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Many two-phase flow situations, from engineering science to astrophysics, deal with transition from dense (high concentration of the condensed phase) to dilute concentration (low concentration of the same phase), covering the entire range of volume fractions. Some models are now well accepted at the two bounds, but none is able to cover accurately the entire range, in particular regarding waves propagation. In the present work an alternative to the Baer and Nunziato (1986) (BN for short) model is built. The corresponding model is hyperbolic and thermodynamically consistent. Contrarily to the BN model that involves 6 wave speeds, the new formulation involves 4 waves only, in agreement with the Marble (1963) model based on pressureless Euler equations for the dispersed phase, this model being well accepted for low particle volume concentrations. In the new model, the presence of pressure in the momentum equation of the particles and consideration of volume fractions in the two phases render the model valid for large particle concentrations. A symmetric version of the new model is derived as well for liquids containing gas bubbles. This model version involves 4 wave speeds as well, but with different wave's speeds. Last, the two sub models with 4 waves are combined in a unique formulation, valid for all volume fractions. It involves the same 6 wave's speeds as the BN model, but at a given point of space 4 waves only emerge, depending on the local volume fractions. Basically, when the gas phase is in dominant concentration, it carries sound waves and reversely for the liquid phase. The new model is tested numerically on various test problems ranging from separated phases in a shock tube to shock -particle cloud interaction. Its predictions are compared to BN and Marble models.

I. Introduction

It is well accepted that hyperbolic models are mandatory to deal with phenomena involving wave propagation. This is the case for multiphase flow mixtures in many situations such as in particular shocks and detonations propagation in granular explosives and in fuel suspensions, as well as liquid-gas mixtures with bubbles, cavitation and flashing, as soon as motion is intense and governed by pressure gradients. This is thus the case of most unsteady two-phase flows situations. Wave propagation is important as it carries pressure, density and velocity disturbances. Sound propagation is also very important as it determines critical (choked) flow conditions and associated mass flow rates. It has also fundamental importance on sonic conditions of detonation waves when the two-phase mixture is exothermically reacting [START_REF] Petitpas | Modelling detonation waves in condensed energetic materials: Multiphase CJ conditions and multidimensional computations[END_REF]. Hyperbolicity is also related to the causality principle, meaning that initial and boundary conditions are responsible of time evolution of the solution. When dealing with first-order partial differential equations it means that the Riemann problem must have a solution, and the Riemann problem is correctly posed only if the equations are hyperbolic. However, only a few two-phase flow models are hyperbolic in the whole range of parameters. The [START_REF] Baer | A two-phase mixture theory for the deflagration-todetonation transition (DDT) in reactive granular materials[END_REF] model seems to be the only formulation able to deal with such requirement. Its symmetric extension [START_REF] Saurel | Symmetric model of compressible granular mixtures with permeable interfaces[END_REF] facilitates the Riemann problem resolution as the corresponding model involves 7 wave's speeds (instead of 6 in the original version) (see also [START_REF] Ambroso | A Godunov-type method for the sevenequation model of compressible two-phase flow[END_REF] for similar conclusions). However, in the dilute limit at least, the acoustic properties of this model seem inconsistent [START_REF] Lhuillier | On the quest for a hyperbolic effective-field model of disperse flows[END_REF]. Indeed with this model, the dispersed phase sound speed corresponds to the one of the pure phase, while this phase is not continuous and unable to propagate sound in reality. When the phase is not continuous (dispersed drops in a gas, dispersed bubbles in a liquid), the associated sound speed should be lowered (and possibly vanish), such effect being absent of the formulation. In the low particles concentration limit, the [START_REF] Marble | Dynamics of a gas containing small solid particles[END_REF] model is preferred. This model corresponds to the Euler equations with source terms for the gas phase and pressureless gas dynamic equations for the particle phase (see also [START_REF] Zeldovich | Gravitational instability: An approximate theory for large density perturbations[END_REF]. This model is thermodynamically consistent and hyperbolic as well, except that the particle phase equations are hyperbolic degenerate. In this model, contrarily to the BN model, the sound speed is absent of the particles phase equations and this behaviour seems more physical in this limit. However, the Marble model has a limited range of validity as the volume of the dispersed phase is neglected, this assumption having sense only for low (less than per cent) condensed phase volume fraction. There are thus fundamental differences between these two models:

-The volume occupied by the condensed phase is considered in BN while it is neglected in the dilute model, restricting its validity to low volume fraction of the dispersed phase. -Condense phase compressibility if considered in BN while incompressible particles are assumed in the dilute formulation. -Acoustic properties of the BN model are well accepted in the dense domain but seem inappropriate in the dilute limit. Even if these two models can be used in the entire space of two-phase flow variables without yielding computational failure (this is characteristic of thermodynamically consistent hyperbolic models) validity of their results is questionable when they are used out of their range of physical validity. This issue has been clearly understood in [START_REF] Lhuillier | On the quest for a hyperbolic effective-field model of disperse flows[END_REF], [START_REF] Mcgrath | A compressible two-phase model for dispersed particle flows with application from dense to dilute regimes[END_REF] and Houim and Oran (2016) where various attempts to build new formulations are reported. However none seem able to cover the entire range of volume fractions while remaining hyperbolic, thermodynamically consistent and having physically acceptable acoustic properties. The aim of the present paper is to build an alternative to the BN model with improved acoustic properties.

The new model is derived from number density and particle radius (or bubble radius) evolution equations resulting in a volume fraction evolution equation expressed in conservation form with relaxation. The switch from a transport equation in the BN model to a conservation equation in the present formulation has dramatic influence on wave's propagation and structure of the equations. The paper is organised as follows. The well-known BN and Marble models are recalled in Section II to present the main alternatives of existing two-phase hyperbolic models. Derivation of the volume fraction of the new model is adressed in Section III. The new model is then derived in Section IV and its hyperbolicity demonstrated. Its compatibility with the model of [START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF] is demonstrated as asymptotic limit of the new model, in the limit of stiff mechanical relaxation. To examine typical solutions an appropriate hyperbolic solver is needed and its derivation is addressed in Section V. Computed results are then examined in Section VI, compared to exact and experimental solutions when available. A symmetric variant of the new flow model, aimed to model bubbly liquids, is derived in Section VII and typical solutions are examined. A general model, aimed to address any flow volume fractions is then derived in Section VIII. Conclusions are given in Section IX.

II. Well-known limit models

Two hyperbolic models are widely used in the two-phase flow literature (another option being given in [START_REF] Romenski | Compressible two-phase flows: two-pressure models and numerical methods[END_REF]. Their main characteristics are recalled hereafter.

a) BN type model

The [START_REF] Baer | A two-phase mixture theory for the deflagration-todetonation transition (DDT) in reactive granular materials[END_REF] is recalled hereafter, in the absence of granular effects ('configuration' pressure and energy) as well as heat and mass transfers. Mechanical relaxation effects only are considered in addition to wave's dynamics. The symmetric variant of [START_REF] Saurel | A multiphase model with internal degrees of freedom: Application to shock-bubble interaction[END_REF] is presented rather than the original BN. Phase 1

1 1 I 1 2 u (p p ) t x ∂α ∂α + = µ - ∂ ∂ 1 1 ( ) ( u) 0 t x ∂ αρ ∂ αρ + = ∂ ∂ (II.1) 2 1 1 1 I 2 1 ( u) ( u p) p (u u ) t x x ∂ αρ ∂ αρ + α ∂α + = + λ - ∂ ∂ ∂ ' 1 1 1 I I I 2 1 I 1 2 ( E) ( ( E p)u) p u u (u u ) p (p p ) t x x ∂ αρ ∂ α ρ + ∂α ′ + = + λ --µ - ∂ ∂ ∂ Phase 2 2 2 ( ) ( u) 0 t x ∂ αρ ∂ αρ + = ∂ ∂ (II.2) 2 2 2 2 I 2 1 ( u) ( u p) p (u u ) t x x ∂ αρ ∂ αρ + α ∂α + = -λ - ∂ ∂ ∂ ' 2 2 2 I I I 2 1 I 1 2 ( E) ( ( E p)u) p u u (u u ) p (p p ) t x x ∂ αρ ∂ α ρ + ∂α ′ + = -λ -+ µ - ∂ ∂ ∂ With the following definitions and notations: -k α , k ρ , k u , k E , k
p denote respectively the volume fraction, material density, velocity, total energy and pressure of the phase k (k=1,2).

-The total energy of the phases read,

2 k k k 1 E e u 2 = + .
-The pressures are given by convex equations of state of the form k k k k p p ( , e ) = ρ .

-The velocities relax each other to a common equilibrium one at a rate controlled by λ, modelled by conventional drag force correlations and specific interfacial area.

-The pressure relax each other to a common equilibrium one at a rate controlled by µ. Estimates for this relaxation parameter are given in the references above:

I 1 2 A Z Z µ = +
, where I A represents the interfacial exchange area.

-The interfacial variables are estimated by:

1 1 2 2 1 2 1 I 1 2 1 2 Z u Z u p p u sgn Z Z x Z Z + ∂α -   = +   + ∂ +   , 2 1 2 2 1 1 ' I Z Z u Z u Z u + + = , 2 1 1 2 1 1 2 I 2 1 1 2 1 2 Z p Z p Z Z sgn (u u ) Z Z x Z Z + ∂α   π = + -   + ∂ +   , ' 2 1 1 2 I 1 2 Z p Z p Z Z + π = + .
This symmetric formulation of the BN model has some advantages:

-Its extension to more than two materials is quite easy.

-It is able to deal with contact and permeable interfaces [START_REF] Saurel | A multiphase model with internal degrees of freedom: Application to shock-bubble interaction[END_REF][START_REF] Saurel | Symmetric model of compressible granular mixtures with permeable interfaces[END_REF].

-It involves an extra wave, not aligned with the condensed phase velocity, this property having benefits at least for numerical resolution (Ambroso et al., 2012, Furfaro and[START_REF] Furfaro | A simple HLLC-type Riemann solver for compressible non-equilibrium two-phase flows[END_REF]. This system admits the following mixture entropy equation:

( ) ( ) 1 1 2 2 1 1 1 2 2 2 2 2 2 1 1 1 2 1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 1 2 2 2 1 2 1 2 1 2 2 1 2 2 1 2 ( ) s ( ) s ( ) u s ( ) u s t x Z Z Z 1 (p p ) sgn Z (u u ) (u u ) (p p ) T x x Z Z Z Z Z Z Z Z 1 (p p ) sgn Z (u u ) T x x Z Z ∂ αρ + αρ ∂ αρ + αρ + = ∂ ∂    ∂α  ∂α     - + - + λ - + µ -       ∂ ∂ + +   +        ∂α  ∂α   + - + - + λ     ∂ ∂   +   2 2 2 2 1 2 1 1 2 1 2 Z (u u ) (p p ) Z Z Z Z     - + µ -   + +    
Its 7 associated wave speeds are:

I I u λ = , 1 1 u λ = , 2 1 1 u c λ = + , 3 1 1 u c λ = -, 4 2 u λ = , 5 2 2 u c λ = + , 6 2 2 u c λ = -.
This model is consequently hyperbolic, thermodynamically consistent and symmetric. However, the wave speeds are independent of the volume fraction, meaning that in the dilute limit, the sound speed in the condensed phase is unchanged, this behaviour being questionable.

b) Dilute two-phase flow model (Marble, 1963)

As the model that follows is no longer symmetric it is necessary to precise the phases. Phase 1 is considered to be the condensed one and the gas phase is denoted by the subscript 2. The 'apparent density' of the dispersed phase is introduced as, 1 1 ( ) ρ = αρ .

In this approach, 1 0.01 α < and volume fraction effects are neglected in the gas phase equations. Phase 1 (dispersed)

1 1 1 u 0 t x ∂ρ ∂ρ + = ∂ ∂ 2 1 1 1 1 2 1 u u (u u ) t x ∂ρ ∂ρ + = λ - ∂ ∂ (II.3) 1 1 1 1 1 e e u 0 t x ∂ρ ∂ρ + = ∂ ∂ or alternatively 1 1 1 1 1 1 2 1 E E u u (u u ) t x ∂ρ ∂ρ + = λ - ∂ ∂ .
Phase 2 (gas)

2 2 2 u 0 t x ∂ρ ∂ρ + = ∂ ∂ (II.4) 2 2 2 2 2 2 2 1 u u p (u u ) t x ∂ρ ∂ρ + + = -λ - ∂ ∂ 2 2 2 2 2 2 1 2 1 E ( E p )u u (u u ) t x ∂ρ ∂ ρ + + = -λ - ∂
∂ This system admits the following mixture entropy equation:

1 1 2 2 1 1 1 2 2 2 1 2 2 s s s u s u (u u )² t x T ∂ρ + ρ ∂ρ + ρ λ - + = ∂ ∂
Its associated wave speeds are:

1 1 u λ = , 2 2 u λ = , 3 2 2 u c λ = + , 4 2 2 u c λ = -.
As 1 1 u λ = is fold three times, the system for phase 1 is hyperbolic degenerate, while the one of the gas phase is strictly hyperbolic. These two models are thus well posed in the sense that they are thermodynamically consistent, frame invariant and hyperbolic. Both models can be solved by Godunov type methods as the Riemann problem has been addressed for both [START_REF] Saurel | Two-phase flows-Second-order schemes and boundary conditions[END_REF][START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF][START_REF] Schwendeman | The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow[END_REF], Deledicque and Papalexandris, 2010[START_REF] Furfaro | A simple HLLC-type Riemann solver for compressible non-equilibrium two-phase flows[END_REF]. However, well posedness is a necessary condition but not a sufficient one for physical validity. In particular it is difficult to believe that sound propagates in the solid phase at speed 1 c when the two-phase mixture becomes dilute, i.e., when the particles have no contact. See also [START_REF] Lhuillier | On the quest for a hyperbolic effective-field model of disperse flows[END_REF] and [START_REF] Mcgrath | A compressible two-phase model for dispersed particle flows with application from dense to dilute regimes[END_REF] for extra arguments.

III. Volume fraction equation

Let us first examine the physical meaning of the volume fraction equation in the BN model, the new formulation will be considered secondly. The volume fraction equation of the BN model is associated to a specific representation of the two-phase mixture that can be schematized as done in the Figure 1. The volume fraction equation in the BN model results of space averaging of the following characteristic function evolution equation:

k I k X u .grad(X ) 0 t ∂ + = ∂ , (III.1)
where I u is the local interface velocity and k X is the phase k characteristic function defined by, k 1 if the point belongs to phase k X 0 otherwise

 =   .
The volume average of that equation reads,

k I k V V 1 1 X dV u .grad(X )dV 0 V t V ∂ + = ∂ ∫ ∫ . (III.
2)

The gradient of the characteristic function is non-zero only at interfaces separating phases 1 and 2. The representation shown in Figure 1 contains vertical interfaces, separating fluid 2 at left and fluid 1 at right and horizontal interfaces separating fluid 1 at left (in the direction of the y axis) and fluid 2 at right, then fluid 2 at left and fluid 1 at right and so on.

The local interface velocity is computed by the acoustic Riemann solver given by:

L L R R L R I L R L R Z u Z u p p u Z Z Z Z + - = + + +
Inserting this formula in (III.2) leads to,

end segment begin segment y 1 1 2 2 2 1 kR kL vertical segments 2 1 1 2 y X k 1 1 2 2 1 2 kR kL 1 2 1 2 0 number of fluid channels 1 1 2 2 1 2 kR 1 2 1 2 Z u Z u p p (X X )dy Z Z Z Z V 1 1 Z v Z v p p (X X )dx V t V Z Z Z Z N Z v Z v p p (X X Z Z Z Z   + - + -   + +   ∂   + - + + -   ∂ + +   +   + - + - -   + +   ∑ ∫ ∫ X kL 0 0 )dx             =                         ∫ ,
where u and v denote the two velocity components, in the x and y directions respectively. Obviously, 1 2 v v 0 = = in the configuration of Figure 1.

Let us consider phase 1 equation (k = 1). The volume fraction equation becomes,

end segment begin segment y 1 1 2 2 2 1 vertical segments 2 1 1 2 y 1 X X 1 2 1 2 number of fluid channels 1 2 1 2 0 0 Z u Z u p p (1 0)dy Z Z Z Z 1 0 t V p p p p N (0 1)dx (1 0)dx Z Z Z Z     + - + -     + +     ∂α + =   ∂         - - + - - -         + +         ∑ ∫ ∫ ∫
Expanding the integrals, ( )

1 1 2 2 2 1 1R 1L 2 1 1 2 1 1 2 1 2 number of fluid channels 1 2 1 2 Z u Z u p p Y Z Z Z Z 1 0 t XY p p p p N X X Z Z Z Z     + - + α -α     + +   ∂α   + =   ∂       - -   - -         + +         Therefore, ( ) number of fluid channel 1R 1L 1 1 1 2 2 2 1 1 2 2 1 1 2 1 2 2N X Z u Z u p p p p t Z Z Z Z X Z Z XY α -α     ∂α + - - + + =     ∂ + + +    
In the limit when X tends to zero and denoting that the ratio number of fluid channel 2N X XY represents the specific interfacial area, the following result is obtained:

1 1 1 2 2 2 1 1 I 1 2 2 1 1 2 1 2 Z u Z u p p A (p p ) t Z Z Z Z x Z Z   ∂α + - ∂α + + = -   ∂ + + ∂ +   (III.3)
This calculation method was already used in [START_REF] Saurel | A multiphase model with internal degrees of freedom: Application to shock-bubble interaction[END_REF] where the various details may be found for the full set of equations. Equation (III.3) assumes positive volume fraction gradient (

1 0 x ∂α ≥ ∂
). Generalized form is given in the same reference.

It is thus appears that the topological equation (III.3) used in BN is valid only in specific situations of stratified flows, annular ones, interfacial flows [START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF], and possibly in packed granular beds where both phases are in contact and able to propagate sound.

In the present work we precisely examine alternative options.

Let us consider liquid drops suspended in a gas phase. The radius R 1 of a single spherical compressible liquid drop surrounded by a gas evolves with the following transport equation:

1 1 0 1 2 d R μ (p p ) dt = - (III.4)
where 0 μ control the rate at which pressures equilibrate. Indeed, the liquid being compressible, the spherical drop changes radius in accordance with the external pressure. Equation (III.4) implies,

2 1 1 1 0 1 1 2 V V u 4μ R (p p ) t x ∂ ∂ + = - ∂ ∂ , (III.5)
where

3 1 1 4 V R 3 = π denotes the volume of the drop.
In the absence of fragmentation and coalescence, the specific number of drops per unit volume obeys the following balance equation:

1 1 1 N N u 0 t x ∂ ∂ + = ∂ ∂ , (III.6)
where 1 N represents the specific number of drops.

Multiplying (III.5) by 1 N yields,

1 1 1 1 0 1 2 1 u 3 μ (p p ) t x R ∂α ∂α α + = - ∂ ∂ (III.7) as 1 1 1 N V α =
. It is interesting to consider the symmetric situation of liquid containing spherical bubbles. In this situation the bubble radius evolves according to,

2 2 0' 2 1 d R μ (p p ) dt = -,
and the specific number of bubbles per unit volume obeys the balance law,

2 2 2 N N u 0 t x ∂ ∂ + = ∂ ∂ .
Consequently the volume fraction equation reads,

2 2 2 2 0' 2 1 2 u 3 μ (p p ) t x R ∂α ∂α α + = - ∂ ∂ (III.8)
We now examine the implications of such volume fraction equations (III.7 and III.8) on the flow model.

IV. The new model

The new model is built in order to fulfill mass balance equations of each phase as well as conservation of the mixture momentum and mixture energy. It is also asked that the model agree with the second law of thermodynamics and causality principle through hyperbolicity condition.

The starting point of the derivation thus consists in the following set of partial differential equations.

a) Starting point of the derivation

For the moment dissipation is removed. Volume fraction equation (III.7) is considered (in the absence of pressure relaxation) in conjunction with basic balance equations:

1 1 1 u 0 t x ∂α ∂α + = ∂ ∂ , 1 1 ( ) ( u) 0 t x ∂ αρ ∂ αρ + = ∂ ∂ , 2 2 ( ) ( u) 0 t x ∂ αρ ∂ αρ + = ∂ ∂ , (IV.1) 1 1 d s 0 dt = , 2 2 d s 0 dt = , 1 1 1 2 2 2 1 1 1 1 1 2 2 2 2 2 ( u u ) ( u ² p ) ( u ² p ) 0 t x ∂ α ρ + α ρ ∂ α ρ + α + α ρ + α + = ∂ ∂ , 1 1 1 2 2 2 1 1 1 1 1 2 2 2 2 2 ( E E ) u ( E p ) u ( E p ) 0 t x ∂ α ρ + α ρ ∂α ρ + + α ρ + + = ∂ ∂ .
From System (IV.1) the aim is now to determine evolution equations for the motion of each phase and associated energy balance equations.

b) Derivation

The momentum equations are assumed to be of the form,

k k k k k k k I d u p p dt x x ∂α ∂α α ρ + = ∂ ∂ ,
where I p has to be determined. The corresponding kinetic energy equations read:

2 k k k k k k k k I k u d p 2 u p u dt x x ∂α ∂α α ρ + = ∂ ∂ .
In System (IV.1) the entropy equations read,

k k d s 0 dt = i.e, k k k k k k d e p d 0 dt ² dt ρ - = ρ .
The mass equations can also be written as,

k k k k k k k k d d u dt dt x ρ ρ α ∂ = - -ρ α ∂ . Consequently, k k k k k k k k k k k k d e p u p u p 0 dt x x t ∂α ∂ ∂α α ρ + -α + = ∂ ∂ ∂ .
Summing the kinetic and internal energy equations of a given phase the corresponding total energy equation is obtained:

k k k k k k k k k k k k k I k k E u E p u p (p p )u t x x t x ∂α ρ ∂α ρ ∂α ∂α ∂α + + + = - ∂ ∂ ∂ ∂ ∂
Summing now the two phases total energy equations the mixture energy equation is obtained:

( )

1 1 1 2 2 2 1 1 1 1 2 2 2 2 1 1 1 2 2 2 1 1 1 1 1 2 I 1 2 1 1 2 2 E E u E u E p u p u t x x (p p ) p u u p u p u t x x x ∂α ρ + α ρ ∂α ρ + α ρ ∂α + α + + ∂ ∂ ∂ ∂α ∂α ∂α ∂α + - = - - + ∂ ∂ ∂ ∂ Mixture energy conservation requires, ( ) ( ) 1 1 1 2 I 1 1 I 2 2 (p p ) p p u p p u t x ∂α ∂α - = - - -     ∂ ∂ (IV.
2) A sufficient condition appears, independently of the volume fraction equation:

I 1 2 p p p = = (IV.
3) This condition has to be understood at leading order, in the limit of stiff pressure relaxation. To be more precise let us consider first order expansions for the pressures:

0 1 k k k p p p ... = + ε + (IV.4
) where ε is of the order of the inverse of the pressure relaxation coefficient µ . Therefore

1 0 + ε ≈ → µ .
The compatibility condition (IV.2) reads, (

( )

0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 2 1 2 I 1 I 1 1 I 2 I 2 2 p p p p p p p p u p p p p u t x ∂α ∂α   -+ ε - = -+ ε - - -+ ε -   ∂ ∂ It is satisfied provided that, 0 0 0 I 1 2 p p p = =
It doesn't mean that pressure fluctuations disappear in the flow model. For example, volume fraction equation (III.8) becomes in this limit, ( )

0 0 1 1 1 1 1 1 1 1 0 1 2 1 2 1 2 1 u 3 μ (p p ) (p p ) p p t x R ∂α ∂α α + = - + ε - = - ∂ ∂ ,
Indeed, pressure relaxation parameter is present in this equation and tends to infinity:

1 0 1 3 1 μ R α µ = = → +∞ ε .
It is also worth to mention, that, thanks to the volume fraction equation of System (IV.1), the mass and energy balance equations of the same phase reduce to (in the absence of relaxation effects),

1 1 d 0 dt ρ = (IV.3)
and,

1 1 d e 0 dt = .

(IV.4) c) Model summary From the previous analysis the following flow model is obtained. Mechanical relaxation terms and heat transfer have been inserted for the sake of generality.

1 1 1 1 2 u (p p ) t x ∂α ∂α + = µ - ∂ ∂ , 1 1 ( ) ( u) 0 t x ∂ αρ ∂ αρ + = ∂ ∂ , 2 1 1 1 1 1 1 1 1 1 2 2 1 u u p p (u u ) t x x ∂α ρ ∂α ρ + α ∂α + = + λ - ∂ ∂ ∂ , 1 1 1 1 1 1 1 2 2 1 2 2 1 2 1 1 2 e u e Z p (p p ) (u u )² H(T T ) t x Z Z ∂α ρ ∂α ρ + = -µ - + λ - + - ∂ ∂ + , 2 2 ( ) ( u) 0 t x ∂ αρ ∂ αρ + = ∂ ∂ , (IV.5) 1 1 1 2 2 2 1 1 1 1 1 2 2 2 2 2 ( u u ) ( u ² p ) ( u ² p ) 0 t x ∂ α ρ + α ρ ∂ α ρ + α + α ρ + α + = ∂ ∂ , 1 1 1 2 2 2 1 1 1 1 1 2 2 2 2 2 ( E E ) u ( E p ) u ( E p ) 0 t x ∂ α ρ + α ρ ∂α ρ + + α ρ + + = ∂ ∂ .
The two relaxation parameters λ and µ are the same as in the BN model of Section II. 'H' represents the heat exchange coefficient, given by a correlation based on the Nusselt number and multiplied by the exchange interfacial area. Justification of dissipation effects modelling is given in Appendix A.

The associated mixture entropy equation reads,

2 2 2 1 1 1 2 2 2 1 1 1 1 2 2 2 2 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 s s s u s u (u u ) Z Z H(T T ) 1 1 (p p ) t x T T Z Z T T T T     ∂α ρ + α ρ ∂α ρ + α ρ - - + = µ - + + λ + +     ∂ ∂ +     (IV.6)
Consequently the mixture entropy has non-negative production and the model is thermodynamically consistent, provided that pressure relaxation is stiff. Stiff pressure relaxation is valid for most applications (see [START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF] for relaxation times estimates). Obviously, System (IV.5) can be complemented by mass transfer. For the moment it is important to check hyperbolicity of the equations.

d) Hyperbolicity

Let's write system (IV.5) under the form,

W W A(W) 0 t x ∂ ∂ + = ∂ ∂ , with, ( ) T 1 1 2 1 1 2 2 W , s , s , , u , , u = ρ α ρ . The Jacobian matrix reads, 1 2 1 1 2 1 1 2 1 1 1 1 1 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 u 0 0 0 0 0 0 0 u 0 0 0 0 0 0 0 u 0 0 0 0 0 0 0 u 0 0 c p 1 0 0 u 0 0 A(W) s 0 0 0 (u u ) u p c 1 0 0 0 0 u s ρ ρ           α      ∂    = ρ ρ ∂      ρ α   - ρ ρ   α α      ∂      ρ ∂ ρ    .
The wave speeds, solution of A I 0 -λ = are,

1 4 1 u - λ = , 5 2 u λ = , 6 2 2 u c λ = -and 7 2 2 u c λ = + .
(IV.6) All roots being real the system is unconditionally hyperbolic. The wave speeds correspond to the one of the dilute model of [START_REF] Marble | Dynamics of a gas containing small solid particles[END_REF] (Systems II.2 -II.3) and not those of [START_REF] Baer | A two-phase mixture theory for the deflagration-todetonation transition (DDT) in reactive granular materials[END_REF], as expected.

e) Asymptotic limit

We now address stiff pressure and velocity relaxation limit to check compatibility of the model with the [START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF] one. This is important for the computation of material interfaces with capturing methods. The pressure evolution equations read,

2 1 1 1 1 1 1 2 1 p p c u (p p ) t x ∂ ∂ ρ + = - µ - ∂ ∂ α 2 2 2 2 2 2 1 1 2 2 2 2 2 1 2 2 2 p p c u u c u (p p ) t x x ∂ ∂ ρ ∂α + α ρ + + = µ - ∂ ∂ α ∂ α
Taking the difference,

2 2 2 1 2 2 2 1 1 2 2 1 1 2 2 1 2 1 2 2 1 2 p p c u u c c u u (p p ) x x x   ∂ ∂ ρ ∂α + α ρ ρ - - = - + µ -   ∂ ∂ α ∂ α α   .
In the stiff pressure ( 0 0 0 1 2 p p p = = ) and velocity relaxation limit (

1 2 u u u = = ), 2 2 2 2 1 2 2 2 1 1 2 2 1 2 c u (p p ) c c x ρ α ∂ µ - → ρ ρ ∂ + α α
Inserting this result in the volume fraction equation:

2 2 1 1 1 1 2 2 2 2 1 1 2 2 1 2 c c u u c c t x x ∂α ∂α ρ -ρ ∂ + = ρ ρ ∂ ∂ ∂ + α α
The volume fraction equation of the [START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF] model is recovered.

It means that the present flow model is able to compute interfacial flows with the help of stiff velocity and pressure relaxation solvers. This feature is particularly important for the sake of generality of the formulation.

When stiff pressure relaxation is imposed strictly ( 1 2 p p p = = ) and velocities maintained out of equilibrium, the well-known 6-equation model with two velocities and a single pressure is recovered. However, such a model is not hyperbolic (Guidaglia et al., 2001). The present model is hyperbolic but not symmetric, as sound propagates only with the second phase. It is therefore interesting to compute relevant test problems to examine typical solutions.

To do this, an appropriate computational solver is needed.

V. Hyperbolic solver

We address derivation of a Godunov type method for System (IV.5). In the absence of source terms, it can be written in compact form as,

1 U F(U) H(U) 0 t x x ∂α ∂ ∂ + + = ∂ ∂ ∂ (V.1)
where, ( )

T 1 1 1 1 1 1 1 1 1 2 2 1 1 1 2 2 2 1 1 1 2 2 2 U , , u , e , , ( u u ), ( E E ) = α α ρ α ρ α ρ α ρ α ρ +α ρ α ρ +α ρ , 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 1 2 2 2 2 1 1 2 2 u u u p F(U) u e u ( u ² u ²) p ( u E u E ) ( u u )p α     α ρ     α ρ + α     = α ρ   α ρ     α ρ + α ρ +     α ρ + α ρ + α + α   and 0 0 p H(U) 0 0 0 0         -   =            
The difficulty with this hyperbolic system relies in the non-conservative terms

1 H(U) x ∂α ∂ .
For the sake of simplicity the [START_REF] Rusanov | The calculation of the interaction of non-stationary shock waves and obstacles[END_REF] approximate Riemann solver is considered. It uses the following estimate for the right facing wave, at a given cell boundary separating cells i and i+1:

( )

k k k i 1 i S Max , + = λ λ
At a given cell boundary separating left (L) and right (R) states, the flux solution reads, ( )

* R L R L 1 F F F S U U 2 = + - -     (V.
2) The Godunov scheme for System (V.1) necessarily reads, (  )

n 1 n * * i i i 1/2 i 1/2 t U U F F tA x + + - ∆ = - - + ∆ ∆ (V.3)
where A is the numerical approximation of 1 H(U) x ∂α ∂ , to be determined.

To determine an admissible approximation of A, we follow [START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF] where a flow in uniform mechanical equilibrium is considered:

1,i 1 1,i 1,i 1 2,i 1 2,i 2,i 1 u u u u u u u 0 - + - + = = = = = = > 1,i 1 1,i 1,i 1 2,i 1 2,i 2,i 1 p p p p p p p - + - + = = = = = =
Inserting the Rusanov flux (V.2) in the Godunov method (V.3) for the mass equation of the first phase, the following result is obtained:

[ ] [ ] n 1 n 1 1 i 1 1 i 1 1 i 1 1 1 i 1 1 1 i 1 1 1 i 1 1 i u t S t ( ) ( ) ( ) ( ) ( ) 2( ) ( ) 2 x 2 x + + - + ∆ ∆ α ρ = α ρ - α ρ -α ρ + α ρ -α ρ + α ρ ∆ ∆ (V.
4) The same procedure is done for the momentum equation of the same phase:

[ ] [ ] n 1 1 1 i ( ) n 1 n 1 1 1 i 1 1 i 1 1 i 1 1 1 i 1 1 1 i 1 1 1 i 1 1 i 1,i 1 1,i 1 u t S t ( u ) u ( ) ( ) ( ) ( ) 2( ) ( ) 2 x 2 x t p A 2 x + α ρ + + - + + - ∆ ∆   α ρ = α ρ - α ρ -α ρ + α ρ -α ρ + α ρ   ∆ ∆   ∆   - α -α +   ∆
In order that n 1 1,i u u + = , the non-conservative term A must be approximated as,

* * 1,i 1/ 2 1,i 1/ 2 A p x + - α -α = ∆ with 1,i 1 1,i * 1 1,i 2 2 + + α + α α = . (V.5)
The numerical scheme thus consists in (V.3) with (V.2) and (V.5), and is consequently very simple.

VI. Computed results

The first test corresponds to the simple transport of a volume fraction discontinuity in a flow field in uniform pressure and velocity equilibrium. The former method is extended to higher order thanks to the MUSCL algorithm (see for example Toro, 1997). Present computations use Minmod limiter. With the help of both velocity and pressure relaxation solvers it is possible to address interfaces separating (nearly) pure liquid and (nearly) pure gas. The aim is to analyze the behavior of the flow model in such limit case, having in mind it has been derived more to deal with clouds of drops than interfaces. The initial conditions are given in Figure 5 and correspond to a liquid at right set to motion by a pressurized gas at left. The exact solution is available for this test case and used to check predictions accuracy. ) is set in a cross section of the tube, with 2 cm width. The initial solid volume fraction in the particle bed is 0.65. The initial pressure is uniform initially and set at 10 5 Pa. A shock at Mach number 1.3 is created by the expansion of the high pressure gas, corresponding to a shock created by a piston moving at 151 m/s. Treating the left boundary as a piston condition enables computational savings.

In this experiment pressure is recorded before and after the particles cloud, to examine reflected and transmitted waves through the granular media as well as its dilution and dispersion. To account for drag effects, the following correlation is used in the phase 1 momentum equation:

( )

1 d 1 2 1 6 F C u u d α = - with, 2 2 1 1 0.687 d e e 2 u u d C 1 0.15R and R ρ - = + = µ
The particle diameter appearing in these relation is constant ( 1 d 1.5mm = ) and the gas viscosity is Under mesh refinement, no modification of the conclusions appeared. At this stage, some potential appeared with the new model, but weakness emerged when considering liquid gas interfaces in severe conditions and for particle cloud dynamics in the Rogue test. A symmetric variant of the new model, with Equation (III.8) instead of (III.7) is thus developed and examined.

VII. Symmetric variant

In the new model examined and tested formerly pressure waves propagate with the gas sound speed. This behavior seems incorrect if the flow is mainly made of liquid with small gas bubbles. We thus address the symmetric variant of the previous model on the basis of the volume fraction equation (III.8). Following the same derivation method as previously the following flow model is obtained (dissipation is omitted for the sake of simplicity): Leer flux limiter is used. Some accuracy has been lost in the incident and reflected waves compared to the original model while an interesting feature appears regarding the pressure rise during particle cloud motion that seems more accurate.

2 2 2 u 0 t x ∂α ∂α + = ∂ ∂ , 2 2 ( ) ( u) 0 t x ∂ αρ ∂ αρ + = ∂ ∂ 2 2 2 2 2 2 2 2 2 u u p p t x x ∂α ρ ∂α ρ + α ∂α + = ∂ ∂ ∂ (VII.1) 2 2 2 2 2 2 2 e u e 0 t x ∂α ρ ∂α ρ + = ∂ ∂ 1 1 ( ) ( u) 0 t x ∂ αρ ∂ αρ + = ∂ ∂ , 2 2 1 1 1 2 2 2 1 1 1 2 2 2 ( u u ) ( u u p) 0 t x ∂ α ρ + α ρ ∂ α ρ + α ρ + + = ∂ ∂ , 1 1 1 1 2 2 2 2 1 1 2 2 1 1 1 2 2 2 ( u E u E ) ( u u )p ( E E ) 0 t x   ∂ α ρ + α ρ + α + α ∂ α ρ + α ρ   + = ∂ ∂ Obviously this system implies, 1 1 d s 0 dt = ,
The lack of accuracy in the incident shock that propagates in a single phase gas media is certainly due to the absence of gas sound speed in the eigenvalues. The present formulation is derived for bubbly flows it is used for a nearly pure gas in the first part of the shock tube. As a summary of the various computational experiments, the symmetric variant model doesn't appear more accurate than the original version at least on the few test case considered herein. However, -an interesting feature appeared with the Rogue test in relation with particle cloud motion, -the presence of the phase 1 sound speed in the wave's speeds of this flow model is necessarily important when this phase is in dominant proportions. Therefore an attempt for a general formulation is done in the section that follows.

VIII. Towards a general formulation

To embed the new model and its symmetric variant in a general formulation the following formulation is considered. Parameters 'a' and 'b' are defined as,

fluidization 1 1 if a 0 otherwize  α < α =   (VIII.1) b a 1 = -
Parameter fluidization α corresponds to some fluidization limit, for example fluidization 0.5 α ≈ . Therefore, in this formulation 'a' and 'b' are local constants, but as they vary in the domain,

1 a a( ) = α and 1 b b( ) = α .
The general flow model reads (in absence of dissipation),

1 1 1 2 2 u u a b 0 t x x ∂α ∂α ∂α + + = ∂ ∂ ∂ , 1 1 ( ) ( u) 0 t 
x

∂ αρ ∂ αρ + = ∂ ∂ 2 2 ( ) ( u) 0 t x ∂ αρ ∂ αρ + = ∂ ∂ 2 1 1 1 1 1 1 1 1 u u p p t x x ∂α ρ ∂α ρ + α ∂α + = ∂ ∂ ∂ (VIII.2) 2 2 2 2 2 2 2 2 2 u u p p t x x ∂α ρ ∂α ρ + α ∂α + = ∂ ∂ ∂ 1 1 1 1 1 1 1 1 1 1 1 2 2 E u E u p u u p a b t x x x x ∂α ρ ∂α ρ ∂α ∂α ∂α   + + = +   ∂ ∂ ∂ ∂ ∂   2 2 2 2 2 2 2 2 2 1 1 2 2 E u E u p u u p a b t x x x x ∂α ρ ∂α ρ ∂α ∂α ∂α   + + = - +   ∂ ∂ ∂ ∂ ∂   Obviously this system implies, 1 1 d s 0 dt = , 2 2 d s 0 dt = ,
and is consequently thermodynamically consistent. Insertion of dissipative effects is considered in Appendix A. System (IX.2) can also be written as, and, ( )

W W A(W) 0 t x ∂ ∂ + = ∂ ∂ , with, ( ) T 1 2 1 1 1 2 2 W s , s , , , u , , u = α ρ ρ ,
1 2 1 2 2 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 u 0 0 0 0 0 0 0 u 0 0 0 0 0 c 1 p 0 u 0 0 0 s 0 0 b u b u u 0 b A(W) 0 0 a 0 ( au b u ) 0 b 0 0 a 0 a ( u u ) u a c 1 p 0 0 0 0 u s ρ ρ          ∂    ρ ∂ ρ      ρ α   -ρ - -ρ   α α =   α - α     α ρ ρ - ρ   α α      ∂      ρ ∂ ρ  
 This matrix has a nice structure. Eigenvalues are given by det(A I) 0 -λ = and result in the following polynomial,

( ) ( ) ( ) 2 2 2 1 1 2 2 1 2 1 2 1 (u )²(u )² ( au b u ) (u )²bc ( a b) u (u )²ac (b a)u 0   -λ -λ - -λ + -λ - -λ + -λ λ + - =   When a=1, b=0 it reduces to, 3 2 1 2 2 (u ) (u )² c 0   -λ -λ - = 
 with the wave speeds of the first model. When a=0, b=-1 it reduces to, ( ) For numerical computations, System (VIII.2) is expressed as, ( ) ( )

3 2 2 1 1 u (u )² c 0   -λ -λ - =  
1 1 2 2 1 1 1 2 2 a u b u a u u 0 t x x ∂ α + α ∂α ∂ + -α + α = ∂ ∂ ∂ , 1 1 ( ) ( u) 0 t x ∂ αρ ∂ αρ + = ∂ ∂ 2 2 ( ) ( u) 0 t x ∂ αρ ∂ αρ + = ∂ ∂ 2 1 1 1 1 1 1 1 1 u u p p t x x ∂α ρ ∂α ρ + α ∂α + = ∂ ∂ ∂ (VIII.4) 1 1 ( e) ( eu) 0 t x ∂ αρ ∂ αρ + = ∂ ∂ 2 2 ( e) ( eu) 0 t x ∂ αρ ∂ αρ + = ∂ ∂ 2 2 1 1 1 2 2 2 1 1 1 2 2 2 ( u u ) ( u u p) 0 t x ∂ α ρ + α ρ ∂ α ρ + α ρ + + = ∂ ∂ 1 1 1 1 2 2 2 2 1 2 2 1 1 1 2 2 2 ( u E u E ) ( u u )p ( E E ) 0 t x   ∂ α ρ + α ρ + α + α ∂ α ρ + α ρ   + = ∂ ∂
Derivatives of the function 1 a( ) α appear as it is not a constant.

It is solved with the hyperbolic solver of Section VI based on the Rusanov flux. However, the wave speed estimate, ( )

k k k i 1 i S Max , + = λ λ ,
now involves the six eigenvalues (VIII.3). Also System (VIII.4) involves three energy equations, one of them being obviously redundant.

Overdeterminacy is however useful with respect to some computational issues [START_REF] Babii | On the difference approximations of overdetermined hyperbolic equations of classical mathematical physics[END_REF][START_REF] Godunov | A multiphase model for compressible granular-gaseous flows: formulation and initial tests[END_REF], Saurel et al., 2009).

The mixture energy equation and the phase 1 internal energy equations are used when a 1, b 0 = = . The phase 2 internal energy is then reset with the relaxed pressure at the end of the Compared to the original model results (Figure 6) and its symmetric variant results (Figure 10) are visible especially for the velocities profile.

Let us now consider the reversed situation of gas-liquid shock tube already considered with the original model in Figure 5, where initial data are given. Comparison between computed results and exact solution is shown in Figure 14. This last test shows improvements compared to Marble and BN models results: -reflected and transmitted waves have better accuracy, -pressure rise in the particle cloud shows comparable accuracy with respect to the existing models. Intergranular stress [START_REF] Bdzil | Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues[END_REF][START_REF] Saurel | Modelling dynamic and irreversible powder compaction[END_REF] has been considered as a possible effect to improve these computations. These effects have been added to the present formulation and coded, but no noticeable improvement appeared.

IX. Conclusion

A new two-phase hyperbolic and thermodynamically consistent model has been built and typical solutions have been computed. It is able to compute the same flow configurations as the BN model, i.e. interfaces separating pure fluids and non-equilibrium multiphase mixtures. Its acoustic properties sound physical. It is expected that two-phase shock waves structure be easier to analyze in the present frame. It is also expected that multidimensional solutions exhibit more differences than present onedimensional computations, in particular regarding interface instabilities.

1 1 1 2 2 1 2 u u a b (p p ) t x x ∂α ∂α ∂α + + = µ - ∂ ∂ ∂ , 1 1 ( ) ( u) 0 t x ∂ αρ ∂ αρ + = ∂ ∂ 2 2 ( ) ( u) 0 t x ∂ αρ ∂ αρ + = ∂ ∂ 2 1 1 1 1 1 1 1 1 1 I 2 1 u u p p (u u ) t x x ∂α ρ ∂α ρ + α ∂α + = + λ - ∂ ∂ ∂ (A.1) 2 2 2 2 2 2 2 2 2 2 I 2 1 u u p p (u u ) t x x ∂α ρ ∂α ρ + α ∂α + = -λ - ∂ ∂ ∂ 1 1 1 1 1 1 1 1 1 1 1 1 2 2 II II 1 2 I 2 1 2 1 E u E u p u u p a b p (p p ) u (u u ) H(T T ) t x x x x ∂α ρ ∂α ρ ∂α ∂α ∂α   + + = + -µ - + λ -+ -   ∂ ∂ ∂ ∂ ∂   2 2 2 2 2 2 2 2 2 2 1 1 2 2 II II 1 2 I 2 1 2 1 E u E u p u u p a b p (p p ) u (u u ) H(T T ) t x x x x ∂α ρ ∂α ρ ∂α ∂α ∂α   + + = - + + µ - -λ -- -   ∂ ∂ ∂ ∂ ∂   where I
p , II p and I u have to be determined. This formulation obviously agrees with the mixture mass, momentum and energy constraints:

1 2 1 2 ( ) ( ) ( u) ( u) 0 t x ∂ αρ + αρ ∂ αρ + αρ + = ∂ ∂ , 1 1 1 2 2 2 1 1 1 1 1 2 2 2 2 2 ( u u ) ( u ² p ) ( u ² p ) 0 t x ∂ α ρ + α ρ ∂ α ρ + α + α ρ + α + = ∂ ∂ , (A.2) 1 1 1 2 2 2 1 1 1 1 1 2 2 2 2 2 ( E E ) u ( E p ) u ( E p ) 0 t x ∂ α ρ + α ρ ∂α ρ + + α ρ + + = ∂ ∂ .
To determine the above mentioned interfacial variables, let's examine to entropy production in each phase and in the system. Combining mass, momentum and energy equations of phase 1 results in:

1 1 1 1 1 1 1 1 II 1 I 1 I 1 2 1 2 1 d s T (p p ) (p p )u (u u )(u u ) H(T T ) dt t x ∂α ∂α α ρ = - + - + λ - - + - ∂ ∂ Inserting the volume fraction equation it becomes, 1 1 1 1 2 2 1 1 1 1 2 1 II 1 II 1 1 I 1 I 1 2 1 2 1 d s u u T (p p )(p p ) (p p ) a b dt x x (p p )u (u u )(u u ) H(T T ) x ∂α ∂α   α ρ = µ - - - - +   ∂ ∂   ∂α + - + λ - - + - ∂
In the stiff pressure relaxation limit (at leading order), ( ) ( )

1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 p p t 0 t u 0 t e p p p t 0 t u u 0 t E E 0 t ∂α  = µ -  ∂  ∂α ρ  =  ∂  ∂α ρ  =  ∂  ∂α ρ  = -µ -  ∂  ∂α ρ  =  ∂  ∂α ρ + α ρ  =  ∂  ∂α ρ + α ρ  =  ∂ 
where p denotes the relaxed pressure. Combining the internal energy equation of phase 1 with the corresponding volume fraction equation results in, (  )

* 0 * 0 * * 0 1 1 1 1 1 1 1 1 1 1 1 p p p p v v p v v 1 1 ∞ ∞ + γ + γ - = - - γ - γ - I.e., 0 0 * 0 1 1 1 1 1 * 1 1 p p 1 p p ∞ ∞   α + α = α +   γ +   (B.
2) Same result is obtained for the second phase,

0 0 * 0 2 2 2 2 2 * 2 2 p p 1 p p ∞ ∞   α + α = α + -   γ +  
The saturation constraint In uniform velocity flows conditions, using the Rusanov flux (V.2) in the Godunov method (V.3), the discrete mass equation reads, 

[ ] [ ] n 1 n 1 1 i 1 1 i 1 1 i 1 1 1 i 1 1 1 i 1 1 1 i 1 1 i 1 u t S t ( ) ( ) ( ) ( ) ( ) 2 

Figure 1 .

 1 Figure 1. Schematic representation of a two-phase mixture in a duct of constant cross section with the BN model. The acoustic waves propagate freely in each pure fluid as if it was continuous. In order that each phase be able to support these acoustic waves the topology must phase 1

Figure 2 .Figure 3 .

 23 Figure 2. Volume fraction transport in uniform pressure and velocity fields. The mesh involves 500 cells and the time step is computed with CFL=0.5. Initial velocities are set to 100m/s and pressures are constant and equal to 10 5 Pa. The volume fraction discontinuity is initially set at 0.5 m. The numerical solution is plotted at 1ms. The exact solution for the volume fraction is presented in dot symbols showing perfect agreement. The numerical solutions are free of velocity and pressure spurious oscillations.Another test is now addressed and corresponds to a two phase shock tube, as shown in Figure3.

Figure 4 .

 4 Figure 4. Smooth shock tube computations in the absence of velocity relaxation but with stiff pressure relaxation. Computations made with 500 cells and CFL=0.5. Computed results are shown at time 350µs. All pressures are now equal, modifying significantly the phase 1 velocity profile.

Figure 5 .Figure 6 .

 56 Figure 5. Shock tube with gas-liquid interface: High pressure gas at left and low pressure liquid at right. Computations done with 500 cells and CFL=0.5. Computed results shown at time 150µs.Both velocities and pressure are relaxed, making the interface condition of equal pressures and velocities fulfilled.The same test is considered but with fluids in reverse order: High pressure liquid at left and low pressure gas at right. Corresponding results are shown in Figure6and compared to the exact solution.p=10 000 bars u=0 m/s ρ 1 =1050 kg/m 3 ρ 2 =100 kg/m 3 α 1 =0.9999

Figure 7 .

 7 Figure 7. Rogue et al. (1998) fluidization shock tube test. A shock tube is filled with gas at density 1.2 kg/m 3 . A dense cloud of glass particles ( 3 0 1050kg / m ρ =) is set in a cross section of the tube, with 2 cm width. The initial solid volume fraction in the particle bed is 0.65. The initial pressure is uniform initially and set at 10 5 Pa. A shock at Mach number 1.3 is created by the expansion of the high pressure gas, corresponding to a shock created by a piston moving at 151 m/s. Treating the left boundary as a piston condition enables computational savings.

  update, the predictions of the BN, Marble and new model are compared. The BN model, or more precisely its symmetric version with 7 waves is solved with the Furfaro and Saurel (2015) method. The Marble model is solved with the Saurel et al. (1994) method and the new model is solved with the method presented above. Let us first comment Rogue et al. (1998) experimental data, typical pressure signals being shown in Figure 8.

Figure 8 .Figure 9 .

 89 Figure 8. Experimental pressures signals of Rogue (1998): 1 denotes the incident shock wave, 2 denotes the transmitted shock wave, 3 denotes the reflected shock wave, 4 corresponds to the arrival of the cloud upper front at the pressure gauge location.Computed results with the various models are shown in Figure9.(Marble) 

Figure 11 .

 11 Figure 11. Comparison of the new model (IV.5) and its symmetric variant (VII.1) on the same two-phase shock tube test problem. Stiff velocity and pressure are used in both computations. As expected, differences are present. It is also interesting to address the Rogue test problem with the symmetric variant model. Corresponding results are shown in Figure 12.

Figure 12 .

 12 Figure 12. of the Rogue test with the symmetric variant model and comparison with experimental pressure records. Computations are done with 500 cells and CFL=0.5. The vanLeer flux limiter is used. Some accuracy has been lost in the incident and reflected waves compared to the original model while an interesting feature appears regarding the pressure rise during particle cloud motion that seems more accurate.

  with the wave speeds of the symmetric model. Therefore the flow model (VIII.2) has the following wave speeds: wave speeds are not present at any point of space. They appear when the volume fraction crosses the fluidization limit ( fluidization α ) somewhere in the domain. In nearly all computational examples considered previously, such instance happens. Let us mention that other guesses have been considered for parameters 'a' and 'b'. For example 1

  the mixture energy equation and the phase 2 internal energy equations are used. phase 1 internal energy is then reset with the relaxed pressure at the end of the time step. The volume fraction equation in (VIII.4) being now non conservative, appropriate scheme is needed. Similar analysis as the one described in Section V is reused. Details are given in Appendix C. Let us examine typical solutions of the general model on some test problems, as those considered previously. A shock tube test case with liquid at left and gas at right is considered, in the same conditions as the tests in Figures6 and 10. Computed results are compared against exact solution.

Figure 13 .

 13 Figure 13. Liquid -gas shock tube test problem solved with the general model with stiff pressure and velocity relaxation. Computations are done with 500 cells and CFL=0.5. Results are shown at time 250µs. The numerical solution tends to the exact one and converges quite well.Compared to the original model results (Figure6) and its symmetric variant results (Figure10) are visible especially for the velocities profile.

Figure 14 .

 14 Figure 14. Shock tube with gas-liquid interface computed with the general model with stiff pressure and velocity relaxation. Computations done with 500 cells and CFL=0.5. Computed results are shown at time 150µs. Comparable accuracy as the one observed in Figure 5 with the original model is observed. It is also interesting to address the Rogue test problem with the general model. Corresponding results are shown in Figure 15.

Figure 15 .

 15 Figure 15. Computation of the Rogue test with the general model and comparison with experimental pressure records. Computations are done with 500 cells and CFL=0.5. The flux limiter used here is Minmod. The various transmitted and reflected waves are correctly computed and improvements appear regarding pressure evolution during particle cloud motion.

  the specific volume of the considered phase. Considering the relaxed pressure as a constant it becomes (this assumption has been analyzed in[START_REF] Saurel | A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations[END_REF], equation of state (any other convex EOS can be considered as an option) is inserted,

  pressure is determined with (B.3) the volume fractions at equilibrium are determined with (B.2). The density of the phases are then deduced as,The internal energy of the second phase is extracted from the mixture energy. The opposite is done when the symmetric variant of the flow model is used.b) Stiff velocities relaxationDuring stiff velocity relaxation, the subsystem to consider reads, by (A.6). As λ → +∞ both velocities relax to the equilibrium one given by the mixture momentum equation, modifies both kinetic and internal energies. Pressure relaxation is thus needed after velocity relaxation.Appendix C. Derivation of the volume fraction numerical scheme for System (VIII.4)The volume fraction equation, discretization compatible with the mass equation of the same system,

  Both velocity and density being uniform, the density at the next time step must be invariant:

		α ρ		+		= α ρ -	2 x ∆ ∆	α ρ	+	-α ρ	-	+	2 x ∆ ∆	α ρ	+	( -α ρ + α ρ ) (	)	-	(C.1)
	The same is done for the volume fraction equation, [ n 1 n 1 i 1 i 1 2 i 1 1 2 i 1 u t ( ) ( ) (a b ) (a b ) 2 x + + -∆ α = α -α + α -α + α ∆ where a x ∆ ∆ is the numerical approximation of a 0 x ∂ = , to be determined. ] [ 1 i 1 S t ( ) 2( ) ( ) 1 i 1 i 1 2 x + -∆ + α -α + α ∆ ∂ Rearranging (C.2) with b a 1 = -and 2 1 1 α = -α the discrete volume fraction equation becomes, ] a u t x ∆ + ∆ ∆	(C.2)
	[ Let us now consider the particular case of uniform density field: n ] [ ] [ n 1 n 1 i 1 i 1i 1 1i 1 i 1 i 1 1 i 1 u t u t S t ( ) ( ) a a ( ) 2 x 2 x 2 x + + -+ -+ ∆ ∆ ∆ α = α -α -α --+ α ∆ ∆ ∆ 1,i ρ = ρ = ρ . 1 i 1 i 1 2( ) ( ) --α + α n n 1,i 1 1,i 1 + -	]	u t + ∆	a x ∆ ∆	(C.3)
	n 1 1,i + ρ	n 1,i = ρ . In this context, the mass equation becomes,
	(	n 1 1 1 i ) + α ρ	n 1 i ( ) = ρ α -1   	u t 2 x ∆ ∆	[	1 i 1 ( ) + α	1 i 1 ( ) --α	]	+	S t 2 x ∆ ∆	[	1 i 1 ( ) + α	1 i 2( ) ( ) 1 i 1 --α + α	]	  	(C.4)
	In order that (C.3) and (C.4) be compatible it is necessary that, [ ] i 1 i 1 u t a a a u t 0 2 x x + -∆ ∆ --+ ∆ = ∆ ∆
	Therefore, i 1 a a x 2 x a + -∆ = ∆ ∆	i 1 -					(C.5)
	or,														
	a x ∆ = ∆	a	* i 1/2 + ∆ -x a	* i 1/2 -	,		
	with	a	* i 1/2 +	=	a	n i 1 +	2 +	a	n i	.
	Consequently the volume fraction scheme reads, ( ) ( ) n n 1 n * * 1,i 1,i i 1/2 i 1/2 1 1 2 2 i t F F u u x + α + α -∆ α = α --+ α + α ∆	t ∆	a x ∆ ∆	(C.6)
	with ,													
	* i 1/2 F α +	=	1 2	(  	1 1 a u b u 2 2 α + α	) ( n i 1 + + α + α 1 1 a u b u 2 2	) ( n i S -α -α n 1,i 1 1,i n +	)	 	.

and consequently is in agreement with the second law of thermodynamics. This system is hyperbolic with wave's speeds: It is interesting to compare the new model (System IV.5) and its symmetric variant (System VII.1) on a same computational test. This is done in Figure 11 where a two-phase shock tube with two different liquid-gas mixtures is considered.

Appendix A. Inserting dissipation in the flow model

System (IV.5) contains dissipative effects and the aim of this appendix is to justify the modeling adopted. Also, insertion of same effects in the general model (VIII.2) is addressed. Mass transfer is omitted, but velocity drag, pressure relaxation and heat exchanges are considered.

For the sake of generality, System (VIII.2) is considered, formulations for System (IV.5) and its symmetric variant (VII.1) are deduced just setting (a=1, b=0) and (a=0, b=1) respectively.

The following system is speculated as dissipative extension of System (VIII.2):

I 1 2 II p p p p p = = = = , (A.3) many terms vanish in the entropy equation:

For the second phase, similar result is obtained:

Following [START_REF] Saurel | A multiphase model with internal degrees of freedom: Application to shock-bubble interaction[END_REF] the drag force exert power at the interfacial speed,

Combining (A.4) and (A.5) with their mass equations and summing results in the following mixture entropy equation:

Therefore Systems (A.1) with closure relations (A.3) and (A.6) is appropriate.

Appendix B. Stiff pressure and velocity relaxation solvers a) Stiff pressure relaxation The system to solve during pressure relaxation is the following: