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Abstract� Coarse-Grained Reconfigurable Architectures 

(CGRAs) are promising high-performance and power-efficient 

platforms. However, their uses are still limited because of the 

current capability of the mapping tools. This paper presents a 

new scalable efficient design flow to map applications written in 

high level language on CGRAs. This approach leverages on 

simultaneous scheduling and binding steps respectively based on 

a heuristic and an exact method stochastically degenerated. The 

formal graph model of the application, obtained after 

compilation, is backward traversed and dynamically transformed 

when needed to allow for a better exploration of the design space. 

Results show that our approach is scalable, finds most of the time 

the best solutions i.e. the mappings with the shortest latencies, 

achieves lowest failure rate in carrying out solutions, provides 

lower computation time and explores more efficiently the solution 

space than the state of the art methods. 

Keywords� CGRA; Mapping; Scheduling; Binding 

I. INTRODUCTION 

For the last two decades, Coarse-Grained Reconfigurable 
Architectures (CGRAs) have been mainly proposed for 
accelerating multimedia applications. CGRAs are indeed an 
interesting trade-off between FPGAs and many-core 
architectures because their power efficiency is close to 
nonprogrammable hardware accelerators while they are 
programmable [1]. The literature is very rich in CGRAs 
architectures [2�6], which distinguish by different features 
such as the granularity of the Processing Elements (PE), 
homogeneity or heterogeneity of PE, type of operators (ALU, 
��������	
����	
�������	
������	��	��
	�	��	����	�����	����	
�
Files (RF) or interconnection network topologies (mesh 2-D, 
��
	���� ���� ���� ��	�� tile, is usually composed of a 
functional unit, a local RF, two input multiplexers and an 
output register as illustrated in Fig. 1. Interconnection network 
is traditionally a 2D mesh that offers the possibility to 
communicate with four neighbors. However, additional 
column or line buses, or more complex networks as segmented 
buses can be used to increase the communication capability of 
each tile [2], [4], [5]. 

The result of the compilation of an application on a CGRA 
(also named mapping), is the scheduling and the binding of its 
operations on operators and registers. This process, that has to 
respect control and data dependencies of the application and 
the architecture constraints of the CGRA, is a complex task 
still often realized by hand. However, applications are 
increasingly more complex and dealing with hundreds or 

thousands of operations is simply not reasonable: the mapping 
process must be automated. Scheduling and binding are 
known to be NP-complete [7] and obtaining a good solution 
requires to explore deeply the solution space. Indeed, the 
target architecture strongly constrains the mapping process 
which objective is to maximize timing performances 
(minimize latency and/or maximize throughput). 

In this paper, a scalable approach that allows for mapping 
entire applications onto various types of CGRAs is presented. 
The solution space is efficiently explored by traversing 
backward the formal intermediate representation (IR) of the 
application, by combining scheduling and binding steps and 
by transforming IR dynamically when needed. 

The rest of the paper is organized as follows. Section II 
presents the related works. Section III depicts proposed 
method. Section IV presents the experiments and discusses 
obtained results. Conclusion is given in Section V. 

II. RELATED WORK 

As CGRAs are classically used to speed up kernel loops, 
most of the literature methods tries to minimize the initiation 
interval of loops kernel [7�11] i.e. maximize throughput. 
Existing techniques can also be used to compile entire 
application code onto CGRA. Mapping methods can be 
roughly divided into two main categories which differ on the 
way scheduling and binding steps are realized, i.e. sequentially 
or concurrently. 

The first category simplifies the mapping problem by 
solving scheduling and binding sequentially with heuristics 
and/or meta-heuristics [7�9] or exact methods [12], [13]. In 
[8] and [9], iterative modulo scheduling heuristic [14] is used 
for scheduling. In [8] an edge-based binding heuristic is used 
(instead of classical node-based approaches) to reduce the 
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Fig. 1. A 4×4 CGRA with torus mesh an FU and RF in each tile. 
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number of fails. In [9], binding problem is tackled by 
combining a routing heuristic from FPGA synthesis and a 
Simulated Annealing (SA) algorithm for placement. 
Schedulable operation nodes are moved randomly according 
to a decreasing temperature and a cost function. The main 
limitation of this kind of approaches is the compromise that 
has to be done in order to have a reasonable computation time. 
Indeed, to efficiently explore the solution space, the 
temperature requires to be high and to decrease slowly, 
leading to very slow convergence time. Conversely, if the 
temperature is low or decreases rapidly, the solution is hardly 
ever optimal and corresponds nearly always to a local 
optimum. The method presented in [7], which provides better 
results, starts by finding a solution on a simplified problem 
with heuristic-based methods for both scheduling and binding 
and then tries to improve the initial solution with a genetic 
approach. The initial solution is found by using a list-
scheduling algorithm and the binding is realized by 
considering only a single column of the CGRA. Then the 
genetic algorithm optimizes the first solution by moving 
operations to minimize the latency. However, this method uses 
only one seed which limits its ability to explore the whole 
solution space. Moreover, as every guided stochastic 
algorithm, this technique suffers from both low run time 
efficiency and low convergence rate to high quality results. In 
[12], [13], authors solve the scheduling and the binding 
problems sequentially by using respectively a heuristic and an 
exact method. Scheduling is made implicitly by integrating 
both architectural constraints (i.e. the number of operations 
simultaneously executable on the CGRA and the maximum 
out-degree of each operation due to the communication 
network) and timing aspect into the DFG by statically 
transforming it. Two transformations are proposed: 
�
	��������� � ���� �������	�� ����������� ���	�� ���
�
������ � ���� �������	�� ��� ���	�� ��� �!	� 	"������� ��	�
conservation of a result. These transformations hopefully 
�������	� ��	� ���������#�� �������� Binding is done by 
finding the common sub-graph between the transformed DFGs 
��� � ���	� 	"�	��	�� $%�&� '���� (	)�#�� ���
����� [15]. 
However, since the graph transformations are done a priori, it 
is very difficult to know which transformation is relevant at a 
given time. This reduces the ability of the method to 
efficiently explore the solution space since the problem is 
over-constrained. In [19], an algorithm based on graph 
transformation also is used to find the homomorphism 
between the graphs. 

The second category solves the scheduling and binding 
problems as a whole. Hence, [7], [16], [17] use exact methods, 
e.g. ILP-based algorithms, to find optimal results. 
Unfortunately, these methods suffer from scalability issues as 
illustrated in [7]. The method presented in [10], and its 
extension that can cope with RFs [11], leverage on meta-
heuristics. They are based on a Simulated Annealing (SA) 
framework that is also a guided stochastic algorithm. The 
classical placement and routing problem which can be solved 
with SA, is there extended in three dimensions to include 
scheduling. Thus schedulable operation nodes are moved 
absolutely randomly through time and space. The convergence 
is there even slower than for other SA method because it 
includes scheduling.  

The key idea of the proposed mapping approach is to 
combine the advantages of exact, heuristic and meta-heuristic 
methods while offsetting as much as possible their respective 
drawbacks. Hence, as detailed in the next section, scheduling 
and binding problems are solved simultaneously by using a 
heuristic-based algorithm and a randomly degenerated exact 
method respectively and by transforming the formal model of 
the application dynamically. 

III. PROPOSED METHOD 

The proposed design flow is presented in Fig. 2. Inputs are 
a C/C++ application code and the targeted CGRA model. The 
objective of the method is to minimize the latency of the DFG 
under resource constraint by deeply exploring the design space 
'���	� !		����� � ��'� ������� �	�*� +��*���	���� ���	 �. The 
output of the flow is the mapping with the best latency that has 
been found during the exploration of the design space i.e. one 
of the mappings with the best latency since our flow is 
inherently able to find several mappings with the best latency. 
The description of the application is first compiled to obtain a 
formal Control and Data Flow Graph (CDFG). CDFG is then 
mapped by processing each of its basic blocs (i.e. DFG) 
sequentially. To keep the method with a low complexity, a 
list-scheduling based algorithm is used to schedule nodes of 
each DFG. As it is a local greedy method, the binding is made 
simultaneously to ensure that at least one solution exists, 
hence avoiding dead-ends. The proposed binding step is 
realized incrementally by using an exact method. However, as 
exact methods do not scale up, a stochastic selection is 
performed. This allows for keeping only a reasonable number 
of solutions among all the possible partial solutions that have 
been found. Finally DFGs are dynamically transformed as 
needed when no mapping solution can been found. For that 
purpose, DFG are backward traversed to allow applying the 
most relevant transformation. 

A. Architecture and Application Modeling 

CGRA is modeled by a bipartite directed graph with two 
types of nodes: operator and register, in which temporal aspect 
is implicitly represented by connections from registers to 
operators. Fig. 3(b) illustrates the model of the CGRA 
presented in Fig. 3a). Two subtypes of operator nodes are 
defined. The first one is conventional operator that represents 
the physical implementation of an operation (+, ×, -���� &�
conventional operator is usually able to compute different 
types of operations (e.g. + and -) and/or memory access 
(e.g. load/store). The second type of operator is memorization 
operator. It is associated to a register and represents the 
operation of keeping a value in a register explicitly. 
Connection between output register and conventional 
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Fig. 2. General flow and algorithm core. 
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operators depends on the interconnect network (e.g. in Fig. 3, 
only output registers can communicate with the operator of the 
other tile). Our CGRA graph model, that is very versatile, 
differs from the Time Extended CGRA proposed in [12] by 
explicitly representing registers. It can thus represent CGRA 
with homogeneous or heterogeneous tiles, presence or absence 
of RF, shared or local RF, homogeneous or heterogeneous 
operators, regular or specific interconnect network and 
operators that require more than one cycle to execute its 
operation (e.g. multipliers). 

Application is modeled as a CDFG. CDFG is composed of 
a Control Flow Graph (CFG) and a set of basic blocks 
represented by DFGs. DFG is a bipartite directed acyclic 
graph composed of data nodes (rectangles in Fig. 3(c) and Fig. 
4), operation nodes (circles) and data dependencies (arcs). In 
the proposed approach, in addition to conventional 
computation nodes (+, ×, -���� � �
�����
� ��	
��������	� ���
introduced: memorization. The purpose of memorization node 
is to make data dependencies explicit along cycles. For 
example, in the DFG in Fig. 3(c������	�,#� �����	��
�������
node that makes explicit the data dependency between nodes 2 
and 4 over one clock cycle. Memorization nodes are added 
when needed (i.e. when an operation has to be postponed) by 
graph transformations (section III.B.3). 

Three equivalences between DFG and CGRA graph 
models nodes are defined: (1) data and register; (2) 
computation and conventional operator; (3) memorization 
operation and memorization operator. 
As a result, the two models are homomorphic. Binding a DFG 
on a CGRA is therefore an equivalent problem to finding a 
DFG in the CGRA graph. This problem is known as the 
maximum common sub-graph problem and can be solved, as 
in [12] and [13], by using a method derived from Lev�#��
algorithm [15]. 

B. Mapping Algorithm 

As previously mentioned, the mapping algorithm is 
composed of four interdependent parts: scheduling, binding, 
graph transformation and a stochastic selection. These tasks 
are described in details in the next sub-sections. 

 

 

1) Scheduling 
The proposed approach uses a backward traversal list 

scheduling algorithm to schedule each DFG. It relies on a 
heuristic in which the schedulable operations are listed by 
priority order. In backward traversal, a node is schedulable if 
and only if all its children are already scheduled (e.g. node 2, 
in Fig. 4(b), is not schedulable since node 3 is not yet 
scheduled. So it has to be routed to keep data dependency 
resulting in Fig. 4(c)). The priority of nodes depends on their 
mobility, as defined in [18]. It is possible to process 
memorization nodes and conventional nodes differently. Also, 
when several nodes have the same mobility, their respective 
number of successors is used as a second priority criterion. 
The higher the number of successors, the higher the priority is. 
Indeed, a node with a higher number of successors is more 
difficult to map due to routing constraint coming from the 
limited amount of connections between tiles. Thus, scheduling 
these nodes at first usually allows enhancing the ���������#��
latency (e.g. node 2 in Fig. 4(d) has a higher priority than 
node 1). As soon as the highest priority node has been defined, 
our approach tries to find a binding solution. If a binding 
solution exists, the node is scheduled else the graph is 
transformed.  

2) Binding 
The proposed binding algorithm uses an incremental 

)	
����� ��� (	)�#�� ���
����� ��� ����� ����	
�� �
��� ��	� ��	�
described in [12] that use ��	� �
������ )	
����� ��� (	)�#��
algorithm i.e. fully exhaustive search of the whole DFG. 
Thereby, the algorithm we propose adds the newly scheduled 
operation node and its associated data node to the sub-graph 
composed of already scheduled and bound nodes. Only the 
previous set of solutions that have been kept are used to find 
every possibility to add this couple of nodes without 
considering the non-yet scheduled nodes. If no solution is 
found, there is absolutely no possibility to bind this couple in 
��� ��	� �
	)����� �
���� ���������� �	���	� (	)�#s algorithm 
provides a complete exploration of the available solution 
space. In that case, graph transformation is required. 

3) Graph Transformations 
DFG is transformed dynamically when required, as 

opposed to existing works like [12] and [13] that apply static a 
priori transformations, or like [10] and [11] that apply random 

Fig. 3. (a) A 2×1 CGRA with 2 registers in RF, (b) Equivalent graph model
on 3 cycles, (c) DFG model. In (b) a possible mapping of (c) is represented in
dark grey. Memorization nodes are dotted and registers rectangular. 
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transformations. Fig. 5 presents a simple DFG and the results 
of the four different transformations. 

- �������	
����	��	��� duplicates an operation node by 
keeping its same inputs and distributing output edges to 
reduce the number of successors of the original 
operation node (see Fig. 5 +�����-�	
�����.�������� ����
	/��)�	�������
	��������� ����[12].  

- �	����� �
��	��� adds a memorization node and its 
associated data node to delay one operation and to keep 
data dependencies (see Fig. 5 (b)). 

- ����
�	���	
�� ��	��	��� (Fig. 5 (c)) is equivalent to 
�-�	
����� .�������� � ���� ����	�� ��� �	��
�������
nodes. It adds another memorization node with the same 
parents at the current cycle and distributes edges to 
reduce the number of successors of the original node. 

- ��
��	��� �� ��	��	��� ��� ��	� ����������� ��� �.����	�
����	 � ��� �0	��
������� .�������� �� 1�� �	�*�� ��	�
schedule of an operation and reduces the number of 
successors of the generated memorization node (see 
Fig. 5(d)). 

There are two situations where a graph transformation is 
required. The first one occurs when one of the parent 
operations of a previously scheduled node is not schedulable 
(e.g. node 2 in Fig. 4(b) which is one of node 3 parents). In 
������	��������.����	�������� �����-�	
�����.�������� �
	�
available. The choice is made by using a cost function which 
inputs are the number of parents, the free resources and the 
number of successors (e.g. in Fig. 4 +�����.����	�������� � ���
used because the number of free resources is equal to the 
number of schedulable operations). The other situation occurs 
when the binding algorithm does not find any solution with a 
�����	����	
������ �� ��2'��
	�����
	��������	3���	
	�
	�
either no more free operators left in the CGRA or the 
produced data cannot concurrently reach the already bound 
successors operations through the interconnection network. In 
the ��
��� ��	�� �.����	� ������� � ��� ��	� ���*� )����	�
transformation. In the other case, the four transformations are 
possible. The choice is also realized by using a cost function. 

4) Stochastic Selection 
2�	�����
	�	���)	���	������(	)�#�����
���������	���� 

a very large number of partial mappings (depending on the 
data dependencies and the architectural constraints) which can 
prevent its use with complex DFG and/or complex CGRA 
(i.e. a large number of nodes or tiles). A first idea to reduce 
this number is to remove redundant partial mappings. A partial 
mapping is redundant when it uses exactly the same operators 
to make the same operations than another partial mapping at 
the current scheduling cycle. This step allows for keeping only 

all the different partial solutions and preserving an exhaustive 
search. However, as illustrated in experiment results, this 
�
�������	����/�	���	���������	�'	���+�		��0	�����4 �� 

To keep both computation time and memory usage to a 
reasonable level in the mapping tool, we propose to use a 
stochastic selection instead of removing redundant partial 
mappings. This pruning step is made after the binding step and 
before the scheduling of the next node (as illustrated in Fig. 2). 
Let the result of the binding be a list of nbMappings partial 
solutions. For each partial mapping, a random number 
between 0 and 1 is randomly generated and compared to a 
threshold. This threshold has to be chosen carefully: it should 
be low enough to scale up and high enough to allow for 
finding a good solution. Unfortunately, as shown in the 
experiments, using fixed value as threshold (e.g. 75% of 
nbMappings) gives very bad quality results: depending on the 
DFG, it sometimes has a very high failure rate, sometimes a 
non reasonable computation time and that for a large number 
of threshold values. Thus, the threshold should adapt itself to 
nbMappings. For that purpose, nbMappings is normalized by a 

	�	
	��	�����	
����	���*���	���	
�������������	
������	���*�
the threshold function. This function should have the 
following characteristics: tend to 1 when nbMappings��� ���
small and be a decreasing function. Many functions can be 
considered (e.g. exponential, invert, hyperbolic tangent, etc.). 
To define the acceptance threshold, we chose a decreasing 
exponential that is classically used in simulated annealing (see 
Equation �� 

 
 

���

Once all the nodes of the application have been scheduled 
and bound, our method selects one of the best solutions (i.e. a 
solution with the lowest latency) among all the available 
mappings. 

IV. EXPERIMENTS AND RESULTS 

A. Experimental Setup 

The proposed synthesis flow has been fully automated 
through a software tool implemented in. GCC 4.7 has been 
derived to generate CDFGs from applications described in C 
language. Nine applications from signal processing domain 
and High Level Synthesis (HLS) benchmarks have been used 
for our experiments, namely: 2D Discrete Cosine Transform 
(DCT-2D), matrix product, Fast Fourier Transform (FFT), 
Manhattan Distance computation, Exponential Moving 
Average Filter (EMA), Moving Window De-convolution 
(MWD), Unsharp Mask, Elliptic Filter and a Low-Pass filter 
(DC Filter). A workstation integrating an Intel Xeon and 8 GB 
of RAM has been used to realize the experiments.  

Firstly, the impact of the user-�	���	�� �
�	�	
� �� ���
studied to determine the best compromise according to the 
�	�
����� 5�
� ���� ��
���	�� �� )
�	�� ��� {1000, 2500, 5000, 
10000, 25000, 50000}. 

2�	����	��
����	����
����'�����
��	
����������
	�����
state-of-the-art approaches. As a reminder, our method 
backward traverses the graph, schedules and binds nodes 
simultaneously with dynamic transformations and 

��������� 	
���	��� � � ���
�	
���	��

�

Fig. 5. DFG transformations: (a) Operation Splitting, (b) Simple Routing,
(c) Memorization Spliting, (d) Routing & Splitting. 
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stochastically selects partial mappings to prune the solution 
space. Since [12] and [13] have been shown to provide better 
results than [8] and [11], we do not compare with these 
approaches in this paper. The three other methods we have 
considered for comparison are: 

- �����
���� that solves the scheduling and the binding 
problem separately as proposed to generate in [7]. 
Graphs are transformed during scheduling by applying 
�.����	� ����	 � �
����
������ ���*�� A forward list-
based scheduling algorithm and the �
������ (	)�#��
binding algorithm are used.  

- �����
�� �� that traverses the graph forwardly, 
schedules nodes by applying a priori transformations 
����
�	�������������������*���������	��
������(	)�#��
algorithm as proposed in [12], [13].  

- �����
�� �� that backward traverses the graph, 
schedules and binds nodes simultaneously with dynamic 
transformations as proposed in this paper and removes 
redundant partial mappings to prune the solution space.  

To obtain a large spectrum of results, several constraints 
have been varied: CGRA size, RF size and the number of tiles 
the final mapping is allowed to use. This has led to 16 
different sets of constraints per application and per method for 
which computation time is reasonable (under 1000s). Also, 
since proposed method is based on stochastic selection, we 
present average results based on ten executions. 

Several metrics have been considered to assess quality of 
the methods. They can be grouped into three main categories. 
The first category assesses the intrinsic quality of a mapping 
method. It is composed of two metrics: (1) the success rate, 
defined as the percentage of time a method finds a mapping 
when at least one of the four method succeed, and (2) the 
percentage of time the method gives the best latency between 
the four methods. The second category illustrates the ability of 
a method to widely and efficiently explore the design space. 
For that purpose, two criteria are considered: the number of 
different mappings found and the number of different 
mappings found per second (throughput). Two mappings are 
different if they use different tiles or use the interconnection 
network differently. These two metrics really illustrate the 
ability of a method to transform the application graph just as 
needed and so to efficiently explore the solution space. Indeed, 
adding more nodes than needed reduces the number of 
different mappings found at the end because it over constraints 
the problem. The third category gives the ability of a method 
to scale up. The underlying metric is the computation time. 

B. Results 

TABLE 1 presents ��	������	��	�������)	
�����	���
�	����
the number of different mappings generated per second 
+�0������� throughput � because the impacts on the other 
metrics are ���� �������)	���� has an influence on the success 
rate below 25000. Above 5000, this influence is less than 1%. 
�Mappings throughput  observation shows that there is a 
)��	� ����� �����"����	s the number of different mappings 
which is near 10000. Accordingly, for the rest of the 
	"�	
��	�����������	�����67777���
���	��
����	��pproach. For 
each previously defined criterion, Fig. 6 to Fig. 11 illustrate 
results of the four methods. 

Fig. 6 shows that Method 1, that solves scheduling and 
binding totally independently, leads to the lowest success rate 
(almost 40%). Method 2, that transforms the graph a priori, 
provides better results (~65%) but is not as good as Method 3 
(~90%) and the proposed approach (~97%). For some of the 
benchmarks (e.g. unsharp mask), our stochastic selection is 
even better than the exhaustive method because the partial 
solutions found become dead-ends and that the stochastic 

selection removes them. Indeed, the exhaustive search tries to 
transform the graph as less as possible. It keeps many partial 
solutions that lead to dead-end and has not enough time to
finish the exploration in the given time-out. The stochastic 
approach can discard the solutions that lead to dead-ends and 
save time to completely explore further (and possibly 
transform) the partial solutions kept. 

When a method finds the solution, we evaluate the quality 
of the result by comparing to the ASAP length of the DFG. 
Fig. 7 shows the percentage of time the method finds the best 
latency (when it finds one). The proposed approach is based 
on a backward list-scheduling which is a heuristic and so 
cannot always find the best latency. However, as shown in 
Fig. 7, our method finds most of the time the best latency 
(83%). Moreover, the random aspect of the stochastic 
selection sometimes allows for improvement compared to 
Method 3 which is exhaustive (but not exact). Indeed, it may 
change the schedule which can result in an improvement of 
the latency (diversification well-known phenomenon).  

In Fig. 8, the average number of different mappings 
generated is presented. It shows that adding stochastic 
selection does not really decrease the diversity of the results 

TABLE 1  LAMBDA INFLUENCE 

������� 1000 2500 5000 10000 25000 50000 

Success Rate 

Decrease 
3.7% 1.85% 0.46% 0.92% 0% 0% 

Mappings 

Throughput 
0.47 0.60 0.73 0.80 0.77 0.64 

Fig. 7. Percentages of time methods find the best latency. 

Fig. 6. Success rate. 
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