
A Scalable Design Approach to Efficiently Map
Applications on CGRAs

Satyajit Das, Kevin Martin, Philippe Coussy

Univ. Bretagne-Sud, CNRS UMR 6285, Lab-STICC
F-56100 Lorient, France

firstname.lastname@univ-ubs.fr

Thomas Peyret, Gwenolé Corre, Mathieu Thevenin

CEA, LIST, Laboratoire Capteurs et Architectures Électronique
F-91191 Gif-sur-Yvette, France

firstname.lastname@cea.fr

Abstract� Coarse-Grained Reconfigurable Architectures

(CGRAs) are promising high-performance and power-efficient

platforms. However, their uses are still limited because of the

current capability of the mapping tools. This paper presents a

new scalable efficient design flow to map applications written in

high level language on CGRAs. This approach leverages on

simultaneous scheduling and binding steps respectively based on

a heuristic and an exact method stochastically degenerated. The

formal graph model of the application, obtained after

compilation, is backward traversed and dynamically transformed

when needed to allow for a better exploration of the design space.

Results show that our approach is scalable, finds most of the time

the best solutions i.e. the mappings with the shortest latencies,

achieves lowest failure rate in carrying out solutions, provides

lower computation time and explores more efficiently the solution

space than the state of the art methods.

Keywords� CGRA; Mapping; Scheduling; Binding

I. INTRODUCTION

For the last two decades, Coarse-Grained Reconfigurable
Architectures (CGRAs) have been mainly proposed for
accelerating multimedia applications. CGRAs are indeed an
interesting trade-off between FPGAs and many-core
architectures because their power efficiency is close to
nonprogrammable hardware accelerators while they are
programmable [1]. The literature is very rich in CGRAs
architectures [2�6], which distinguish by different features
such as the granularity of the Processing Elements (PE),
homogeneity or heterogeneity of PE, type of operators (ALU,
��������	
����	
�������	
������	��	��
	�	��	����	�����	����	
�
Files (RF) or interconnection network topologies (mesh 2-D,
��
	���� ���� ���� ��	�� tile, is usually composed of a
functional unit, a local RF, two input multiplexers and an
output register as illustrated in Fig. 1. Interconnection network
is traditionally a 2D mesh that offers the possibility to
communicate with four neighbors. However, additional
column or line buses, or more complex networks as segmented
buses can be used to increase the communication capability of
each tile [2], [4], [5].

The result of the compilation of an application on a CGRA
(also named mapping), is the scheduling and the binding of its
operations on operators and registers. This process, that has to
respect control and data dependencies of the application and
the architecture constraints of the CGRA, is a complex task
still often realized by hand. However, applications are
increasingly more complex and dealing with hundreds or

thousands of operations is simply not reasonable: the mapping
process must be automated. Scheduling and binding are
known to be NP-complete [7] and obtaining a good solution
requires to explore deeply the solution space. Indeed, the
target architecture strongly constrains the mapping process
which objective is to maximize timing performances
(minimize latency and/or maximize throughput).

In this paper, a scalable approach that allows for mapping
entire applications onto various types of CGRAs is presented.
The solution space is efficiently explored by traversing
backward the formal intermediate representation (IR) of the
application, by combining scheduling and binding steps and
by transforming IR dynamically when needed.

The rest of the paper is organized as follows. Section II
presents the related works. Section III depicts proposed
method. Section IV presents the experiments and discusses
obtained results. Conclusion is given in Section V.

II. RELATED WORK

As CGRAs are classically used to speed up kernel loops,
most of the literature methods tries to minimize the initiation
interval of loops kernel [7�11] i.e. maximize throughput.
Existing techniques can also be used to compile entire
application code onto CGRA. Mapping methods can be
roughly divided into two main categories which differ on the
way scheduling and binding steps are realized, i.e. sequentially
or concurrently.

The first category simplifies the mapping problem by
solving scheduling and binding sequentially with heuristics
and/or meta-heuristics [7�9] or exact methods [12], [13]. In
[8] and [9], iterative modulo scheduling heuristic [14] is used
for scheduling. In [8] an edge-based binding heuristic is used
(instead of classical node-based approaches) to reduce the

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

��
��

���� ���	
���� � ������

�� ���	
���� � ������

Fig. 1. A 4×4 CGRA with torus mesh an FU and RF in each tile.

2016 IEEE Computer Society Annual Symposium on VLSI

978-1-4673-9039-2/16 $31.00 © 2016 IEEE

DOI 10.1109/ISVLSI.2016.54

655

number of fails. In [9], binding problem is tackled by
combining a routing heuristic from FPGA synthesis and a
Simulated Annealing (SA) algorithm for placement.
Schedulable operation nodes are moved randomly according
to a decreasing temperature and a cost function. The main
limitation of this kind of approaches is the compromise that
has to be done in order to have a reasonable computation time.
Indeed, to efficiently explore the solution space, the
temperature requires to be high and to decrease slowly,
leading to very slow convergence time. Conversely, if the
temperature is low or decreases rapidly, the solution is hardly
ever optimal and corresponds nearly always to a local
optimum. The method presented in [7], which provides better
results, starts by finding a solution on a simplified problem
with heuristic-based methods for both scheduling and binding
and then tries to improve the initial solution with a genetic
approach. The initial solution is found by using a list-
scheduling algorithm and the binding is realized by
considering only a single column of the CGRA. Then the
genetic algorithm optimizes the first solution by moving
operations to minimize the latency. However, this method uses
only one seed which limits its ability to explore the whole
solution space. Moreover, as every guided stochastic
algorithm, this technique suffers from both low run time
efficiency and low convergence rate to high quality results. In
[12], [13], authors solve the scheduling and the binding
problems sequentially by using respectively a heuristic and an
exact method. Scheduling is made implicitly by integrating
both architectural constraints (i.e. the number of operations
simultaneously executable on the CGRA and the maximum
out-degree of each operation due to the communication
network) and timing aspect into the DFG by statically
transforming it. Two transformations are proposed:
�
	��������� � ���� �������	�� ����������� ���	�� ���
�
������ � ���� �������	�� ��� ���	�� ��� �!	� 	"������� ��	�
conservation of a result. These transformations hopefully
�������	� ��	� ���������#�� �������� Binding is done by
finding the common sub-graph between the transformed DFGs
��� � ���	� 	"�	��	�� $%�&� '���� ()�#�� ���
����� [15].
However, since the graph transformations are done a priori, it
is very difficult to know which transformation is relevant at a
given time. This reduces the ability of the method to
efficiently explore the solution space since the problem is
over-constrained. In [19], an algorithm based on graph
transformation also is used to find the homomorphism
between the graphs.

The second category solves the scheduling and binding
problems as a whole. Hence, [7], [16], [17] use exact methods,
e.g. ILP-based algorithms, to find optimal results.
Unfortunately, these methods suffer from scalability issues as
illustrated in [7]. The method presented in [10], and its
extension that can cope with RFs [11], leverage on meta-
heuristics. They are based on a Simulated Annealing (SA)
framework that is also a guided stochastic algorithm. The
classical placement and routing problem which can be solved
with SA, is there extended in three dimensions to include
scheduling. Thus schedulable operation nodes are moved
absolutely randomly through time and space. The convergence
is there even slower than for other SA method because it
includes scheduling.

The key idea of the proposed mapping approach is to
combine the advantages of exact, heuristic and meta-heuristic
methods while offsetting as much as possible their respective
drawbacks. Hence, as detailed in the next section, scheduling
and binding problems are solved simultaneously by using a
heuristic-based algorithm and a randomly degenerated exact
method respectively and by transforming the formal model of
the application dynamically.

III. PROPOSED METHOD

The proposed design flow is presented in Fig. 2. Inputs are
a C/C++ application code and the targeted CGRA model. The
objective of the method is to minimize the latency of the DFG
under resource constraint by deeply exploring the design space
'���	� !		����� � ��'� ������� �	�*� +��*���	���� ���	 �. The
output of the flow is the mapping with the best latency that has
been found during the exploration of the design space i.e. one
of the mappings with the best latency since our flow is
inherently able to find several mappings with the best latency.
The description of the application is first compiled to obtain a
formal Control and Data Flow Graph (CDFG). CDFG is then
mapped by processing each of its basic blocs (i.e. DFG)
sequentially. To keep the method with a low complexity, a
list-scheduling based algorithm is used to schedule nodes of
each DFG. As it is a local greedy method, the binding is made
simultaneously to ensure that at least one solution exists,
hence avoiding dead-ends. The proposed binding step is
realized incrementally by using an exact method. However, as
exact methods do not scale up, a stochastic selection is
performed. This allows for keeping only a reasonable number
of solutions among all the possible partial solutions that have
been found. Finally DFGs are dynamically transformed as
needed when no mapping solution can been found. For that
purpose, DFG are backward traversed to allow applying the
most relevant transformation.

A. Architecture and Application Modeling

CGRA is modeled by a bipartite directed graph with two
types of nodes: operator and register, in which temporal aspect
is implicitly represented by connections from registers to
operators. Fig. 3(b) illustrates the model of the CGRA
presented in Fig. 3a). Two subtypes of operator nodes are
defined. The first one is conventional operator that represents
the physical implementation of an operation (+, ×, -���� &�
conventional operator is usually able to compute different
types of operations (e.g. + and -) and/or memory access
(e.g. load/store). The second type of operator is memorization
operator. It is associated to a register and represents the
operation of keeping a value in a register explicitly.
Connection between output register and conventional

� ���� ����������� ����
������	 ����

��
����� �
������	 �� ��	
��
 ������� ����

��
!�

����
 �������������

!�

��

������

!�

��"# �����

����
���� ���������

$��

%�� ��
������	

�������� & %�� ���� &

�
��	� &

Fig. 2. General flow and algorithm core.

656

operators depends on the interconnect network (e.g. in Fig. 3,
only output registers can communicate with the operator of the
other tile). Our CGRA graph model, that is very versatile,
differs from the Time Extended CGRA proposed in [12] by
explicitly representing registers. It can thus represent CGRA
with homogeneous or heterogeneous tiles, presence or absence
of RF, shared or local RF, homogeneous or heterogeneous
operators, regular or specific interconnect network and
operators that require more than one cycle to execute its
operation (e.g. multipliers).

Application is modeled as a CDFG. CDFG is composed of
a Control Flow Graph (CFG) and a set of basic blocks
represented by DFGs. DFG is a bipartite directed acyclic
graph composed of data nodes (rectangles in Fig. 3(c) and Fig.
4), operation nodes (circles) and data dependencies (arcs). In
the proposed approach, in addition to conventional
computation nodes (+, ×, -���� � �
�����
� ��	
��������	� ���
introduced: memorization. The purpose of memorization node
is to make data dependencies explicit along cycles. For
example, in the DFG in Fig. 3(c������	�,#� �����	��
�������
node that makes explicit the data dependency between nodes 2
and 4 over one clock cycle. Memorization nodes are added
when needed (i.e. when an operation has to be postponed) by
graph transformations (section III.B.3).

Three equivalences between DFG and CGRA graph
models nodes are defined: (1) data and register; (2)
computation and conventional operator; (3) memorization
operation and memorization operator.
As a result, the two models are homomorphic. Binding a DFG
on a CGRA is therefore an equivalent problem to finding a
DFG in the CGRA graph. This problem is known as the
maximum common sub-graph problem and can be solved, as
in [12] and [13], by using a method derived from Lev�#��
algorithm [15].

B. Mapping Algorithm

As previously mentioned, the mapping algorithm is
composed of four interdependent parts: scheduling, binding,
graph transformation and a stochastic selection. These tasks
are described in details in the next sub-sections.

1) Scheduling
The proposed approach uses a backward traversal list

scheduling algorithm to schedule each DFG. It relies on a
heuristic in which the schedulable operations are listed by
priority order. In backward traversal, a node is schedulable if
and only if all its children are already scheduled (e.g. node 2,
in Fig. 4(b), is not schedulable since node 3 is not yet
scheduled. So it has to be routed to keep data dependency
resulting in Fig. 4(c)). The priority of nodes depends on their
mobility, as defined in [18]. It is possible to process
memorization nodes and conventional nodes differently. Also,
when several nodes have the same mobility, their respective
number of successors is used as a second priority criterion.
The higher the number of successors, the higher the priority is.
Indeed, a node with a higher number of successors is more
difficult to map due to routing constraint coming from the
limited amount of connections between tiles. Thus, scheduling
these nodes at first usually allows enhancing the ���������#��
latency (e.g. node 2 in Fig. 4(d) has a higher priority than
node 1). As soon as the highest priority node has been defined,
our approach tries to find a binding solution. If a binding
solution exists, the node is scheduled else the graph is
transformed.

2) Binding
The proposed binding algorithm uses an incremental

)	
����� ��� ()�#�� ���
����� ��� ����� ����	
�� �
��� ��	� ��	�
described in [12] that use ��	� �
������)	
����� ��� ()�#��
algorithm i.e. fully exhaustive search of the whole DFG.
Thereby, the algorithm we propose adds the newly scheduled
operation node and its associated data node to the sub-graph
composed of already scheduled and bound nodes. Only the
previous set of solutions that have been kept are used to find
every possibility to add this couple of nodes without
considering the non-yet scheduled nodes. If no solution is
found, there is absolutely no possibility to bind this couple in
��� ��	� �
)����� �
���� ���������� �	���	� ()�#s algorithm
provides a complete exploration of the available solution
space. In that case, graph transformation is required.

3) Graph Transformations
DFG is transformed dynamically when required, as

opposed to existing works like [12] and [13] that apply static a
priori transformations, or like [10] and [11] that apply random

Fig. 3. (a) A 2×1 CGRA with 2 registers in RF, (b) Equivalent graph model
on 3 cycles, (c) DFG model. In (b) a possible mapping of (c) is represented in
dark grey. Memorization nodes are dotted and registers rectangular.

'�(

"�
)�*

"�
)�+

,-)�+

.-)�+

)�*

)�*

-)�

���� ���/��� �����

'�(

"�

"�

"�

+-)�+

"�

"� "�

�� ��0� �����

��
��
�
�

��
��
�
�1

+
��
��
�
�1

*

*2

*

,

+

. *2

'�(
Fig. 4. Example of scheduled and transformed DFG on a one-tile CGRA.
(a) Inital DFG, (b) after node 4 schedule, (c) ��	
����������	�,#�� (d) after
scheduling node 3 and 2', (e) after node 2 schedule, (f) Scheduled DFG after
routing and scheduling node 1. Horizontal line shows the limit between
scheduled and non scheduled nodes. Memorization nodes are doted circles.

��

�
��

���
	
��
��
�

'�('�('�(

.

*

,

+

. *2

,

+

.

*

,

+

'�('�(

.

*

*2

,

+

+2

.

*

*2

,

+

.

*

*2

,

+

.

*

,

'�(

657

transformations. Fig. 5 presents a simple DFG and the results
of the four different transformations.

- �������	
����	��	��� duplicates an operation node by
keeping its same inputs and distributing output edges to
reduce the number of successors of the original
operation node (see Fig. 5 +�����-�	
�����.�������� ����
	/��)�	�������
	��������� ����[12].

- �	����� �
��	��� adds a memorization node and its
associated data node to delay one operation and to keep
data dependencies (see Fig. 5 (b)).

- ����
�	���	
�� ��	��	��� (Fig. 5 (c)) is equivalent to
�-�	
����� .�������� � ���� ����	�� ��� �	��
�������
nodes. It adds another memorization node with the same
parents at the current cycle and distributes edges to
reduce the number of successors of the original node.

- ��
��	��� �� ��	��	��� ��� ��	� ����������� ��� �.����	�
����	 � ��� �0	��
������� .�������� �� 1�� �	�*�� ��	�
schedule of an operation and reduces the number of
successors of the generated memorization node (see
Fig. 5(d)).

There are two situations where a graph transformation is
required. The first one occurs when one of the parent
operations of a previously scheduled node is not schedulable
(e.g. node 2 in Fig. 4(b) which is one of node 3 parents). In
������	��������.����	�������� �����-�	
�����.�������� �
	�
available. The choice is made by using a cost function which
inputs are the number of parents, the free resources and the
number of successors (e.g. in Fig. 4 +�����.����	�������� � ���
used because the number of free resources is equal to the
number of schedulable operations). The other situation occurs
when the binding algorithm does not find any solution with a
�����	����	
������ �� ��2'��
	�����
	��������	3���	
	�
	�
either no more free operators left in the CGRA or the
produced data cannot concurrently reach the already bound
successors operations through the interconnection network. In
the ��
��� ��	�� �.����	� ������� � ��� ��	� ���*�)����	�
transformation. In the other case, the four transformations are
possible. The choice is also realized by using a cost function.

4) Stochastic Selection
2�	�����
	�	���)	���	������()�#�����
���������	����

a very large number of partial mappings (depending on the
data dependencies and the architectural constraints) which can
prevent its use with complex DFG and/or complex CGRA
(i.e. a large number of nodes or tiles). A first idea to reduce
this number is to remove redundant partial mappings. A partial
mapping is redundant when it uses exactly the same operators
to make the same operations than another partial mapping at
the current scheduling cycle. This step allows for keeping only

all the different partial solutions and preserving an exhaustive
search. However, as illustrated in experiment results, this
�
�������	����/�	���	���������	�'	���+�		��0	�����4 ��

To keep both computation time and memory usage to a
reasonable level in the mapping tool, we propose to use a
stochastic selection instead of removing redundant partial
mappings. This pruning step is made after the binding step and
before the scheduling of the next node (as illustrated in Fig. 2).
Let the result of the binding be a list of nbMappings partial
solutions. For each partial mapping, a random number
between 0 and 1 is randomly generated and compared to a
threshold. This threshold has to be chosen carefully: it should
be low enough to scale up and high enough to allow for
finding a good solution. Unfortunately, as shown in the
experiments, using fixed value as threshold (e.g. 75% of
nbMappings) gives very bad quality results: depending on the
DFG, it sometimes has a very high failure rate, sometimes a
non reasonable computation time and that for a large number
of threshold values. Thus, the threshold should adapt itself to
nbMappings. For that purpose, nbMappings is normalized by a

	�	
	��	�����	
����	���*���	���	
�������������	
������	���*�
the threshold function. This function should have the
following characteristics: tend to 1 when nbMappings��� ���
small and be a decreasing function. Many functions can be
considered (e.g. exponential, invert, hyperbolic tangent, etc.).
To define the acceptance threshold, we chose a decreasing
exponential that is classically used in simulated annealing (see
Equation ��

���

Once all the nodes of the application have been scheduled
and bound, our method selects one of the best solutions (i.e. a
solution with the lowest latency) among all the available
mappings.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

The proposed synthesis flow has been fully automated
through a software tool implemented in. GCC 4.7 has been
derived to generate CDFGs from applications described in C
language. Nine applications from signal processing domain
and High Level Synthesis (HLS) benchmarks have been used
for our experiments, namely: 2D Discrete Cosine Transform
(DCT-2D), matrix product, Fast Fourier Transform (FFT),
Manhattan Distance computation, Exponential Moving
Average Filter (EMA), Moving Window De-convolution
(MWD), Unsharp Mask, Elliptic Filter and a Low-Pass filter
(DC Filter). A workstation integrating an Intel Xeon and 8 GB
of RAM has been used to realize the experiments.

Firstly, the impact of the user-�	���	�� �
�	�	
� �� ���
studied to determine the best compromise according to the
�	�
����� 5�
� ���� ��
���	�� ��)
�	�� ��� {1000, 2500, 5000,
10000, 25000, 50000}.

2�	����	��
����	����
����'�����
��	
����������
	�����
state-of-the-art approaches. As a reminder, our method
backward traverses the graph, schedules and binds nodes
simultaneously with dynamic transformations and

��������� 	
���	��� � � ���
�	
���	��

�

Fig. 5. DFG transformations: (a) Operation Splitting, (b) Simple Routing,
(c) Memorization Spliting, (d) Routing & Splitting.

'�(

* . ,

+

* . ,

+2+ +2

* . ,

+

+2

* . ,

+

+22

658

stochastically selects partial mappings to prune the solution
space. Since [12] and [13] have been shown to provide better
results than [8] and [11], we do not compare with these
approaches in this paper. The three other methods we have
considered for comparison are:

- �����
���� that solves the scheduling and the binding
problem separately as proposed to generate in [7].
Graphs are transformed during scheduling by applying
�.����	� ����	 � �
����
������ ���*�� A forward list-
based scheduling algorithm and the �
������ ()�#��
binding algorithm are used.

- �����
�� �� that traverses the graph forwardly,
schedules nodes by applying a priori transformations
����
�	�������������������*���������	��
������()�#��
algorithm as proposed in [12], [13].

- �����
�� �� that backward traverses the graph,
schedules and binds nodes simultaneously with dynamic
transformations as proposed in this paper and removes
redundant partial mappings to prune the solution space.

To obtain a large spectrum of results, several constraints
have been varied: CGRA size, RF size and the number of tiles
the final mapping is allowed to use. This has led to 16
different sets of constraints per application and per method for
which computation time is reasonable (under 1000s). Also,
since proposed method is based on stochastic selection, we
present average results based on ten executions.

Several metrics have been considered to assess quality of
the methods. They can be grouped into three main categories.
The first category assesses the intrinsic quality of a mapping
method. It is composed of two metrics: (1) the success rate,
defined as the percentage of time a method finds a mapping
when at least one of the four method succeed, and (2) the
percentage of time the method gives the best latency between
the four methods. The second category illustrates the ability of
a method to widely and efficiently explore the design space.
For that purpose, two criteria are considered: the number of
different mappings found and the number of different
mappings found per second (throughput). Two mappings are
different if they use different tiles or use the interconnection
network differently. These two metrics really illustrate the
ability of a method to transform the application graph just as
needed and so to efficiently explore the solution space. Indeed,
adding more nodes than needed reduces the number of
different mappings found at the end because it over constraints
the problem. The third category gives the ability of a method
to scale up. The underlying metric is the computation time.

B. Results

TABLE 1 presents ��	������	��	�������)	
�����	���
�	����
the number of different mappings generated per second
+�0������� throughput � because the impacts on the other
metrics are ���� �������)	���� has an influence on the success
rate below 25000. Above 5000, this influence is less than 1%.
�Mappings throughput observation shows that there is a
)��	� ����� �����"����	s the number of different mappings
which is near 10000. Accordingly, for the rest of the
	"�	
��	�����������	�����67777���
���	��
����	��pproach. For
each previously defined criterion, Fig. 6 to Fig. 11 illustrate
results of the four methods.

Fig. 6 shows that Method 1, that solves scheduling and
binding totally independently, leads to the lowest success rate
(almost 40%). Method 2, that transforms the graph a priori,
provides better results (~65%) but is not as good as Method 3
(~90%) and the proposed approach (~97%). For some of the
benchmarks (e.g. unsharp mask), our stochastic selection is
even better than the exhaustive method because the partial
solutions found become dead-ends and that the stochastic

selection removes them. Indeed, the exhaustive search tries to
transform the graph as less as possible. It keeps many partial
solutions that lead to dead-end and has not enough time to
finish the exploration in the given time-out. The stochastic
approach can discard the solutions that lead to dead-ends and
save time to completely explore further (and possibly
transform) the partial solutions kept.

When a method finds the solution, we evaluate the quality
of the result by comparing to the ASAP length of the DFG.
Fig. 7 shows the percentage of time the method finds the best
latency (when it finds one). The proposed approach is based
on a backward list-scheduling which is a heuristic and so
cannot always find the best latency. However, as shown in
Fig. 7, our method finds most of the time the best latency
(83%). Moreover, the random aspect of the stochastic
selection sometimes allows for improvement compared to
Method 3 which is exhaustive (but not exact). Indeed, it may
change the schedule which can result in an improvement of
the latency (diversification well-known phenomenon).

In Fig. 8, the average number of different mappings
generated is presented. It shows that adding stochastic
selection does not really decrease the diversity of the results

TABLE 1 LAMBDA INFLUENCE

������� 1000 2500 5000 10000 25000 50000

Success Rate

Decrease
3.7% 1.85% 0.46% 0.92% 0% 0%

Mappings

Throughput
0.47 0.60 0.73 0.80 0.77 0.64

Fig. 7. Percentages of time methods find the best latency.

Fig. 6. Success rate.

�

��	

��

���

���

��

���

���

���

���

	

�� ������ ���
� �������� ������ ��� ������ ��� ��� �����
��!�����

�����"
��#$%��

�&� ������ ��! ���
��!'

�(���)�

��
�
%�
��
��
�
"�
�� ��� #$ 	

��� #$

��� #$ �

��#�#!�$
����#��

�

��	

��

���

���

��

���

���

���

���

	

�� ������ ���
� �������� ������ ��� ������ ��� ��� �����
��!�����

�����"
��#$%��

�&� ������ ��! ���
��!'

�(���)�

��
��
�

"�
��

��� #$ 	

��� #$

��� #$ �

��#�#!�$
����#��

659

660

