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A NOTE ON UPPER-PATCHED GENERATORS FOR ARCHIMEDEAN
COPULAS

ELENA DI BERNARDINO AND DIDIER RULLIÈRE

Abstract. The class of multivariate Archimedean copulas is defined by using a real-
valued function called the generator of the copula. This generator satisfies some prop-
erties, including d-monotonicity. We propose here a new basic transformation of this
generator, preserving these properties, thus ensuring the validity of the transformed gen-
erator and inducing a proper valid copula. This transformation acts only on a specific
portion of the generator, it allows both the non-reduction of the likelihood on a given
dataset, and the choice of the upper tail dependence coefficient of the transformed cop-
ula. Numerical illustrations show the utility of this construction, which can improve the
fit of a given copula both on its central part and its tail.

Keywords: Archimedean copulas; transformations; distortions; tail dependence coefficients; likeli-
hood.

1. Introduction

The class of Archimedean copulas is a well-known class of copulas, indexed by a function φ : R+ →
[0, 1] called the generator of the copula (see McNeil and Nešlehová, 2009). In practice, depending
on the problem at hand and the data, many procedures are available to choose a suitable genera-
tor, either by selecting a parametric one, or by trying non-parametric estimation of the latter (see,
among many references Genest and Rivest, 1993; Genest et al., 1995; Lambert, 2007; Kim et al.,
2007; Genest et al., 2011; Di Bernardino and Rullière, 2013b; Dimitrova et al., 2008) . A problem
is that it can be difficult to fit both the global shape of the copula and its tail dependence.

In this article we aim at proposing a basic transformation of a given initial generator such that the
transformed generator is guaranteed to be a valid Archimedean generator, such that the upper tail
dependence can be chosen, and which ensures that the likelihood of a data-set is not reduced by
the transformation. In other words, we are looking for valid distortions that are changing mainly
the upper tail dependence behaviour of a given initial copula, i.e. that would be able to exhibit
any chosen tail dependence coefficient, and that would also preserve the shape of a copula on its
central part.

We focus on Archimedean copulas. We consider an initial d-dimensional Archimedean copula with
a generator φ. This generator is a real function, φ : [0,∞)→ [0, 1], non-increasing and continuous,
such that φ(0) = 1 and lim

x→+∞
φ(x) = 0. From Theorem 2.2 in McNeil and Nešlehová (2009),

C(u1, . . . , ud) := φ(φ−1(u1) + . . .+ φ−1(ud))

is a d−dimensional copula if and only if its generator φ is d−monotone on [0,∞), where the d-
monotonicity definition is recalled hereafter. In the following, a d− monotone generator, will be
called valid generator in the dimension d. We write φ−1 for the inverse function of a given generator
φ, with the convention φ−1(0) = inf {x ∈ R+ : φ(x) = 0}. This function φ−1 : [0, 1] → R+ will be
called an inverse generator.
Furthermore, we always write f (k)(t) = dk

dtk
f(t) the derivative of order k of a k−differentiable

function f .
Let us recall the definition of the d-monotony, as given in McNeil and Nešlehová (2009).
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Definition 1.1 (d-monotone function). A real function f is called d−monotone in (a, b), where
a, b ∈ R̄ and d ≥ 2, if it is differentiable there up to the order d− 2 and the derivatives satisfy

(−1)kf (k)(x) ≥ 0, k = 0, 1, . . . , d− 2,
for any x ∈ (a, b) and further if (−1)d−2f (d−2) is non-increasing and convex in (a, b). For d = 1,
f is called 1−monotone in (a, b) if it is nonnegative and non-increasing over (a, b).
If f has derivatives of all orders in (a, b) and if (−1)kf (k)(x) ≥ 0, for any x ∈ (a, b), then f is
called completely monotone.

As announced, the aim of this work is to change a part of a given generator in order to change
the tail dependence behaviour of the resulting copula. We thus recall hereafter some classical
indicators of the tail dependence of a copula. Among them one can propose, for assessing the tail
behaviour of a copula, the so-called tail dependence coefficients (TDC). In the general multivariate
case, they can be expressed as follows (as adapted from definitions in De Luca and Rivieccio, 2012;
Li, 2009).

Definition 1.2 (Multivariate tail dependence coefficients). Assume that the considered copula C
is the distribution of some random vector U := (U1, . . . , Ud). Denote I = {1, . . . , d} and consider
two non-empty subsets Ih ⊂ I and Īh = I \ Ih of respective cardinality h ≥ 1 and d − h ≥ 1. Let
us define, for u ∈ (0, 1),

λIh,ĪhL (u) = P
[
Ui ≤ u, i ∈ Ih | Ui ≤ u, i ∈ Īh

]
λIh,ĪhU (u) = P

[
Ui ≥ u, i ∈ Ih | Ui ≥ u, i ∈ Īh

]
.

A multivariate version of classical bivariate tail dependence coefficients, when the limits exist, is
given by

λIh,ĪhL = lim
u→0+

λIh,ĪhL (u), λIh,ĪhU = lim
u→1−

λIh,ĪhU (u).

If for all Ih ⊂ I, λIh,ĪhL = 0, (resp. λIh,ĪhU = 0) then we say U is lower tail independent (resp.
upper tail independent).

Definition 1.3 (Multivariate tail dependence coefficients for Archimedean copulas). For Archi-
medean copulas the multivariate lower and upper tail dependence coefficients, when the limit exist,
are respectively:

λIh,ĪhL = λ
(h,d−h)
L = lim

u→0+
λ

(h,d−h)
L (u), λIh,ĪhU = λ

(h,d−h)
U = lim

u→1−
λ

(h,d−h)
U (u),

where λ(h,d−h)
L (u) =

φ(d φ−1(u))
φ((d−h)φ−1(u)) and λ(h,d−h)

U (u) =
∑d
i=0 (−1)i Cid φ(i φ−1(u))∑d−h

i=0 (−1)i Cid−h φ(i φ−1(u))
, for u ∈ (0, 1), and

where Cid and Cid−h are the binomial coefficients.

One can show that, when it exists, the lower tail dependence coefficient λIh,ĪhL is linked with
the asymptotic behaviour of φ(x) when x → +∞, and that λIh,ĪhU is linked with the behaviour
of φ(x) when x → 0 (see e.g. Charpentier and Segers, 2009; Di Bernardino and Rullière, 2016).
Thus modifying a generator φ(x) for small values of x allows to change the upper tail dependence
coefficient of the copula.
In the literature, some transformations of copulas correspond to the creation of a new Archimedean
generator T ◦ φ, by composition of a distortion function T with an initial generator φ, see for ex-
ample Durrleman et al. (2000), Valdez and Xiao (2011), Klement et al. (2005), Morillas (2005).
In previous works, we investigated the use of hyperbolic distortions of Archimedean generator,
for example in a logit scale, see Di Bernardino and Rullière (2013a,b) for the estimation of some
transformations and Di Bernardino and Rullière (2015) for illustrations with specific real data in
the dimension d = 5. These constructions have the advantage of being readily invertible, i.e. an
explicit parametric expression of both the generator and its inverse function are available. This
eases in particular calculations that are done using the transformed copula. However, the verifi-
cation of the validity of the transformed generator requires the calculation of the signs of the d
first derivatives of the transformed generator (in the case it is d times differentiable), which can
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be difficult, especially when d is greater than two, when Faa Di Bruno’s formula is involved. This
is why we propose here another approach, based on a local transformation of an Archimedean
copula. Notice that the approach here does not aim at leaving the Archimedean class of copulas:
the distorted copula will stay within this class.

Applying a local patch to a copula appears in many constructions of the recent literature. It can
be used to preserve an initial copula on a given subset of [0, 1]d, and to modify some given portions
of the copula, typically boxes of the unit hypercube. Specific constructions involving changes in
chosen boxes of [0, 1]d are Shuffles of Min, Ordinal Sums, or Gluing methods (see e.g. Siburg and
Stoimenov, 2008). A general construction of multivariate patchwork copulas is detailed in Du-
rante et al. (2013). Another specific construction in the Extreme-Value copula framework is given
in Aulbach et al. (2012), where a portion of a copula is replaced by a GPD-copula, leading to
a so-called Piecing-Together approach. An alternative distortion is also given in Cheung (2009),
where a portion of the copula is replaced by a comonotonic copula.

Here, our approach aims at preserving the Archimedean structure of an initial copula. It can be
seen as a contribution to create more valid and flexible generators. Our approach aims at changing
smoothly a univariate function, contrary to other patchwork approaches that remain multivariate.
Changing a generator on a interval [0, t0] will modify in a measurable way the C-measure of any
subset of [0, 1]d \ [0, φ(t0)]d, and one can determine at most 2d−1 successive patches corresponding
to this generator change. But conversely, it remains unclear how to construct a valid patchwork
copula that would remain Archimedean, without directly patching the generator. As we will see,
this Archimedean constraint implies more smoothness conditions (using derivatives up to an order
d− 2). One drawback of this Archimedean setting is a lower flexibility than patchwork construc-
tions, with boxes corners along the diagonal and differentiability constraints. One advantage is
that it ensures smooth changes that are not always ensured by patchwork constructions. It also
benefits from a more synthetic representation that depends only on a real function.

The structure of the paper is as follows. We give in Section 2 the definition of the proposed upper-
patched generator. In particular, in Section 2.1 we show the automatic validity of this generator,
which induces a valid distorted copula. In Section 2.2 we investigate the upper tail dependence
behaviour of the distorted copula. In Section 2.3 we show that one can choose an upper tail
dependence coefficient, without reducing the likelihood of a given data-set. At last, Section 3 gives
some illustrations where a copula exhibiting the wrong dependence behaviour is transformed using
an upper-patched generator. A comparison with alternative techniques of the recent literature is
also given in this Section 3.

2. Upper-patched generator

In this section, we introduce a new construction, that we have chosen to call upper-patched gen-
erator (the adjective upper refers to the fact that the transformation will modify the upper tail
dependence coefficient of the copula, the word patched is because it makes only a local change on
the generator). We show that this construction necessarily yields a valid Archimedean generator
in a chosen dimension d ≥ 2. We also show that any upper tail dependence coefficient can be
obtained using this construction, without reducing the likelihood of a given data-set.

We will distort the initial Archimedean copula C having generator φ. To this aim we use another
d-dimensional Archimedean copula having generator φD. Both generators will be assumed to be
valid. We first give some conditions on these generators φ and φD.

Definition 2.1 (Initial and distortion generators). Let t0 ∈ (0,+∞) be a given real value, and
d ≥ 2 be a given integer dimension. The initial generator φ : R+ → [0, 1] and distortion generator
φD : R+ → [0, 1] are such that

• φ is a valid d-dimensional Archimedean generator, thus d-monotone on R+.
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• φD is a valid d-dimensional Archimedean generator, thus d-monotone on R+, such that k-
th derivatives φ(k)

D (d0) = 0, for all k = 0, . . . , d−2 and for some d0 ∈ (0, t0]. This implies in
particular that φD is a non-strict generator with end-point d0 = inf {t ∈ R+ : φD(t) = 0} ≤
t0.

Some examples of non-strict generators from Table 4.1 in Nelsen (1999) are given in Table 1.
Remark that, when a generator φ0

D has an end-point d0, φD(t) = φ0
D(d0t0 t) is a valid d-dimensional

generator with end-point t0. Remark also that, for instance, Copula 4.1.11 in Table 1 satisfies:
φ

(k)
D (d0) = 0, for all k = 0, . . . , d− 2 with d0 = ln(2).

Copula φD(t) φ−1
D (t) parameter θ d0 λL λU

4.1.2 1− t1/θ (1− t)θ θ ∈ [1,∞) 1 0 2− 2
1
θ

4.1.7 1
θ (θ + exp(−t)− 1) − ln(θ t+ (1− θ)) θ ∈ (0, 1] − ln(−θ + 1) 0 0

4.1.8 t−1
−θ t−t−1

1−t
1+(1+θ) t θ ∈ [1,∞) 1 0 0

4.1.11 (2− exp(t))
1
θ ln(2− tθ) θ ∈ (0, 1/2] ln(2) 0 0

4.1.15 (1− t 1
θ )θ (1− t1/θ)θ θ ∈ [1,∞) 1 0 2− 2

1
θ

4.1.18 ln(t)+θ
ln(t) exp( θ

t−1 ) θ ∈ [2,∞) exp(−θ) 0 1

4.1.21 1− [−(−t+ 1)θ + 1]1/θ 1− [1− (1− t)θ]1/θ θ ∈ [1,∞) 1 0 2− 2
1
θ

4.1.22 (− sin(t) + 1)1/θ arcsin(1− tθ) θ ∈ (0, 1] π
2 0 0

Table 1. Some examples of non-strict Archimedean generators from Ta-
ble 4.1 in Nelsen (1999). λL and λU are here the classical bivariate tail
dependence coefficients and d0 the end-point of the generator.

Definition 2.2 (Patched generator). Consider an initial generator φ and distortion one φD as in
Definition 2.1, where d0 is the end-point of φD. Let t0 ≥ d0. A patched generator φ̃, built from an
initial generator φ and using a distortion generator φD, is given by

φ̃(t) =

{
pd−1(t) + (1− pd−1(0))φD(t), if t < t0,
φ(t), if t ≥ t0;

(1)

for all t ∈ R+, where pd−1(t) =
∑d−1
i=0

φ
(i)
+ (t0)

i! (t− t0)i is the Taylor expansion of φ(t) at order d− 1
(with a right derivative at order d − 1, since φ is d − 2 times differentiable and d − 1 time right
differentiable, by convexity of φ(d−2)).

The validity of this patched generator will be shown in Proposition 2.2 below. Its principle is that
the initial generator remains unchanged on [t0,+∞], so that the change acts only on the upper
tail dependence behavior the copula. On [0, t0], due to constraints on derivatives at t = t0 and
convexity conditions, the patched generator must be above the Taylor expansion pd−1(t), so that
we just add a new distortion generator φD, with suitable normalisation constant 1 − pd−1(0) to
ensure that φ̃(0) = 1.

Using a non-strict generator with φD(t0) = 0 ensures the continuity of φ̃, but the supplementary
constraints on derivatives of φD, in Definition 2.1 , are needed in order to ensure the d-monotonicity
of φ̃, as discussed in Proposition 2.2 below.

We give in Figure 1 an illustration of the patched generator φ̃ proposed in Definition 2.2 when
d = 2 (left panel) and d = 3 (right panel). As one can see in Figure 1 (left panel), the patched
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Figure 1. Left panel: A patched generator φ̃ (red line) in the case where
d = 2. We consider here the distortion generator φD(t) = 1 − t

1
θD with

θD = 2 and end-point d0 = 1 (see Copula 4.1.2 in Table 1). Right panel:
A patched generator φ̃ (red line) in the case where d = 3. Here φD(t) =

(1−t
1
θD )θD with θD = 2 and end-point d0 = 1 (see Copula 4.1.15 in Table 1).

In both plots, the function pd−1(t) for t ≤ t0 is the blue dashed tangent
line of φ(t) at abscissa t0 = 2. The considered initial Clayton generator
φ(t) = (1 + θ t)

−1
θ with θ = 3 is represented by the black curve in both

panels.

generator in d = 2 is continuous decreasing and convex, so that in particular it can be used
as a valid 2-dimensional generator. One can also verify that the proposed patched generator φ̃
in Figure 1 (right panel) is a valid 3-dimensional generator. The absolute continuity property of
the patched copulas induced by the two patched generators in Figure 1 will be studied in Remark 1.

Notice that on the domain [0, t0], as t ≤ t0 and as φ is d-monotone, φ(i)(t)(t − t0)i ≥ 0, so that
pd−1 can be written as a sum of positive terms

pd−1(t) =

d−1∑
i=0

∣∣∣∣φ(i)(t0)

i!
(t− t0)i

∣∣∣∣ .
As φ is d-monotone, one can also check that

p
(k)
d−1(t) = (−1)k1{d−1≥k}

∣∣∣∣∣∣
d−1−k∑
j=0

φ(j+k)(t0)

j!
(t− t0)j

∣∣∣∣∣∣ ,
so that pd−1 is also d-monotone and even completely monotone (see Definition 1.1).

The patched generator φ̃ was constructed in two steps. Firstly, the shape of the initial generator
φ was preserved on [t0,∞). Secondly, the generator φ was replaced by another function, say f , on
[0, t0). The following result analyses the bounds of a candidate function f , in order to preserve
the d-monotone shape of the obtained patched generator φ̃. As a consequence of this result, it is
natural to build φ̃ from pd−1(t), as pd−1(t) can be seen as the smallest d-monotone candidate for
the prolongation of φ on [0, t0].
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Proposition 2.1 (Smallest and largest suitable candidate). Let φ be an initial d-dimensional
generator as in Definition 2.1. Let f be a valid d-dimensional generator such that f(t) = φ(t) for
all t ≥ t0 and such that f(0) = 1. It holds that

i. f(t) ≥ pd−1(t), t ∈ [0, t0].
ii. f(t) ≤ pd−1(t) + (1− pd−1(0)) ·

(
t0−t
t0

)
, t ∈ [0, t0].

Thus f(t) ≤ pd−1(t) + (1− pd−1(0)) · φmax
D (t), where φmax

D (t) = ( t0−tt0
)+ is the function associated

to the lower Fréchet-Hoeffding bound. In the particular case where d = 2, f is necessarily below
the line joining the two points (0, 1) and (t0, φ(t0)).

Proof. We firstly prove the i.item. The function f is a valid d-dimensional generator, so that f is
continuous, non-increasing and d−monotone on R+, thus (d− 2) times differentiable, in particular
at abscissa t0. As a consequence, f (k)(t0) = φ(k)(t0) for all k = 0, . . . , d− 2.
Let I = [t0, t0 + ε]. Remark that, since φ(d−2) is a convex function, then in particular it is right-
differentiable in t0. As f(t) = φ(t) for any t ≥ t0, then lima→t+0 ,a∈I

f (d−1)(a) = φ
(d−1)
+ (t0).

Let us now consider a ∈ I. Then f can be written by Taylor’s theorem with the Lagrange form of
the remainder, as

f(t) =

d−2∑
k=0

(t− a)k

k!
f (k)(a) +

(t− a)d−1

(d− 1)!
f (d−1)(ξt), for t ∈ [0, t0],

where ξt ∈ [t, a]. As f is d-monotone, then (−1)d−2f (d−2) is non-negative (also non-increasing and
convex), which implies (−1)d−1f (d−1) is non-increasing. Thus

f(t) ≥
d−2∑
k=0

(t− a)k

k!
f (k)(a) +

(t− a)d−1

(d− 1)!
f (d−1)(a).

Recall that f (k)(t0) = φ(k)(t0), k = 0, . . . , d − 2. Now, by passing to the limit for a → t+0 in the
last inequality and by recalling that pd−2(t) =

∑d−2
k=0

(t−t0)k

k! φ(k)(t0), one gets,

f(t) ≥ pd−2(t) +
(t− t0)d−1

(d− 1)!
φ

(d−1)
+ (t0), for t ∈ [0, t0].

Hence the first result. We now prove the second statement of this result (see item ii.). Let
t ∈ [0, t0]. As f is d-monotone and thus convex, f(t) ≤ t

t0
f(t0) +

(
1− t

t0

)
f(0). As f(0) = 1

and p0(0) = f(t0), one easily shows that f(t) ≤ p0(0) + (1 − p0(0)) t0−tt0
. Now consider a given

integer k ≤ d − 2, so that pk+1(t) exists, and define the assumption Hk: for all t ∈ [0, t0],
f(t) ≤ pk(0) + (1 − pk(0)) t0−tt0

. We have shown that H0 holds. Now, define the function gk+1(t)

such that f(t) = pk+1(0) + (1 − pk+1(0))gk+1(t), for all t ∈ [0, t0]. If Hk holds, we easily get
(1 − pk+1(0))gk+1(t) ≤ pk(0) − pk+1(0) + (1 − pk(0)) t0−tt0

for all t ∈ [0, t0]. Defining ∆k(0) =

pk+1(0) − pk(0), we get (1 − pk+1(0))
(
gk+1(t)− t0−t

t0

)
≤ −∆k(0) + t0−t

t0
∆k(0), and finally (1 −

pk+1(0))
(
t0−t
t0
− gk+1(t)

)
≥ ∆k(0) tt0 . One can check that pk+1(0) ≤ 1 and, by d-monotonicity of

φ, ∆k(0) ≥ 0. It follows that t0−t
t0
− gk+1(t) ≥ 0, so that Hk+1 holds. By induction, the result

holds. �

Notice that in the particular case where d = 2, f is necessarily below the line joining the two points
(0, 1) and (t0, φ(t0)).
From Proposition 2.1, it follows that pd−1(t) is the smallest candidate function for φ̃(t) on [0, t0],
and that it is thus natural to replace φ(t) on [0, t0] by the sum of pd−1(t) and another positive
d-monotone function (but other constructions could be imagined, for example using a product
instead of a sum). Notice that if φD has an end-point d0 that tends to 0, the integrated distance∫ t0

0

∣∣∣φ̃(t)− pd−1(t)
∣∣∣ dt between φ̃ and its lower bound can be as small as desired. As φ is also a

d-monotone function, another consequence of previous Proposition 2.1 is that pd−1(t) ≤ φ(t), so
that in particular when t = 0 we get pd−1(0) ≤ 1.
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We will see in the further section that, due to Proposition 2.2, the quantity pd−1(t)+(1−pd−1(0)) ·
φmax
D (t) is a d−monotone function (at least in dimension d = 2), then the patched generator φ̃ can

be equal to this upper bound.

2.1. Validity. We give here conditions under which the patched generator is a valid Archimedean
copula generator. Furthermore, we study the absolutely continuity of the associated patched
copula. Remark that this latter property is crucial for statistical inference.

Proposition 2.2 (Validity of the patched generator). Consider two generators φ and φD as in
Definition 2.1, and let φ̃ be a patched distorted generator as in Definition 2.2. Then φ̃ is a valid
d-dimensional Archimedean generator.

Proof. Let n be a given order, 2 ≤ n ≤ d + 1. Assume that φ and φD are n-monotone, and that
φ

(k)
D (t0) = 0 for all k = 0, . . . , n− 2. One first shows that, up to order n− 2, φ̃ is differentiable on

(0,+∞). The calculation of the k-derivatives of the patched generator, for k ≥ 1, gives

φ̃(k)(t) = 1{t≥t0}φ
(k)(t) + 1{t<t0}

(
p

(k)
d−1(t) + (1− pd−1(0))φ

(k)
D (t)

)
(2)

Then, when t > t0, this is obvious as φ is n-monotone. When t < t0, this is clear since both pd−1

and φD are n-monotone. Now, as n−2 ≤ d−1, p(k)
d−1(t0) = φ(k)(t0) for all k ≤ n−2. Furthermore,

φ
(k)
D (t0) = 0 for all k = 0, . . . , n − 2, so that φ̃(k)(t0) = φ(k)(t0). In particular when k = 0, φ̃ is

clearly continuous. We have shown that for all t ∈ (0,+∞), the k-th derivative φ̃(k)(t) exists for
all k = 0, . . . , n− 2.
One then show that (−1)kφ̃(k) ≥ 0, for all k = 0, . . . , n − 2. Again, this is clear for t ≥ t0, and
for t < t0 as φ̃ is the sum of n-monotone functions, recalling that 1 − pd−1(0) is a non-negative
coefficient.
It remains to be shown that (−1)n−2φ̃(n−2) is a non-increasing convex function. From n-monoto-
nicity, functions (−1)n−2p

(n−2)
d−1 , (−1)n−2φ

(n−2)
D and (−1)n−2φ(n−2) are all three non-increasing

and convex functions. As φ̃(n−2) is continuous, it follows that (−1)n−2φ̃(n−2) is non-increasing.
It is also clear that (−1)n−2φ̃(n−2) is convex on [0, t0] and convex on [t0,+∞). At the junction
t = t0 of these two convex functions (−1)n−2φ̃(n−2)(t0) = (−1)n−2p

(n−2)
d−1 (t0), and one can show

that (−1)n−2φ̃(n−2)(t) ≥ (−1)n−2p
(n−2)
d−1 (t) for all t (see Proposition 2.1). The two convex portions

are bounded below by a convex function which is reached at t0, and thus (−1)n−2φ̃(n−2)(t) is
convex. Finally, we have shown that φ̃ is a continuous n-monotone function with φ̃(0) = 1 and
φ̃(+∞) = 0. In Proposition 2.2, assumptions hold true for n = d, hence φ̃ is a valid d−dimensional
Archimedean generator. �

Proposition 2.3 (Absolute Continuity). Consider two generators φ and φD as in Definition 2.1,
and let φ̃ be a patched distorted generator as in Definition 2.2. Consider one supplementary order
differentiability condition: assume that φ and φD are (d + 1)-monotone on R+. Furthermore,
assume that φ(k)

D (t0) = 0 for all k = 1, . . . , d − 1, then φ̃ is a valid d-dimensional Archimedean
generator which induces an absolutely continuous copula.

Proof. The proof of Proposition 2.2 applies by using n = d+ 1 instead of n = d. Thus, φ̃ is valid
Archimedean generator which is furthermore (d+1)-monotone. Using Proposition 4.1 (ii) in McNeil
and Nešlehová (2009), the corresponding patched copula C̃ is thus absolutely continuous. �

Remark 1 (Singular component). In the dimension d = 2, consider the patched generator φ̃
of Figure 1, left panel. One can check that all conditions in Proposition 2.3 are not fulfilled, so
that the copula may contain a singular component. In particular the considered distortion generator
φD(t) = 1−t

1
θD with θD = 2 and end-point d0 = 1 (see Copula 4.1.2 in Table 1) is not 3−monotone

on (0, t0). Consider the curve of level α = φ̃(d0), i.e. the set ∂Lα =
{

(u, v) : C̃(u, v) = α
}
. One

can easily show that the inverse generator φ̃−1 is discontinuous at abscissa α, and thus using
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Theorem 4.3.3. in Nelsen (1999), that the C̃-measure of the level line ∂Lα is strictly positive.
Furthermore, this level line can be shown to have 0 Lebesgue measure. It is thus clear that despite
φ̃ is a valid bivariate Archimedean generator, the induced copula is not absolutely continuous. The
interested reader is also referred to Example 4.6. in Nelsen (1999).
Conversely, the patched generator φ̃ presented in Figure 1, right panel is a valid trivariate generator
which induces an absolutely continuous copula.

2.2. Upper tail dependence. Here, we investigate the upper tail dependence of an upper-
patched generator.
In the following, we denote by f ∈ RVr(x0), r ∈ R, a measurable function f : (0,∞) → (0,∞)
which is regularly varying at x0 with index r, where typically x0 stands for 0, 1 or +∞ (see e.g.
Bingham et al., 1989). In particular, we say that f is regularly varying at 0 with index r if

f ∈ RVr(0) ⇔ lim
x→0+

f(s x)

f(x)
= sr, ∀ s > 0.

Now, it is well known that the upper tail behaviour of a copula is directly linked with the behavior
of φ in the neighbourhood of the attachment point φ(0) = 1 (see e.g. Charpentier and Segers,
2009; Di Bernardino and Rullière, 2016). The following proposition shows that the regular varia-
tion properties of the proposed patched generator φ̃ are directly linked to those of the distortion
generator φD.

Proposition 2.4 (Regular index for the patched generator). Consider two generators φ and φD
as in Definition 2.1, and let φ̃ be a patched distorted generator as in Definition 2.2. If 1 − φD ∈
RV1/ρ(0) with ρ ∈ [1,+∞], then 1− φ̃ ∈ RV1/ρ(0).
Furthermore, the patched upper tail dependence coefficient is given by

(3) λ̃
(h,d−h)
U =


0, if ρ = 1,∑d

i=1(−1)i Cid ·i
1/ρ∑d−h

i=1 (−1)i Cid−h ·i1/ρ
, if ρ ∈ (1,+∞),

1, if ρ = +∞.

Equation (3) in the particular bivariate case (i.e., d = 2 and h = 1) is given by

(4) λ̃
(1,1)
U =


0, if ρ = 1,
2− 21/ρ, if ρ ∈ (1,+∞),
1, if ρ = +∞.

Proof. Let x > 0 and x ≤ t0. We prove that 1− φ̃ ◦ I ∈ RV−1/ρ(+∞). To this aim, we write:

1− φ̃(x) = 1− pd−1(x)− (1− pd−1(0))φD(x)

= 1− pd−1(x)− (1− pd−1(0))φD(x) + (1− pd−1(0))− (1− pd−1(0))

= 1− pd−1(x) + (1− pd−1(0))(1− φD(x))− (1− pd−1(0))

= pd−1(0)− pd−1(x) + (1− pd−1(0))(1− φD(x)).

Denote ∆(x) := pd−1(0) − pd−1(x). Remark that ∆(x) is a positive function. Furthermore, if
φ′(t0) 6= 0, ∆ ∈ RV1(0). Let I(x) := 1

x . Notice that 1− φ̃ ◦ I can be written as a sum of positive
functions, i.e., 1 − φ̃

(
1
x

)
= f1(x) + f2(x), with f1(x) = pd−1(0) − pd−1

(
1
x

)
and f2(x) = (1 −

pd−1(0))(1− φD
(

1
x

)
). Furthermore, as provided before, f1 ∈ RV−1(+∞) and by assumption f2 ∈

RV−1/ρ(+∞). Then, by using Proposition B.1.9 in de Haan and Ferreira (2006), we obtain that
1−φ̃◦I ∈ RVmax(−1,−1/ρ)(+∞). Hence the first result. As a consequence, by using Charpentier and
Segers (2009) and Di Bernardino and Rullière (2016) we get the upper tail dependence coefficient
for the patched generator. The bivariate case comes down from the application of Theorem 4.4 in
Juri and Wüthrich (2003). Hence the results. �
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2.3. Likelihood. We now show, on a given data-set, that it is possible to choose a given upper
tail dependence behaviour, without reducing the likelihood of the copula on pseudo-observations.
The patched generator φ̃ is equal to φ on a set [t0,+∞), so that the resulting copula is unchanged on
a domainD0 that the following result gives explicitly. As a consequence of previous Proposition 2.4,
one can easily choose any upper tail coefficient of a copula C̃. This can be done without modifying
the generator φ on a set [t0,+∞), i.e. without modifying the initial copula C on a domain
D0 = [0, φ(t0)]d. It follows that whatever the pseudo-observations in (0, 1)d, one can find t0 such
that all pseudo-observations are included in D0. For such a value t0 the likelihood of the data
using copula C̃ is equal to the likelihood using copula C. The following result indicates that it is
thus possible to transform copula C into C̃, in order to choose its upper tail coefficient, without
reducing the likelihood function on a given data-set.

Proposition 2.5 (Likelihood improvement). Let C be the Archimedean copula associated to an
initial generator φ. Consider a patched generator φ̃, build from the initial generator φ and the dis-
tortion one φD as in Definition 2.2. Denote φ̃−1 the inverse function of φ̃ and let C̃(u1, . . . , ud) =

φ̃(φ̃−1(u1) + . . .+ φ̃−1(ud)), then

(5) C̃(u1, . . . , ud) = C(u1, . . . , ud), for all (u1, . . . , ud) ∈ [0, φ(t0)]d.

Let λ(h,d−h)
U the upper tail coefficient of C and L the likelihood function under C on given (pseudo-

)observations U1, . . . ,Un ∈ (0, 1)d. Let λ̃U and L̃ be corresponding quantities using the patched
generator φ̃. Let λ0 ∈ [0, 1] be a chosen upper tail coefficient, one can find t0 ∈ R+∗ and an
associated non-strict generator φD such that

(6) λ̃
(h,d−h)
U = λ0 and L̃ ≥ L.

Proof. The generator φ̃ is equal to φ on a set [t0,+∞). Equivalently, the inverse generator φ̃−1 is
equal to φ−1 on [0, φ(t0)], where t0 can be close to 0 and φ(t0) close to 1. A sufficient condition
for the copula to be unchanged is that all ui ∈ [0, φ(t0)], so that all φ̃−1(ui) = φ−1(ui). As φ−1

is decreasing, the minimal value of φ−1(ui) when ui ≤ φ(t0) is t0, so that in all cases φ−1(u1) +

. . .+ φ−1(ud) ≥ d t0 ≥ t0, ensuring that φ̃(φ−1(u1) + . . .+ φ−1(ud)) = φ(φ−1(u1) + . . .+ φ−1(ud)).
One can find a point t0 such that L̃ = L on a domain D0 = [0, φ(t0)]d. Since Equation (3) gives
a bijection between ρ ∈ [0,+∞] and λ̃

(h,d−h)
U ∈ [0, 1], we can find φD such that λ̃(h,d−h)

U = λ0,
whatever the choice of t0. Furthermore, from Equation (5), we can choose t0 such that L̃ = L: the
likelihood is ensured to be not reduced, but other choices of t0 can possibly improve the likelihood.
Hence the result. �

3. Numerical Illustrations

3.1. Proposed Patched generator. In the following example we build some valid patched gen-
erators φ̃ under assumptions of Definition 2.1 (see Proposition 2.2) and we investigate the tail
properties of the obtained distorted Archimedean copulas by using the tail concentration functions
(TCF).

Example 1 (Tail concentration function for some valid patched generators). We consider the tail
concentration function (TCF), for u ∈ [0, 1], h ≥ 1 and d− h ≥ 1,

(7) λ
(h,d−h)
LU (u) = 1{u≤1/2}λ

(h,d−h)
L (u) + 1{u>1/2}λ

(h,d−h)
U (u),

where λ(h,d−h)
L and λ(h,d−h)

U are as in Definition 1.3 (see for instance Venter, 2001; Durante et al.,
2015).

We study both the bivariate (d = 2) and the trivariate (d = 3) case by choosing distortion genera-
tors φD satisfying the assumption of Definition 2.1. Then we obtain valid d−Archimedean patched
generators (see Proposition 2.2).
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In both dimensional situations, we start from an initial Clayton generator φ(t) = (1 + θ t)
−1
θ , with

θ = 3.
- In the case d = 2 and h = 1 we choose the distortion generator φD(t) = 1 − t

1
θD with

θD = 2 and end-point d0 = 1 (see Copula 4.1.2 in Table 1). The obtained tail concentration
function is displayed in Figure 2 (first panel).

- In the case d = 3 we take the distortion generator φD = (1 − t
1
θD )θD with θD = 2 and

end-point d0 = 1 (see Copula 4.1.15 in Table 1). The obtained tail concentration function
for d = 3 and h = 1 (resp. d = 3 and h = 2) is displayed in the second panel (resp. third
panel) of Figure 2.

As one can see in Figure 2, the tail concentration function is firstly identical to the one of the initial
Clayton generator φ, then shifts toward the one of the distortion generator φD. This is the desired
feature where one aims at changing an initial generator in order to choose the final tail dependence
behavior. It is also noticeable that the patched generator φ̃, despite its validity, generates a large
variety of shapes of the tail concentration function, contrary to most classical copulas where the
concentration function is first increasing and then decreasing. For a detailed discussion of this
aspect, the interested reader is referred to Section 3 in Di Bernardino and Rullière (2016).
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Figure 2. The tail concentration functions (TCF) are represented respec-
tively in full black line for the patched generator φ̃, in blue dotted line for
the distortion generator φD and in red dashed line for initial Clayton gen-
erator φ. First panel d = 2, h = 1; second panel d = 3, h = 1; third panel
d = 3, h = 2.

Example 2 (Tail improvement). In practical applications, the proposed initial model never fits
perfectly to the reality, it is thus natural to try improving this initial model by using both the
log-likelihood and the estimated tail behavior on the data. This can be particularly useful in the
case of model misspecification. In this example we generate a data-set from a Gumbel model and
we have deliberately chosen to improve an initial misspecified Frank model. We show hereafter
that empirically, one can improve both classical criterions (as log-likelihood, AIC or BIC) and
estimated tail dependence on the data. As we will see, it is noticeable that the results obtained by
the patched model are quite good compared to the true (supposed unknown) Gumbel model.

i. Initial context. We present here the initial data and the classical estimation procedure for the
chosen initial model. We sample 2000 observations from a bivariate Gumbel copula with parameter
θ = 2. We fit an initial Frank copula on this data-set based on the ML estimator. We estimate the
tail concentration function (TCF) in (7) by using the empirical rank based estimator of λ(h,d−h)

L (u)

and λ
(h,d−h)
U (u), with d = 2 and h = 1 (the interested reader is referred to Schmidt and Stadt-

müller, 2006).

In Figure 3, one illustrates the empirical estimated TCF based on the data, the theoretical TCF
from the initial Frank generator φθ̂ and from the Gumbel copula generator with ML estimated

10



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

LOWER TAIL              UPPER TAIL

(a) with arbitrary chosen u∗’s values.
From the top u∗ = 0.55, 0.7, 0.8, 0.9, 0.97

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

LOWER TAIL              UPPER TAIL

(b) with max. likelihood estimation.
û∗ = 0.65

Figure 3. Patched model: Tail Concentration Function for different u∗
in green lines. Bold black line: Empirical TCF based on bivariate data
with sample size 2000 from Gumbel copula with parameter θ = 2. Dashed
blue line: Theoretical TCF from the initial Frank generator φ

θ̂
with ML

estimated parameter. Grey lines: 300 empirical TCFs from the initial Frank
copula with generator φ

θ̂
. Magenta line: Theoretical TCF from Gumbel

copula with ML estimated parameter.

parameters. Furthermore we represent in Figure 3, the Monte Carlo confidence intervals of 300
empirical TCFs from the initial Frank copula with generator φθ̂. In particular, we empirically
estimate the upper tail dependence coefficient λ̂(h,d−h)

U , with d = 2 and h = 1.
ii. Patched generator. We now try to improve the initial Frank copula fit proposed in the previous
paragraph. As one can see in Figure 3 (bold black and dashed blue lines) the fit is roughly suited
to the central part of the copula, but not to the upper tail of this data-set.
Creating a patched generator is reduced to the choice of the break-point t0 and the choice of the
distortion generator φD. The break-point is chosen large enough in order to change mainly the
tail dependence of the fitted copula (see Proposition 2.5), and the distortion generator φD will be
chosen in order to ensure that the patched copula is a valid copula which exhibits the target upper
tail dependence coefficient, i.e., λ̂(h,d−h)

U .
More precisely, here is the detailed procedure to patch the initial Frank generator φθ̂:

1. Tail improvement: We choose a distortion generator φD(t) satisfying admissibility condi-
tions in Definition 2.1 and exhibiting desired tail behavior, i.e. such that 1−φD ∈ RV1/ρ̂(0)

with ρ̂ = ln(2)/ ln(−λ̂(h,d−h)
U + 2), see Equation (4) when d = 2 and h = 1. Here, we have

chosen φD(t) = (1− t
1
ρ̂ )ρ̂ , i.e. generator 4.1.15 in Table 1.

2. Cutting point choice: The patched generator is then directly given by Definition 2.2,
but depends on a cutting point parameter t0. We choose the maximum likelihood estimator
for this parameter t0. It corresponds to a level u∗ = φθ̂(t0) on tail concentration functions.
The initial likelihood is thus necessarily improved.

The TCF for the obtained patched generator is displayed in Figure 3 (full red line). One can see on
this figure that the patched generator fits nicely the empirical tail concentration function, and that
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it fits quite well the theoretical concentration function for large values of u. This fit is however
obtained on one only sample. In the following, we check the statistical procedure described in
paragraph i. and ii. on M = 100 Monte Carlo simulations.

In Figure 4, we represent the obtained boxplots for the log-likelihood, AIC and BIC criteria for
the 3 considered models (true Gumbel model, initial Frank model and patched distorted model).
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Figure 4. Boxplots for the log-likelihood, AIC and BIC criteria for the 3
considered models (true Gumbel model, initial Frank model and patched
distorted model). In the red horizontal line we display the median values
for the Gumbel model. We consider M = 100 Monte Carlo simulations.

To avoid the unnecessary calculation of the density of the patched copula, the log-likelihood has
been computed numerically in all three models, using finite differences for the second order partial
derivatives. We have checked that it was giving exactly the same results when using theoretical
densities for Gumbel and Frank models.

On Figure 4, one can check that in average the patched model performs as well as the true Gumbel
model, even on penalized criterions like AIC or BIC. Due to the estimation of the empirical upper
tail dependence coefficient λ̂(h,d−h)

U , the log-likelihood is more widespread. We clearly check here
on Figures 3 and 4, that empirically, the patched generator improve both the likelihood and the
tail dependence compared to the initial unsuited Frank model. This is consistent with theoretical
results of Proposition 2.5 which state that one can choose any target upper tail dependence coef-
ficient for the patched copula without lowering the likelihood.

To conclude, we represent in Figure 5 the boxplots on the M = 100 Monte Carlo simulations of
the difference between the theoretical upper tail dependence coefficient for a Gumbel copula with
parameter 2, i.e., λU = 0.58, and the estimated values under the 3 considered models (Gumbel,
Frank, Patched). Trivially the Frank model is not able to capture the considered tail dependency
(Figure 5, second panel). Conversely, as remarked in Figures 3 and 4, in average the patched
model performs as well as the true Gumbel model (see Figure 5, first and third panels). However,
as before, the patched case is more dispersed than the (true) Gumbel one, due to the supplementary
empirical estimation of the upper tail dependence coefficient.
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Figure 5. Boxplot of the difference between the theoretical λU = 0.58 and
the estimated upper tail dependence coefficients under the 3 considered
models (true Gumbel model, initial Frank model and patched distorted
model).

3.2. Alternative upper-comonotonic distortions. We investigate here the impact of a first
alternative distortion of the literature. This distortion is given in Cheung (2009). Let Ṽ =

(Ṽ1, . . . , Ṽd) be defined as
Ṽi = U1{U>β} + βVi1{U≤β}

where (V1, . . . , Vd) is a given random vector, β ∈ (0, 1), and where U is a uniformly distributed
random variable, independent from V1, . . . , Vd (see Equation (13) in Cheung, 2009). It is shown in
the aforementioned article that Ṽ has an upper-comonotonic copula with bivariate tail dependence
coefficients λU = 1. When a strong tail dependence corresponds to a dangerous situation, it may
be a conservative strategy to change an initial copula C of a vector V into the copula C̃ of the
vector Ṽ, which exhibits perfect (comonotonic) upper tail dependence. It may be especially suited
when the sample size is small, which leads to a large uncertainty on the estimation of the empirical
upper tail dependence coefficient. One easily shows that this corresponds to the transformation

C̃(u1, . . . , ud) =

(
min
i∈I

ui − β
)

+

+ βC

(
min

(
u1

β
, 1

)
, . . . ,min

(
ud
β
, 1

))
.

In Figure 6 (left panel), one can see the impact of the choice of parameter β. The concentration
function reaches the value 1 sooner for small values of β. For higher values, it shifts more abruptly
from small values to the target 1. In Figure 6 (right panel), one can see the TCF for the value of β̂
maximizing the likelihood. While the upper-comonotonic change may be a conservative strategy,
one can see that the shift toward the comonotonicity seems here unnatural and distant from the
true theoretical Gumbel copula TCF. Furthermore, on the right panel, the strategy is conservative
after a given threshold, but overconfident before this threshold.
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(b) with maximum likelihood estimation
β̂ = 0.9942

Figure 6. Upper-comonotonic model (UC): Tail Concentration Func-
tions for different β in green lines. Bold black line: Empirical TCF based on
bivariate data with sample size 2000 from Gumbel copula with parameter
θ = 2. Dashed blue line: Theoretical TCF from the initial Frank generator
φ
θ̂
with ML estimated parameter. Grey lines: 300 empirical TCFs from the

initial Frank copula with generator φ
θ̂
. Magenta line: Theoretical TCF

from Gumbel copula with ML estimated parameter.

3.3. Alternative power distortion. Two power transformations are presented in Nelsen (1999)
(see Theorem 5.4.4). One distortion ϕα,1 allows to change the lower tail dependence coefficient
only, and will not be considered here. The other one ϕ1,β allows to change both lower and upper
tail dependence coefficients. With our notation, this distortion is equivalent to change an initial
generator φ into φ̃ with, for all x ∈ [0,∞),

(8) φ̃(x) = φ(x1/β)

In the bivariate case, this leads to the following change of both tail dependence coefficients λ̃L =

λ
1/β
L and λ̃U = 2− (2− λU )1/β .

In the Figure 7, one can see that the power-type distortion modifies both upper tail dependence
and lower tail dependence. By construction, the resulting copula is still Archimedean. However,
contrary to the proposed upper patched generator, as seen on the left panel, the distortion affects
largely the whole copula. On the right panel, one can see that choosing the parameter β in order
to fit the estimated TDC leads to a correct extreme tail dependence behavior, but drastically
diminish the global fit of the copula. Choosing another β maximizing the likelihood would lead to
an almost unchanged initial Frank copula, with almost zero upper tail dependence coefficient.
It shall be noted that by composition of the two distortions in Nelsen (1999) (Theorem 5.4.4), it is
possible to reduce the impact of the considered distortion on the lower tail. The distortion however
change the global shape of the copula, contrary to the proposed patched generator in the present
paper.
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(b) with β̂ = 2.199901

such that the λβ̂ = λ̂U = 0.63

Figure 7. Power distortion model: Tail Concentration Functions for
different β in green lines. Bold black line: Empirical TCF based on bivariate
data with sample size 2000 from Gumbel copula with parameter θ = 2.
Dashed blue line: Theoretical TCF from the initial Frank generator φ

θ̂
with ML estimated parameter. Grey lines: 300 empirical TCFs from the
initial Frank copula with generator φ

θ̂
. Magenta line: Theoretical TCF

from Gumbel copula with ML estimated parameter.

3.4. Discussion. In Figure 8 we illustrate the comparative performance of our patched generator
with other simple alternatives considered in Sections 3.2-3.3 in terms of log-likelihood and Akaike
information criterion (AIC) for different values of sample size n. As one can see, in average on the
100 Monte Carlo simulations, the patched model performs as well as the true Gumbel model in
terms of log-likelihood and AIC.
Conversely, upper-comonotonic and power models do not allow to improve the performance, even
when maximizing the likelihood. Indeed here, the tail concentration function with associated
parameters maximizing the log-likelihood are very close to the one of the initial misspecified Frank
model (see Figures 6 and 7). In this sense, results gathered in the boxplots of Figure 8 are not
surprising.
Finally, we do not present here a comparison in terms of λU since the upper-comonotonic (UC)
transformation clearly leads to λU = 1, and in the power transformation one can not set a target
λ̂U without causing a large loss in terms of log-likelihood, see, e.g., Figure 7, right panel (power
transformation is a global copula transformation).

Here is a short summary of advantages and drawbacks of the proposed patched generator, compared
to other studied alternatives. Pros: the distorted copula is still Archimedean, the tail behaviour can
be easily chosen, proposed patched distortion is only local and, as a consequence, the likelihood
is necessarily improved, even for a specifically chosen tail dependence. Among drawbacks: the
Archimedean setting is not always suited in the real-life applications. In this sense some efforts
to leave the Archimedean framework have be done in the recent literature, as for instance for
the nested or hierarchical copulas (see e.g. Hofert, 2008, 2010; McNeil, 2008; Brechmann, 2014).
Furthermore, in our strategy, the tail behaviour must be estimated, which in practice may be
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Figure 8. Boxplots for the log-likelihood and Akaike information criterion
(AIC) for true Gumbel, initial Frank, upper-comonotonic, power distortion
and patched model. Sample sizes n = 100 (first row) and n = 500 (second
row). In the red horizontal line we display the median values for the Gumbel
model. We consider M = 100 Monte Carlo simulations.

sensitive to the size of the considered data-set. For alternative methods, the tail dependence
coefficient can also be approached or exceeded (in a conservative strategy). However, once tail
behaviour chosen, these alternatives hardly improve the likelihood or approach the empirical tail
concentration function.
We conclude this section by remarking that our approach is complectly based on Archimedean
copulas. This Archimedean assumption allows to get copulas depending only on one univariate real
function: the (transformed) generator. This is interesting for obtaining some analytical expressions
for the level curves of the copula, and thus for calculating risk measures relying on level curves. It is
also used when some properties are desirable (symmetry, convex level curves, zero-set, associativity,
etc.). These properties are used for example in Cousin and Bernardino (2013); Binois et al. (2015).
Furthermore, the lower and upper tail dependence behaviours of the copula are directly linked
with the regular variation indexes of the generator (see e.g. Charpentier and Segers, 2007). At
last, in the Archimedean transformed setting, one can easily verify the validity and the absolute
continuity of the obtained patched copula since they are only related to monotonicity properties
of the patched generator (see Propositions 2.2 and 2.3).

4. Conclusion

We have presented a specific transformation of a given Archimedean generator, creating what we
called an upper-patched generator. One advantage of such a construction is the simplicity of the
method and its straightforward applicability. Contrary to general methods like patchwork copulas,
the transformation focuses on the Archimedean case. It thus ensures a synthetic representation,
simple expressions for related quantities as level curves or radial part, smoothness conditions and
absolute continuity of the transformed copula under some simple conditions. It also opens the
perspective of generalizations using nested copulas or hierarchical Kendall copulas. Compared to
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existing methods that focus on Archimedean copulas, another important advantage is the fact
that the patched generator is necessarily valid in the chosen dimension d ≥ 2. At last, another
important advantage is that the upper tail dependence coefficient of the patched generator can be
easily chosen, without likelihood reduction on a given data-set.

One drawback of the method is that the inverse function of a patched generator is obtained in
practice by numerical inversion: it is not given by a direct explicit closed-form formula and de-
pends on the choice of both the initial generator and the distortion generator. Another drawback
of the proposed methodology is that it remains suited only to Archimedean dependence structures,
as the patched copula remains within the Archimedean class.

Concerning perspectives, we have changed the upper tail dependence of an Archimedean copula by
modifying its generator φ on an interval [0, t0]; a very natural perspective for modifying the lower
tail dependence of an Archimedean copula is to change its generator φ on an interval [t0,+∞).
More generally, one can imagine creating an interval-patched generator, where an initial generator
is modified on an interval I. Among difficulties on the interval [t0,+∞), Taylor expansions of φ at
different orders are alternatively greater or lower than φ, and both diverging toward −∞ or +∞.
Creating an upper-patched inverse generator from φ−1 is also possible, but it is then not straight-
forward to get the inverse function of this patched inverse, in order to check the d-monotonicity.
Thus, it seems to us that the techniques involved for patching a generator on the other (lower)
side are probably different from the one treated in this paper; they are let to future work.
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