may change the specification after ”sep=” and
”dec=”.
R> Phases <- ImportCSV("phases.csv", sep=",", dec=".", comment.char="#")

Or equivalently
R> Phases <- ImportCSV("phases.csv")

The parameter ”comment.char=” is used to define how comments are written in the file to be
imported. Comments of all csv files generated by ChronoModel are specified by ’#’.

Now, the following code
R> attach(Phases)

makes all objects of the database ”Phases” accessible by simply giving their names without
having to recall the dataset of origin. For instance, the two following lines give the same
result:
R> summary(Phases$Ahmarian.alpha)

R> summary(Ahmarian.alpha)

The output of the R console is the following:

> summary(Phases$Ahmarian.alpha)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-45920 -41640 -41420 -41450 -41220 -40240

> summary(Ahmarian.alpha)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-45920 -41640 -41420 -41450 -41220 -40240

This will be usefull in the following sections.



5.3. Examining an archeological phase

To understand chronologies, one can gather dates with common criteria into groups or phases.
These groups are characterised by the date of the minimum of the group and the date of the
maximum of the group. For chronologies estimated with ChronoModel, the minimum (called
alpha) and the maximum (called beta) of each group of dates or each phase are computed and
saved in the file called ”phases.csv”. However, for chronologies constructed with Oxcal, as the
function MCMC Sample() does not allow to save the MCMC samples of the minimum and
the maximum (functions First() and Last()), we need to create a file containing these values.
To do that, we may use the function CreateMinMaxGroup().
In the following, we will use the file ”phases.CSV” created and exctrated from ChronoModel.

From the output of the MCMC algorithm, one can estimate the duration of the groups as the
value of the maximum - minimum at each iteration. One can also estimate the phase time
range as the shortest interval that contains all the dates of the group at a given confidence
level (See section 2 for the statistical details).

If interested in summary statistics of all posterior distributions related to a phase / group of
dates, use the following code:
R> PhaseStatistics(Ahmarian.alpha, Ahmarian.beta, level = 0.95)

The output of the R console is the following:

> PhaseStatistics(Ahmarian.alpha, Ahmarian.beta, level = 0.95)

Minimum Maximum Duration

mean -41447.00 -38141.00 3306.00

MAP -41420.00 -38149.00 3295.00

sd 335.00 412.00 526.00

Q1 -41639.00 -38396.00 2958.00

median -41417.00 -38146.00 3285.00

Q2 -41221.00 -37898.00 3631.00

level 0.95 0.95 0.95

CredibleInterval Inf -42134.00 -38964.00 2292.00

CredibleInterval Sup -40857.00 -37317.00 4351.00

HPDRInf 1 -42080.00 -38971.00 2264.00

HPRDSup 1 -40778.00 -37320.00 4330.00

PhaseStatistics() results in a matrix of several summary statistics according to the marginal
posterior density of the minimum, the maximum and the duration of the phase Ahmarian.
The default confidence level is 0.95 but may be changed.

The following code gives the endpoints of the time range of the phase Ahmarian (the group
of dates that constitute the phase Ahmarian) and recall the given confidence level.
R> PhaseTimeRange(Ahmarian.alpha, Ahmarian.beta)

The output of the console is

> PhaseTimeRange(Ahmarian.alpha, Ahmarian.beta)

level TimeRangeInf TimeRangeSup

0.95 -42210.62 -37319.37



The following lines may be used to draw a plot of the marginal posterior density of the mini-
mum and the maximum of a phase on a same graph.
R> PhasePlot(Ahmarian.alpha, Ahmarian.beta, title ="Characterisation of phase Ahmarian")

The result is shown on Figure 2. Marginal posterior densities of the minimum and the
maximum of the phase Ahmarian (curves) are presented with the shortest credible interval
(solid line under the curve) at the desired level (default = 95 %) and their mean value (a
dot under the curve) using the same color. In addition, the time interval of the phase at the
desired level (default = 95 %) is also presented by a solid line above the curves.

The following code draws the marginal posterior density of the duration of the phase with its
shortest credible interval and its mean value. By default, the confidence level is fixed at 0.95
and graphs are in color but these details may be changed. Figure 3 displays the result.
R> PhaseDurationPlot(Ahmarian.alpha, Ahmarian.beta, title ="Duration of Phase Ahmarian")

Figure 2: Plot of the marginal posterior densities of the minimum and the maximum of phase
Ahmarian

5.4. Examining the succession of two phases

Let’s use for this example the succession of phases ”Layer XVII” and ”Layer XVI”, that are a
part of the stratigraphic succession. As these phases are in temporal order, we can estimate,
if it exists, the gap (or hiatus) and the transition interval between both phases (See section 2
for more details).

To test if there exists a gap at 95% between these successive phases, let’s use the following
line.
R> PhasesGap(Layer.XVII.beta, Layer.XVI.alpha)

Then the output is

> PhasesGap(Layer.XVII.beta, Layer.XVI.alpha)



Figure 3: Plot of the marginal posterior densities related to phase Ahmarian

level HiatusIntervalInf HiatusIntervalSup

"0.95" "NA" "NA"

This code gives the endpoints of the gap interval between both phases. The default confidence
level is 0.95. For this confidence level, no hiatus exists between ”Layer XVII” and ”Layer
XVI”. However, for a confidence level fixed at 0.20, there exists a gap of 50 years between
both phases. To test if there exists a gap at 20% between these successive phases, let’s use
the following line:
R> PhasesGap(Layer.XVII.beta, Layer.XVI.alpha, level = 0.20)

Now the output is

> PhasesGap(Layer.XVII.beta, Layer.XVI.alpha, level = 0.2)

level HiatusIntervalInf HiatusIntervalSup

0.2 -38956.0 -38906.0

Now, to estimate the transition interval at 95% between these successive phases, let’s use the
following line:
R> PhasesTransition(Layer.XVII.beta, Layer.XVI.alpha)

And the result is:

> PhasesTransition(Layer.XVII.beta, Layer.XVI.alpha)

0.95 TransitionRangeInf TransitionRangeSup

0.95 -40299.00 -38043.00

At 95%, the transition between these two phases starts at -40 299 and ends at -38 043.
All these pieces of information may be illustrated on a graphic using the following command
line :
R> SuccessionPlot(Layer.XVII.alpha, Layer.XVII.beta, Layer.XVI.alpha, Layer.XVI.beta)

Figure 4 presents the resulting graph.



Figure 4: Plot of the succession of phases ”Layer XVII” and ”Layer XVI” and 95% intervals.
Curves represent the densities of the minimum and the maximum of each phase. The oldest
phase is drawn in blue, the youngest phase in violet. Segments correspond to time range of
the phase of the same color, two-colored segments correspond to transition interval or to the
gap range. A cross instead of a two-colored segment means that there is no gap range at the
desired level of confidence.

5.5. Examining a series of phases

We may also be interested in a series of phases, as for instance the following phases of Ksar
Akil: IUP, Ahmarian, UP and EPI. Let assume that we do not know about their temporal
order succession. We could, for example, wish to know the time range of these di↵erent
phases, or we could want to draw the di↵erent minimums and maximums on a same graph.
We could also wish to know the credible interval of all minimums.

To do that, the ”Multi” functions are available. For data extracted from ChronoModel software
or using the function CreateMinMaxGroup, only the vector of positions of all phases’ mini-
mums are needed. Otherwise, the vector of positions of the phases’ maximums is also required.

The following line gives the endpoints of the time range of phases whose minimums are
in position 2, 4, 6 and 14.
R> MultiPhaseTimeRange(Phases, position_minimum = c(2,4,6,14))

By default, the argument of position_maximimum is equals to position_minimum + 1.
The result is:

> # Phase time ranges



> MultiPhaseTimeRange(Phases, position_minimum = c(2,4,6,14))

Level TimeRangeInf TimeRangeSup

EPI.alpha EPI.beta 0.95 -28983 -26951

UP.alpha UP.beta 0.95 -38501 -29284

Ahmarian.alpha Ahmarian.beta 0.95 -42211 -37319

IUP.alpha IUP.beta 0.95 -43272 -41155

>

Phase ”EPI” whose minimum output is in column 2 has a time range = [-28 983, -26 951] at
a confidence level of 95% and the phase ”IUP” whose minimum output is in column 14 has a
time range = [-43 272, -41 155].

The following code
R> MultiPhasePlot(Phases, position_minimum = c(2,4,6,14), title="Phases EPI, UP,

Ahmarian et IUP") generates a plot presented in Figure 5. Curves represent the densities
of the minimum and maximum of each phase. Segments above the curves correspond to the
time range of the phases. Characteristics of a phase (minimum and maximum densities, time
range) are drawn using the same color. When a group is defined by only one date, then the
minimum equals the maximum date of the group. Hence, in that case, only one curve is
presented.

R> MultiCredibleInterval(Phases, position_minimum = c(2,4,6,14))

computes the credible interval for the minimum of each of these phases. The result is:

> # Credible intervals

> MultiCredibleInterval(Phases, c(2,4,6,14))

Level CredibleIntervalInf CredibleIntervalSup

EPI.alpha 0.95 -28974.5 -26949.9

UP.alpha 0.95 -38519.7 -36685.7

Ahmarian.alpha 0.95 -42134.5 -40856.9

IUP.alpha 0.95 -43268.8 -41154.1

>



Figure 5: Plot of the series of Ksar Akil’s phases and their associated time range at 95%. The
marginal posterior densities of phase IUP are drawn in green, those of phase Ahmarian are in
red, those of phase UP are in purple and those of phase EPI are in light blue. As there is only
one date in the phases EPI and IUP, the minimum and the maximum of these phases have
the same value at each iteration. Hence, we can see only one curve for each of these phases.
Time ranges are displayed by segments above the curves of the same color as the densities of
the phase.



5.6. Examining a succession of phases in temporal order

We may also be interested in a succession of phases. This is actually the case of the succession
of IUP, Ahmarian, UP and EPI that are in stratigraphic order. Hence, we can estimate the
transition interval and, if it exists, the gap between these successive phases. This may be
done using the following code:
R> MultiPhasesGap(Phases, position_minimum=c(14,6,4,2))

R> MultiPhasesTransition(Phases, position_minimum=c(14,6,4,2))

For these functions, the order of the phases is important. The vector of positions of the
minimums should start with the minimum of the oldest phase and end with the one of the
youngest phase. For data extracted from ChronoModel, the vector of positions of the phases’
maximums is deduced from the vector of the minimum. For other data, this vector should be
specified.

> MultiPhasesGap(Phases, position_minimum = c(14,6,4,2))

Level HiatusIntervalInf HiatusIntervalSup

IUP.beta & Ahmarian.alpha "0.95" "NA" "NA"

Ahmarian.beta & UP.alpha "0.95" "NA" "NA"

UP.beta & EPI.alpha "0.95" "-29202" "-29110"

>

> # Phases Transition

> MultiPhasesTransition(Phases, position_minimum = c(14,6,4,2))

0.95 TransitionRangeInf TransitionRangeSup

IUP.beta & Ahmarian.alpha 0.95 -43272 -40704

Ahmarian.beta & UP.alpha 0.95 -39042 -36686

UP.beta & EPI.alpha 0.95 -31553 -26965

>

At a confidence level of 95%, there is no gap between the succession of phases IUP, Ahmarian
and UP, but there exists one of 88 years between phase UP and phase EPI.

Figure 6 presents the resulting plot of the following lines:
R> MultiSuccessionPlot(Phases, position_minimum =c(14,6,4,2), title = "Ksar Akil

- Succession of phases: IUP, Ahmarian, UP, EPI ")

In that plot, curves represent the densities of the minimum and maximum of each phase.
When a group is defined by one only date, the minimum equals the maximum date of the
group. Hence, in that case, only one curve is presented. Segments above the curves correspond
to time range of the phase associated to a level confidence of 95%. Two-coloured segments
correspond to transition interval or to the gap range associated to a level confidence of 95%.
A cross instead of a two-coloured segment means that there is no gap between the succession
of phases at the desired level of confidence.



Figure 6: Plot of the succession of phases from Ksar Akil. The characteristics of phase IUP
are drawn in green, those of phase Ahmarian are in purple, those of phase UP are in light blue
and those of phase EPI are in red. Again, as there is only one event in the phases EPI and
IUP, the minimum and the maximum of these phases have the same values at each iteration.
Hence, we can only see one curve for each of these phases. Time range are displayed by
segments above the curves. Two-coloured segments correspond to transition interval or to
the gap range associated to a level confidence of 95%. As there are no gaps at 95% between
phases IUP and Ahmarian, and Ahmarian and UP, a cross is drawn instead.



5.7. Summary

We can summary the characteristics of the di↵erent phases of Ksar Akil, using the data
published by Bosch et al. Bosch et al. (2015) and the modeling done with ChronoModel, by
the following table :

Phase Time range Transition range Gap range (if it exists)

Inf Sup Inf Sup Inf Sup

IUP -43 272 -41 155 NA NA NA NA
Ahmarian -42 211 -37 319 -43 272 -40704 NA NA
UP -38 501 -29 284 -39 042 -36 686 NA NA
EPI -28 983 -26 951 -31 553 -26 965 -29 202 -29 110

Table 1: Results associated with a level of confidence at 95%

5.8. Examining a series of dates

Let’s now analyse the series of dates included in this example. First, let’s import the CSV
file called ”events.csv” that contains the resulting MCMC values of each date.
R> Events = ImportCSV("events.csv")

This file contains the MCMC samples of each of the 16 dates of the death of the 16 shells
found at Ksar Akil. The name given to thoses dates are the name of the layer in which they
where found. Is several where found in a same layer, then a number was associated to the
name of the Layer.
Using the following code, we can estimate the 95% credible interval of each date.
R> MultiCredibleInterval(Events, c(2:17))

That gives the following results:

> MultiCredibleInterval(Events, c(2:17))

Level CredibleIntervalInf CredibleIntervalSup

Layer.V 0.95 -29063 -27022

Layer.XVI 0.95 -39251 -37570

Layer.VI 0.95 -31512 -29102

Layer.XVI.1 0.95 -40013 -38378

Layer.XI 0.95 -37358 -35037

Layer.XVI.2 0.95 -40335 -37845

Layer.XVI.3 0.95 -40323 -37830

Layer.XII 0.95 -38574 -36798

Layer.XVII 0.95 -40986 -39044

Layer.XVIII 0.95 -41404 -40118

Layer.XVII.1 0.95 -40860 -39006

Layer.XIX 0.95 -41608 -40498

Layer.XVII.2 0.95 -40742 -39601

Layer.XX 0.95 -42148 -40868

Layer.XVII.3 0.95 -41198 -39616

Layer.XXII 0.95 -43307 -41114

The following code gives an estimation of the 95% HPD regions of each date.
R> MultiHPD(Events, c(2:17))



All those intervals may be drawn on a graph using the following line:
R> MultiDatesPlot(Events, c(2:17), intervals="CI", title=" 95% CI of Ksar Akil

dates")

Figure 7 shows the resulting graph.

Figure 7: Graph of the credible interval of the series of dates included in Ksar Akil

Similarly, the following line gives the graph of a series of HPD regions presented in Figure 8.
R> MultiDatesPlot(Events, c(2:17), intervals="HPD", title=" 95% HPD regions of

Ksar Akil dates")

Now, the rhythm of occurrence of the dates may be investigated using two plots
R> TempoPlot(Events, c(2:17), title=" Tempo plot")

R> TempoActivityPlot(Events, c(2:17))

Figure 9 displays the tempo plot and the activity plot of the site of Ksar Akil.

From these graphs, we can see that the highest part of the sampled activity is dated between
-45 000 to -35 000 but two dates are younger, at about -32 000 and -28 000.



Figure 8: Graph of the HPD regions of the series of dates included in Ksar Akil



Figure 9: Tempo plot [top] and activity plot [bottom] of Ksar Akil
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