
HAL Id: hal-01347814
https://hal.science/hal-01347814v1

Submitted on 21 Jul 2016 (v1), last revised 23 Jul 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of Different Types of Regret in Continuous
Noisy Optimization

Sandra Astete-Morales, Marie-Liesse Cauwet, Olivier Teytaud

To cite this version:
Sandra Astete-Morales, Marie-Liesse Cauwet, Olivier Teytaud. Analysis of Different Types of Regret
in Continuous Noisy Optimization. Genetic and Evolutionary Computation Conference 2016, Jul
2016, Denver, United States. �hal-01347814v1�

https://hal.science/hal-01347814v1
https://hal.archives-ouvertes.fr

Analysis of Different Types of Regret in

Continuous Noisy Optimization

Sandra Astete-Morales, Marie-Liesse Cauwet, Olivier Teytaud
TAO/Inria Saclay-IDF, Univ. Paris-Saclay

Bat. 660, rue Noetzlin, Gif-Sur-Yvette, France

July 21, 2016

Abstract

The performance measure of an algorithm is a crucial part of its analy-
sis. The performance can be determined by the study on the convergence
rate of the algorithm in question. It is necessary to study some (hopefully
convergent) sequence that will measure how “good” is the approximated
optimum compared to the real optimum.

The concept of Regret is widely used in the bandit literature for as-
sessing the performance of an algorithm. The same concept is also used in
the framework of optimization algorithms, sometimes under other names
or without a specific name. And the numerical evaluation of convergence
rate of noisy algorithms often involves approximations of regrets. We dis-
cuss here two types of approximations of Simple Regret used in practice
for the evaluation of algorithms for noisy optimization. We use specific
algorithms of different nature and the noisy sphere function to show the
following results. The approximation of Simple Regret, termed here Ap-
proximate Simple Regret, used in some optimization testbeds, fails to es-
timate the Simple Regret convergence rate. We also discuss a recent new
approximation of Simple Regret, that we term Robust Simple Regret, and
show its advantages and disadvantages.

1 Introduction

The performance measure of an algorithm involves the evaluation of the qual-
ity of the approximated optimum with regards to the real optimum. This can
be done by using the concept of Regret, well studied in the machine learn-
ing literature and used in the noisy optimization literature, sometimes under
other names. Basically, in the optimization framework, the regret acounts for
the “loss” of choosing the point used in the algorithm over the best possible
choice: the optimum. Therefore, we measure the difference between the point
used/recommended by the algorithm and the optimum in terms of the objective
function.

In general, an optimization algorithm searches for the optimum, and to do
so, it produces iteratively search points which will be evaluated through the
objective function. And at regular steps, the algorithm must return a recom-
mendation point that will be the best approximation to the optimum so far.

1

Note that the recommendation point can be equal to a search point, but not
necessarily.

The most usual form of regret is termed Simple Regret. The Simple Regret
measures the distance, in terms of fitness values, between the optimum and
the recommendation point output by the algorithm. It is widely used (possibly
without this name) in noisy optimization [18, 14, 12]. However, some test beds,
notably the Bbob/Coco framework in the first version, did not allow the dis-
tinction between search points (at which the fitness function is evaluated) and
recommendations (which are output by the algorithm as an approximation of
the optimum), so that the Simple Regret can not be checked. This leads to the
use of an Approximate Simple Regret (name by us), which evaluates the fitness
difference between the search points (and not the recommendations) and the
optimum. Later, another form of regret, that we will term here Robust Simple
Regret, was also proposed, using recommendation points. We analyze in this
paper the use of different regrets that aim to estimate the quality of the ap-
proximated optimum in a similar way. In particular, we show to which extent
they lead to incompatible performance evaluations of the same algorithm over
the same class of noisy optimization problems, i.e. the convergence rate for the
Approximate or the Robust Simple Regret overestimates or underestimates the
convergence rate of the more natural simple regret. We also prove some new
results in terms of Simple Regret itself.

2 Framework and Regrets

This section is devoted to the formalization of the noisy optimization problem
considered and the analysed regrets. We will focus on the Simple Regret and the
alternative definitions that aim to approximate it (denoted here Approximate
Simple Regret and Robust Simple Regret). At the end of the section we will
highlight some general relationships between the presented regrets.

2.1 Continuous Noisy Optimization

Given a fitness function F : D ⊂ R
d → R, also known as objective function,

optimization (minimization) is the search for the optimum point x∗ such that
∀x ∈ D,F (x∗) ≤ F (x). The fitness function is corrupted by additive noise. In
other words, given a search point x ∈ D, evaluating F in x results in an altered
fitness value f(x,w) as follows:

f(x,w) = F (x) + w, (1)

where w is an independent random variable of mean zero and variance σ. In
the present paper, we will consider a simple case, namely a standard Gaussian
additive noise 1. In addition, we assume that F (x) = ‖x − x∗‖2, where x∗ is
randomly uniformly drawn in the domain D. Noisy optimization is then the
search for the optimum x∗ such that Ewf(x

∗, w) is approximately minimum,
where Ew denotes the expectation over the noise w.

Consider a noisy black-box optimization scenario: for a point x, the only
available information is the noisy value of F in x as given by f(x,w) for some

1More general cases such that Ef(x, w) = F (x) can be considered, as most algorithms do
not request the noise to be additive and independent; the key point is the absence of bias.

2

independent w. An optimization algorithm generates x1, x2, . . . , xn, . . . , succes-
sive search points at which the objective function is evaluated in a noisy manner.
It also generates x̃1, x̃2, . . . , x̃n, . . . which are recommendations or approxima-
tions of the optimum after n fitness evaluations are performed.

2.2 Simple Regret and variants

The Simple Regret (SR) focuses only on approximating the optimum in terms
of fitness values. Its definition is:

SRn = Ew (f(x̃n, w)− f(x
∗, w)) = F (x̃n)− F (x

∗)

Notice that the expectation operates only on w in f(x̃n, w), and not on x̃n. As
a consequence SRn is a random variable due to the stochasticity of the noisy
evaluations of the search points or the (possible) internal randomization of the
optimization algorithm.

The SR can be a part of the performance evaluation of an algorithm. In
the noise-free case it can be used to determine the precision of a method, by
ensuring that the algorithm outputs a recommendation x̃m satisfying SRm ≤ ǫ.
Even more, when testing algorithms, it is common to use the “first hitting
time” (FHT). FHT in fact refers to the first “stable” hitting time, i.e. the next
recommendation is at least as good as the previous one. This is a reasonable
assumption for algorithms solving noise-free problems. In this case the FHT
is the minimum n such that SRn ≤ ǫ, provided that the recommendation is
defined as x̃n = xi(n) with 1 ≤ i(n) ≤ n minimizing SRi(n). However, there
is no exact equivalence or natural extension for the FHT with precision ǫ on
noisy optimization. The algorithm only has access to noisy evaluations hence
it cannot compute with “certainty” SRn, which corresponds to the precision of
the algorithm.

An alternative definition, that aims to measure the precision in a similar
way to SR, is the Approximate Simple Regret2 (ASR), defined by:

ASRn = min
m≤n

F (xm)− F (x∗).

ASR takes in account the “best” evaluations among all the search points. It is
used in the Bbob/Coco framework [7, 8, 19, 9, 26, 27, 23, 31, 22], and in some
theoretical papers [15]. Notice that since ASR is non-increasing, the FHT can
be computed.

In this paper we will also discuss another variant of regret, the Robust Simple
Regret3 (RSR), defined by:

RSRn = min
k≤n

max
(k−⌊g(k)⌋)<m≤k

(F (x̃m)− F (x∗)) ,

where g(n) is a polylogarithmic function of n and ⌊·⌋ is the floor function.
The RSR is the “best” SR since the beginning of the run, sustained during
⌊g(k)⌋ consecutive recommendations 4. The polylogarithmic nature of g(·) is

2The name is proposed by us.
3Discussed on Bbob-discuss mailing list (http://lists.lri.fr/pipermail/bbob-discuss/

2014-October.txt. The name is proposed by us.
4If (k − ⌊g(k)⌋) < 0, then the max on the definition considers indexes between 1 and k

3

explained by the following argument: g(k) be large enough, so that we have
a correct recommendation confirmed over g(k) iterations, but small enough,
so that we do not have to wait many evaluations before acknowledging that a
correct recommendation has been found. The RSR uses the recommendation
x̃m instead of the search point xm used in ASR. But it uses the worst of a
sequence of recommendations.

As a side note about the definition of RSR, it was originally proposed to
use a quantile instead of the maximum. The “quantile version” (without this
name), was proposed to become part of the performance measure in Bbob/Coco.
However, we will show that it is possible to get a RSR decreasing quicker than
the SR, so that RSR is a poor approximation of SR. The result is valid even
with the quantile 100%, i.e. the maximum. The same is possible with any other
quantile.

The introduction of RSR apparently outplays ASR as an approximation
of SR by two means. First, by using recommendations rather than search
points. Second, by checking on multiple recommendations that the optimum is
correctly found with a given precision. In addition, as well as ASR, it is non-
increasing, therefore it can be used for fastening experiments on testbed. Please
note however that this advantage makes sense only when the target fitness value
is known, which is rarely the case except in an artificial testbed.

To investigate the convergence rate of the regrets, we will use a slightly
different notation than classical works on noisy optimization. Usually the rates
are given in terms of O(h(n)) where h(n) is some function depending on the
number of evaluations n. The state of the art shows that in many cases ([17,
18, 29, 15]) SRn = O(nψ) where ψ < 0 implies that the algorithm converges.
Therefore, there is a linear relationship between log(SRn) and log(n) with a
slope ψ, where log(·) is the natural logarithm. We will then refer to the slope
of the regret when speaking about the convergence rate of the regret. The
definition of the slope of the SR is:

s(SR) = lim sup
n→∞

log(SRn)

log(n)

We have the corresponding definition for the slope of ASR and RSR. Notice
that if the slope is close to 0, then the algorithm (at best) converges slowly. On
the contrary, if the slope is negative and far away from 0, then the algorithm is
fast.

2.3 General results for SR, ASR and RSR: RSR is an op-
timistic approximation of SR

The problems analysed in this paper arise from the gap between s(SR) and
s(ASR) or s(RSR). Ideally we would like to have a regret that can be used
easily and that approximates the Simple Regret. In the following sections (3 and
4) we will see with specific examples there is indeed a gap between s(SR) and
s(ASR). In some cases using ASR overestimates the performance of algorithms
and in others it underestimates their performance. An extreme case is detailed
in section 4, where we prove that Alg. 3 has optimal convergence rate in term
of SR whilst for ASR it does not converge at all.

In general, by definition, we have that for any algorithm, s(RSR) ≤ s(SR).
From this point of view, RSR is a correct lower bound for SR. In other words,

4

if an algorithm is fast in terms of SR, its performance measured by RSR will be
at least as good. Unfortunately, this bound is not nearly tight. We will prove
that a small modification on the algorithm induces s(RSR) ≤ s(ASR) whereas
s(SR) is the same - so that, for cases in which s(ASR) < s(SR) (sometimes by
far, as explained in later sections), we get s(RSR) < s(SR) (sometimes by far).

Let A be an optimization algorithm and its search points (xi)i≥1. Consider
another algorithm denoted Ag and its successive search points (Xi)i≥1. The
search points of Ag are obtained by repeating ⌊g(n)⌋ times, for any n, the
search points xn of A. Hence, we get the assignment:

X1 = . . . = X1+⌊g(1)⌋ ← x1
X2+⌊g(1)⌋ = . . . = X2+⌊g(1)⌋+⌊g(2)⌋ ← x2

...
Xn+

∑n−1
j=1 ⌊g(j)⌋

= . . . = Xn+
∑

n
j=1⌊g(j)⌋

← xn

Let the recommendation points of Ag be defined by X̃n = Xn for any n.
Therefore Ag is a slightly modified version of A since there is an additional
polylogarithmic number of evaluation in Ag, assuming g is polylogarithmic.
The RSR of Ag (say RSRAg) converges approximately as fast as the ASR
of the original algorithm (say ASRA). The extra polylogarithmic number of
evaluations does not affect the linear convergence in log/log scale. Hence, for
any algorithm A, s(RSRAg) ≤ s(ASRA).

The general relationships between the slopes of the SR and its approxima-
tions are not conclusive since the bounds are not tight. We will show some
gaps between the different approximations of SR and the SR itself. In the fol-
lowing sections we present five algorithms that will serve as clear examples to
see the differences of using one or another regret as performance measures. We
will focus in two types of algorithms: the first group, in Section 3, consists of
Evolutionary Algorithms and Random Search and the second, in Section 4, of
algorithms using approximations of the gradient of the objective function. For
each class of algorithms, we exhibit convergence rate bounds on s(SR), s(ASR)
and s(RSR). Section 5 displays some experimental works in order to confront
theory, conjecture and practice.

3 Evolutionary Algorithms

On the group of Evolutionary Algorithms (EAs), we present Random Search
(RS), Evolution Strategy (ES) and Evolution Strategy with resampling (ES+r).
They all use comparisons between fitness values to optimize the function.

5

3.1 Random Search

Random Search (Alg. 1) is the most basic of stochastic algorithms [24]. The
search points x1, . . . , xn, . . . are independently identically drawn according to
some probability distribution. x̃n is usually the search point with the best
fitness so far, i.e. with yi the fitness value obtained for xi, we have x̃n = xi with
i ∈ {1, . . . , n} minimizing yi.

Algorithm 1 Random Search.

1: Initialize: Candidate solution x̃ randomly drawn in [0, 1]d

2: bestfitness ← f(x̃)
3: Initialize: n← 1
4: while not terminated do

5: Randomly draw y in [0, 1]d.
6: fitness ← f(y)
7: if fitness < bestfitness then

8: x̃← y
9: bestfitness ← fitness

10: end if

11: n← n + 1
12: end while

return x̃

We consider in this paper a simple variant of RS to show clearly the contrast
between SR and ASR.

Framework for RS: each search point is randomly drawn independently
and uniformly, sampled once and only once, with the uniform probability dis-
tribution over [0, 1]d. The objective function is the noisy sphere function f :

f(x) = ‖x− x∗‖2 +N . (2)

where N is a standard Gaussian variable.
In this setting, existing results in the literature imply a bound on s(ASR)

as explained in Property 1. We will prove then that the slope of the Simple
Regret is not negative, as formalized in Theorem 1.

3.1.1 Approximate Simple Regret: s(ASR) = −2/d

Property 1. Consider RS described in Alg. 1, with the framework above. Then
almost surely ASRn = O

(

1
n2/d

)

.

Proof. [16] has shown that among n points generated independently and uni-
formly over [0, 1]d the closest search point to the optimum is almost surely at
distance O

(

1
n1/d

)

from the optimal point x∗ within a logarithmic factor. Hence
for the sphere function5, the Approximate Simple Regret ASRn almost surely
satisfies: ASRn = O

(

1
n2/d

)

up to logarithmic factors.

3.1.2 Simple Regret: s(SR) is not negative

Theorem 1. With the framework above, for all β > 0, the expected simple
regret E(SRn) is not O(n−β).

Proof. See supplementary material.

5The result also holds for a function locally quadratic around a unique global optimum.

6

Remark: Roughly speaking, the proof of the theorem is based on the fact
that with a non-zero probability a search point which does not have the best
fitness value, is selected as the best point in Lines 7-9 of Alg. 1.

3.2 Evolution Strategies (ES)

Evolution Strategies [25, 28] are algorithms included in the category of Evo-
lutionary Algorithms (EAs). In general, EAs evolve a population until they
find an optimum for the objective or fitness function. The process starts by a
population randomly generated. Then the algorithm iterates creating new indi-
viduals using crossover and mutation and then evaluating this new population
of offspring and selecting the ones - regarding to their fitness values - that will
become the parents of the next generation.

ES have some more specific selection and mutation processes. Usually the
mutation is performed by creating new individuals starting from the parent and
adding a random value to it (usually normally distributed around the parent).
There are various rules for choosing the step-size.The selection in ES is usually
deterministic and rank-based. This is, the individuals chosen to be the parents
of the next generations are the ones that have the best fitness values.

When dealing with noisy function, the sorting step of the ES is disturbed
by the noise and misranking might occur. To tackle this problem, Arnold and
Beyer, in [1, 2] propose to increase the population size. An alternative is to
evaluate multiple times the same search point and average the resulting fit-
ness values. For a given search point x ∈ D, r evaluations are performed:
(f(x,w1), . . . , f(x,wr)) and the fitness value used in the comparisons is the av-
erage of these evaluations 1

r

∑r
i=1 f(x,wi). In particular, the variance of the

noise is divided by r. Several rules have been studied: constant [13], adap-
tive (polynomial in the inverse of the step-size), polynomial and exponential [5]
number of resamplings. A general (µ, λ)-ES is presented in Algorithm 2.

Algorithm 2 (µ, λ)-Evolution Strategy. The resampling function r may be constant or depend

on the number of iterations and possibly on the step-size. When r = 1, the algorithm reduces to an

ES without resampling. N is a standard Gaussian of dimension d. Here, the index n is the number

of iterations

1: Input: Parameters µ, λ and resampling function r
2: Initialize: Parent x̃ and Step-size σ
3: Initialize: n← 1
4: while not terminated do

5: Mutation step: ∀i ∈ {1, . . . , λ}, x(i) ← x̃ + σN
6: Evaluation step:

∀i ∈ {1, . . . , λ} y(i) ← 1
r(n)

∑r(n)
j=1 f(x

(i), wj)

7: Selection step: Sort the population according to their fitness and select the µ best: (x(i))µ

8: Update Parent: x̃ from σ, (y(i))µ and (x(i))µ

9: Update Step-size: σ from σ, (y(i))µ and (x(i))µ

10: n← n + 1
11: end while

return x̃

3.2.1 Regrets for ES without resampling

It is known [3] that when the noise strength is too big, classical evolution strate-
gies (without reevaluations or other noise adaptation scheme) do not converge,
they stagnate. [10] experimentally shows that an ES without any adaptation to

7

the noisy setting stagnates around some step-size and at some distance of the
optimum. The divergence results suggest that the ES in this case is only as a
more sophisticated version of RS. The steps of the ES are more complicated,
but not sufficiently adapted to handle the noise of the function. We propose
then a Conjecture on the convergence rates for ES.

Conjecture 1 (Convergence rates for ES). Evolution Strategies without a noise
handling procedure have the same convergence rates as Random Search for all
regrets.

3.2.2 Simple regret for ES with resamplings

We will see that the results are more encouraging than in Section 3.2.1 when we
consider an ES with some adaptation to mitigate the effect of the noise. We will
assume that the function r (number of revaluations per point) in Alg. 2 grows
polynomially or exponentially with the number of iterations.

The work in [5] shows that ES that include an exponential number of reval-
uations converges with high probability to the optimum. The convergence rate
is s(SR) = K for some K < 0 under assumptions about the convergence in ES
in the noise-free case. Moreover [4] shows that ES, under general conditions,
must exhibit K > − 1

2 . There is no formal proof of an upper bound that can
theoretically ensure a value or a range for s(SR). However, the experiments on
[5] suggest that the K = − 1

2 is reached for functions with a quadratic Taylor
expansion and additive noise (as in Eq. 1). Hence we propose Conjecture 2:

Conjecture 2 (SR for ES + r). Consider 0 < δ < 1. For some resampling
parameters (i.e. for some revaluation function r), Evolution Strategies with
resampling (Alg. 2) satisfy s(SR) = −1/2 with probability 1− δ.

This conjecture applies to some ES with step-size scaling as the distance to
the optimum, i.e. σn used for generating the nth search point has the same
magnitude as ‖x̃n − x∗‖ ([25, 11]). [10] has proposed variants of ES for quick-
ening the convergence thanks to large mutations and small inheritance. Such
an approach is not covered by the bound in [4] and it is for sure an interesting
research direction - maybe it might reach slope s(SR) = −1.

3.2.3 Approximate simple regret for ES with resamplings

We have seen that an ES can reach a slope of SR approximately − 1
2 , when using

resamplings. However, ASR can be better by slightly modifying the original ES,
and therefore achieving a faster convergence rate than the real one represented
by s(SR) We consider an ES - calledMES+R for Modified ES with Resampling.
Let rn be exponential in the number of iterations: rn = R · ζn, R > 0, ζ > 1.
MES +R is as in Alg. 2 with the following modifications. At iteration n:

Generation: (Alg. 2, Line 5) Generate additional rn “fake” offspring
{x(i)f : 1 ≤ i ≤ rn}, with the same probability distribution as the λ offspring.
They will be evaluated one time each, but they will not be taken into account
for the selection. Note that this means that they are part of the sequence of
points considered by ASR, but not by SR.

Evaluation: (Alg. 2, Line 6) Evaluate rn times each “true” offspring {x(i) :
1 ≤ i ≤ λ} to obtain their corresponding fitness value y(i). Evaluate one time

8

each “fake” offspring. Therefore, performing (λ + 1)rn function evaluations in
each iteration.

Then, under some reasonable convergence assumptions which are detailed
in theorem 2 below, the ASR reaches a faster rate: s(ASR) = −1/2− 2/d with
high probability.

Theorem 2. Consider 0 < δ < 1. Consider an objective function F (x) = ‖x‖2,
where x ∈ R

d. Consider a MES +R as described previously. Assume that:

(i) σn and ‖x̃n‖ have the same order of magnitude:

‖x̃n‖ = Θ(σn). (3)

(ii) log− log convergence occurs for the SR:

log(‖x̃n‖)

log(n)
−→

n→+∞
−
1

2
with probability 1− δ, (4)

Then, with probability at least 1− δ, s(ASR) = −1/2− 2/d.

Proof. See supplementary material.

Remark 1. The assumption of s(SR) = −1/2 is based on the convergence of
ES in the noise-free case and it is essential to prove Theorem 2. This rate of
convergence can be proved when the ES converges in the noise-free case (details
on [5]). But the convergence of ES has not been formally proved, not even for
the noise-free case. There is an important element given in [6], showing that
1
n log ||xn − x∗|| converges to some constant, but this constant is not proved
negative. Furthermore, parameters ensuring convergence in the noisy case are
unspecified in [5].

4 Stochastic Gradient Descent

For the group of Stochastic Gradient Descent Algorithms, we consider the ones
presented by Shamir [29] and Fabian [18] which approximate the gradient of
the objective function. We will denote them Shamir algorithm and Fabian algo-
rithm respectively. Both of them approximate the gradient of the function using
function evaluations by different methods, therefore they remain in the black-
box category. Fabian algorithm uses the average of redundant finite differences
and Shamir algorithm a one point estimate gradient technique.

The convergence rates in terms of SR are proved in [29] and [18]. For
Shamir it is shown that s(SR) = −1 in expectation for quadratic functions.
Fabian ensures a rate s(SR) = −1 approximately and asymptotically only for
limit values of parameters. However, it requires only smooth enough functions,
so the class of functions is wider than the one considered in [29]. This rate
s(SR) = −1 has been proved tight in [14]. Hence, Shamir and Fabian algorithm
are faster than ES’s, which cannot do better than s(SR) = − 1

2 , at least under
their usual form [4].

9

Algorithm 3 Shamir Algorithm for Quadratic functions. ΠW represents the projection over

the space W

1: Input: Parameters λ and ǫ
2: Initialization: x̂1 ← 0, n← 1
3: while not terminated do

4: Pick r ∈ {−1, 1}d uniformly at random
5: xn ← x̂n + ǫ√

d
r

6: Evaluate: v ← f(xn, w)

7: ĝ ←
√

dv
ǫ r

8: x̂n+1 ← ΠW

(

x̂n + 1
λn ĝ

)

9: Recommend: x̃n ← ⌈
2
n ⌉

∑n
k=⌈n/2⌉ x̂k

10: n← n + 1
11: end while

return x̃n

4.1 Shamir’s quadratic algorithm

Shamir algorithm presented in [29] for quadratic functions is Algorithm 3.
One of the key points in Alg. 3 are that there is only one evaluation per

iteration (somehow in the spirit of Simultaneous Perturbation Stochastic Ap-
proximation SPSA [30, 20]). The second important point is that the expectation
of the distance between search points and recommendations is constant, which
implies that the search points do not converge towards the optimum! This is
not a problem for the convergence in terms of SR, when search points xn and
recommendations x̃n are distinguished, but it makes a difference for ASR.

Shamir algorithm has an optimal convergence rate in expectation (s(SR) =
−1) for quadratic functions. This fact should be acknowledge by any other
regret used to evaluate its performance which aims to aproximate the SR. But
intuitively in the framework of Shamir algorithm, the s(ASR) is presumably a
bad approximation of s(SR) due to the queries at a constant distance of the
current recommendation. This convergence rate in terms of s(ASR) could not
be obtained from the results in [29]. Nonetheless, we prove in a general way
that as long as the results for Shamir algorithm are satisfied almost surely,
then s(ASR) = 0 a.s. Therefore we present the latter result in Theorem 3
and a conjecture on the convergence rate of s(ASR) in expectation for Shamir
algorithm.

Theorem 3. Assume that the optimum x∗ is unique and that (x̃n) is a sequence
of recommendation points converging a.s. to x∗. Assume that the sequence of
evaluation points (xn) is such that ∀n, xn 6= x∗ a.s. and that ‖xn − x̃n‖ is
constant. Then, a.s.

s(ASR) = 0.

Proof. x̃n converges almost surely to the optimum and xn is at a constant
distance from x̃n. Therefore the distance between xn and the optimum converges
to a constant. This implies that the minimumminni=1 ‖xi−x

∗‖2 is lower bounded
by some constant. Therefore s(ASR) = 0.

Conjecture 3 (ASR for the Shamir algorithm). Shamir algorithm also verifies
s(ASR) = 0 a.s. on quadratic functions.

10

4.2 Fabian Algorithm

Algorithm 4 presents the algorithm studied in [18]. Unlike Algorithm 3, Fabian
algorithm performs several evaluations per iteration, and the distance between
search point and recommandation decreases.

Algorithm 4 Fabian Algorithm. ei is the ith vector of the standard orthogonal basis of R
d

and e1,s/2 is the 1st vector of the standard orthogonal basis of R
s/2. vi is the ith coordinate of

vector v. (x̂i) is the ith coordinate of intermediate points (x̂). (x(i,j)+) and (x(i,j)−) are the search

points and x̃ is the recommendation. Here, the index n is the number of iterations.

1: Input: An even integer s > 0. Parameters a, α, c, γ.
2: Initialization:

3: ui ←
1
i , ∀ i ∈ {1, . . . , s/2}

4: Matrix U ←
(

‖u2i−1
j ‖

)

1≤i,j≤s/2

5: Vector v ← 1
2U

−1e1,s/2

6: x̃← x ∈ [0, 1]d uniformly at random
7: n← 1
8: while not terminated do

9: an ←
a

nα , cn ←
c

nγ

10: ∀j ∈ {1, . . . , s/2}, ∀i ∈ {1, . . . , d}
11: Evaluate:

x(i,j)+ ← x̃+ cnujei x(i,j)− ← x̃− cnujei

12: x̂i ←
1
cn

∑s/2
j=1 vj

(

f(x(i,j)+) − f(x(i,j)−)
)

13: Recommend: x̃← x̃− anx̂
14: n← n + 1
15: end while

return x̃

The work in [18] gives the convergence rate in terms of SR. The result is
presented here as Theorem 4. The value of the s(SR) depends on the parameters
of the algorithm and it is ensured a.s.

Theorem 4 (Simple Regret of Fabian algorithm). Let s be an even positive
integer and F be a function (s+ 1)-times differentiable in the neighborhood of
its optimum x∗. Assume that its Hessian and its (s+1)th derivative are bounded
in norm. Assume that the parameters given in input of Algorithm 4 satisfy:
a > 0, c > 0, α = 1, 0 < γ < 1/2 and 2λ0a > β0 where λ0 is the smallest
eigenvalue of the Hessian. Let β0 = min (2sγ, 1− 2γ). Then, a.s.:

nβ(x̃n − x
∗)→ 0 ∀ β < β0/2 (5)

In particular, when F is smooth enough, we get s(SR) = −2β.

Remark 2. Note that s(SR) optimal when γ = 1
2 (s + 1)−1. In this case,

β0 = s
s+1 →s→∞

1. β0 can be made arbitrarily close to 1, so 2β also, but then γ

goes to 0. Hence we get the values of Table 1, with 2β = 1− e, e > 0 and close
to 0.

This shows that the Fabian algorithm can have s(SR) arbitrarily close to
−1, which is optimal. As in the case of Shamir, this optimal performance should
be captured by the regret used to evaluate the algorithm. Unfortunately, this
is not the case, as detailed in Theorem 5.

11

Theorem 5 (ASR of Fabian algorithm). Let F be a λ-convex and µ-smooth
function corrupted by an additive noise with upper bounded density and with
optimum randomly drawn according to a distribution with upper bounded density.
Then, a.s.,

s(ASR) = −min(2β, 2γ).

Proof. See supplementary material.

Remark 3. Theorem 5 shows that s(ASR) = −min(2β, 2γ), i.e., when then
Fabian algorithm is optimized for SR, s(ASR) is close to −2γ, close to 0.

4.3 Shamir and Fabian adapted for ASR

Both algorithms presented in this section have a clear difference between the
search and recommendation points. This fact is not automatically distinguished
when we are evaluating their performance using for example a test bed. If we
modify the algorithms we can achieve ASR approximating well the optimal
behavior reported by SR. A modification such as sampling one point out of two
at the current recommendation, without using it in the algorithm can imply
s(ASR) = s(SR) arbitrarily close to −1.

12

SR ASR RSR

conv. type conv. type conv. type

Evolutionary Algorithms

RS 0 expect. − 2
d

a.s. − 2
d

a.s.

ES 0 expect. − 2
d a.s. − 2

d a.s.

ES + r − 1
2 high prob. − 1

2 high prob. − 1
2 high prob.

MES+ r − 1
2 high prob. −1

2
− 2

d
high prob. −1

2
− 2

d
high prob.

Stochastic Gradient

Shamir −1 expect. 0 expect. −1 expect.

Shamir for ASR −1 expect. −1 expect. −1 expect.

Fabian −(1− e) a.s. −e′ a.s. −(1− e) a.s.

Fabian for ASR −(1− e) a.s. −(1− e) a.s. −(1− e) a.s.

Table 1: Convergence rates for the regrets analysed on this paper. The “convergence” column refers to the convergence rate and the
“type” column specifies the type of convergence: with high probability, in expectation, almost surely. The results in bold are proved and
the others are conjectures, all of them presented in this paper.

1
3

