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This paper presents three-dimensional numerical simulations of non-colloidal dense sus-
pensions in a wall-bounded shear flow at zero Reynolds number. Simulations rely on a
fictitious domain method with a detailed modelling of particle-particle and wall-particle
lubrication forces, as well as contact forces including particle roughness and friction.
This study emphasizes the effect of walls on the structure, velocity and rheology of a
moderately confined suspension (channel gap to particle radius ratio of 20) for a volume
fraction range 0.1 ≤ φ ≤ 0.5. The wall region shows particle layers with an hexagonal
structure. The size of this layered zone depends on volume fraction and is only weakly
affected by friction. This structure implies a wall slip which is in good accordance with
empirical models. Simulations show that this wall slip can be mitigated by reducing par-
ticle roughness. For φ / 0.4, wall-induced layering has a moderate impact on viscosity
and second normal stress difference N2. Conversely, it significantly alters the first normal
stress difference N1 and can result in positive N1, in better agreement with some exper-
iments. Friction enhances this effect, which is shown to be due to a substantial decrease
in the contact normal stress |Σcxx| (where x is the velocity direction) because of particle
layering in the wall region.

Key words:

1. Introduction

Dense suspensions of particles in low Reynolds number flows are ubiquitous in industry
as well as in biological or natural flows. They display complex flow properties, intermedi-
ate between solid and liquid. The present study considers the ideal case of non-Brownian
non-colloidal single-sized spherical particles embedded in a Newtonian fluid. However,
even this simple suspension notoriously exhibits the complex non-Newtonian behaviours
typical of actual suspensions (Stickel & Powell 2005; Morris 2009). Recent advances in
understanding the complex physics of suspensions have rested on detailed experiments
and numerical simulations. Simulations provide access to some micromechanical details
not easily available in experiments, such as the three-dimensional microstructure, flow
field or hydrodynamic and contact forces between particles. In particular, the Stokesian
Dynamics (SD) (Brady & Bossis 1988; Sierou & Brady 2002) has been instrumental in
providing insights into suspension physics. To a large extent, the current knowledge con-
cerns unbounded suspensions since most simulations – especially SD – usually consider
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an infinite domain by using periodicity conditions in all directions.
Conversely, confined suspensions have received much less attention. Suspension flows in

porous media, blood flow in capillaries or microfluidic devices are examples of situations
where interactions with boundaries are predominant. This can lead to surprising effects
such as a negative quadratic dependence of viscosity with volume fraction (Davit & Peyla
2008) or swapping trajectories for two spheres in shear flow (Zurita-Gotor et al. 2007).
Walls are also known to strongly alter particle diffusion (Yeo & Maxey 2010a; Michaili-
dou et al. 2009). Works by Sangani et al. (2011) show a significant increase in the stresslet
of a particle close to a wall, by a factor of 4. Usual rheological measurements make use
of rheometers where the suspension is confined. Therefore, it is not completely known to
what extent walls can alter the measured rheological quantities. There is now a debate
concerning the sign of the first normal stress difference N1 = Σxx − Σyy (where x and y
refer to the direction of velocity and velocity gradient, respectively) since available exper-
imental results are controversial. Numerical simulations of unbounded suspensions using
Stokesian Dynamics (SD) (Sierou & Brady 2002), Force-Coupling Method (FCM) (Yeo
& Maxey 2010b) or Fictitious Domains (Gallier et al. 2014b) find a negative N1. Other
simulations by Mari et al. (2014) show that prior to shear thickening, the average value of
N1 is nearly zero but is dominated by large fluctuations. In contrast, experiments report
either negative N1 (Zarraga et al. 2000; Singh & Nott 2003; Dai et al. 2013), or almost
zero (Couturier et al. 2011), or positive N1 (Dbouk et al. 2013; Royer et al. 2016; Lootens
et al. 2005), or, at last, either positive or negative values depending on the size and poly-
dispersity of particles (Gamonpilas et al. 2016). Interestingly, recent simulations by Yeo
& Maxey (2010b) in wall-bounded suspensions have shown that |N1| was smaller than in
unbounded suspensions. This suggests that confinement may have a role on rheology in
general and on N1 in particular. This is one of the motivations of the present work.

Walls are also known to affect the suspension flow field by inducing an apparent wall-
slip (Coussot 2005; Jana et al. 1995) which alters the effective shear in the suspension.
They also promote a local ordering by forming particle layers, as confirmed by simula-
tions (Singh & Nott 2000; Nguyen & Ladd 2002; Kromkamp et al. 2006; Yeo & Maxey
2010b). This wall-induced layering is also clearly visible experimentally by high-resolution
particle tracking (Blanc et al. 2013; Metzger et al. 2013; Cheng et al. 2011; Snook et al.
2015; Pieper & Schmid 2016). An hexagonal ordering takes place close to walls and is
attested for volume fractions φ as low as 0.48 (Yeo & Maxey 2010c). This wall-induced
ordering can persist on large distances, typically 10a where a is the particle radius. For
strongly confined systems (channel width to particle radius ratio Ly/a < 11), this order
also depends on the commensurability between the channel width and the number of
particle layers (Yeo & Maxey 2010c). Simulations by Bian et al. (2014) also show that
confinement increases viscosity, facilitates cluster formation and is essential to observe
hydrodynamic shear thickening.

This paper intends to improve the current knowledge of the role of walls on suspensions
– especially rheology – using numerical simulations. In present work, we make use of a
fictitious domain approach as detailed in Gallier et al. (2014a). Our method explicitly
solves long-range hydrodynamics and incorporates an adequate modelling of lubrication
and contact forces. Wall-particle lubrication interactions will be specifically addressed in
this work due to its relevance. The thorough study by Yeo & Maxey (2010b) has already
considered simulations on wall-bounded suspensions and has brought many significant
results on the role of confinement. The present study intends to go a step further by fo-
cusing on rheology (especially normal stress differences) as well as investigating the effect
of friction, which has recently been shown to have a profound impact on the rheology of
homogeneous suspensions (Gallier et al. 2014b; Fernandez et al. 2013; Seto et al. 2013).
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Section 2 presents a brief description of the numerical approach used. In section 3, we
present suspension simulation results in simple shear flows and investigate the role of
walls on suspension structure, flow field and rheology. Throughout this study, the mag-
nitude of confinement is described by the ratio κ of channel width Ly to particle radius
a, i.e. κ = Ly/a. Most simulations are conducted on moderately confined suspensions
κ=20.

2. Numerical model

This section briefly describes the numerical method used ; more details can be found in
a previous paper (Gallier et al. 2014a). In a fictitious domain method, solid particles are
supposed to be filled with a fluid having the same properties as the actual fluid. From a
computational viewpoint, this means that a classical fluid problem is solved in the whole
domain. Particles are thus considered as some regions of the fluid constrained to have a
rigid body motion.

2.1. Review of the fictitious domain method

Particles are supposed to be rigid and homogeneous whereas the fluid is assumed incom-
pressible and Newtonian and is governed by the Stokes equations :

∇ · u = 0 (2.1)

∇ · Σ + ρλ = 0 (2.2)

where ρ and u are the fluid density and velocity, respectively, while λ is a momentum
forcing term used to enforce the rigid body motion inside particles. For a Newtonian
fluid, the stress tensor Σ reads

Σ = −pI + 2ηE (2.3)

where p is the pressure, η the fluid viscosity and E the rate-of-strain tensor E = 1
2 (∇u+

∇uT ). The fluid velocity inside each particle must comply with a rigid body motion, so
that

u = U +Ω × (x− xg) (2.4)

where U and Ω stand for the particle translational and rotational velocities and xg is
the position of the centre of gravity of the particle. Particle motion is given by Newton’s
equations which read, neglecting inertia :

F h + F c + F e = 0 (2.5)

T h + T c + T e = 0 (2.6)

where forces F and torques T are decomposed into their hydrodynamic part (h), contact
part (c) and external part (e) that can include any external force, such as gravity. Stokes
equations are solved by finite differences on a staggered Cartesian grid using standard
projection methods. Once particle velocities are known, their position is updated using
a second-order Adams-Bashforth scheme. Most numerical details are here skipped and
may be found in Gallier et al. (2014a).

2.2. Lubrication model

Lubrication forces play a major role in concentrated suspensions and require adequate
modelling. They are very short-range in nature, so that they can usually not be fully
resolved with the typical grids employed. The present lubrication model is described
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elsewhere (Gallier et al. 2014a) and is here only briefly addressed. It is similar to the
approach used in SD or FCM inasmuch as hydrodynamic interactions are split into long-
range interactions – explicitly resolved – and short-range (lubrication) contribution that
must be modelled since they can not be resolved. The grand resistance matrix R, that
links hydrodynamic forces/torques and translational/rotational velocities, can therefore
be written as

R ≈ Rr + Rnr (2.7)

The resolved part Rr formally describes this part of interactions explicitly described by
the numerical model whereas the non-resolved part Rnr represents the contribution that
can not be resolved with the actual grid. It is classically estimated by subtracting the
resolved resistance matrix Rr

2B – obtained numerically on two-sphere configurations –
from the exact theoretical two-sphere resistance matrix Rtheo

2B known from lubrication
theory (Kim & Karrila 1991). For a many-particle system, Rnr is constructed assuming a
pairwise additivity of forces. The associated non-resolved lubrication force/torque Fnr =
(F ,T )T is related to particle velocities U = (U ,Ω)T by

Fnr = Rnr
FU · (U∞ − U) + Rnr

FE : E∞ (2.8)

where U∞ = (U∞,Ω∞)T and U∞, Ω∞, E∞ are the unperturbed translational veloc-
ities, rotational velocities and rate-of-strain tensor, respectively. This force/torque Fnr
represents the lubrication portion of hydrodynamic interactions that can not be resolved
by the numerical approach and is directly included in Eq. (2.5)-(2.6) as an external force
and torque. The hydrodynamic stresslet Sh is corrected from lubrication as well using a
similar procedure. The deviatoric stresslet is written in resistance form and is similarly
decomposed into a resolved and non-resolved part as

S = Sr + Rnr
SU · (U∞ − U) + Rnr

SE : E∞ (2.9)

where Sr corresponds to the resolved stresslet explicitly computed by the numerical
method. The non-resolved resistance matrices Rnr

SU and Rnr
SE are obtained as described

previously and theoretical expressions are found in Kim & Karrila (1991). Finally, a
similar correction procedure is also applied to the trace of Sh – which represents the
hydrodynamic contribution to particle pressure Π – using the theoretical resistance func-
tions from Jeffrey et al. (1993) and similarly reads

Π = Πr + Rnr
ΠU · (U∞ − U) + Rnr

ΠE : E∞ (2.10)

2.3. Lubrication near a wall

Lubrication for wall-particle interactions are actually taken into account using a similar
strategy. The non-resolved lubrication interactions are identified by subtracting off the
resolved interactions (obtained on particle-wall configurations with different gaps) from
the theoretical interactions. Because the latter are addressed scarcely and incompletely
in the literature, they are here described in more detail. The theoretical resistance ex-
pressions for the hydrodynamic force, torque, stresslet and particle pressure for a single
particle close to a wall read


F
T
S
Π

 = η


A B† G †

B C H†

G H M
P 0 Q


U∞(x)−U
Ω∞(x)−Ω

E∞

 (2.11)
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Following the notations in Kim & Karrila (1991), the resistance tensors are

Aij = XAdidj + Y A(δij − didj)
Bij = Y Bεijkdk

Cij = XCdidj + Y C(δij − didj)

Gijk = XG(didj −
1

3
δij)dk + Y G(diδjk + djδik − 2didjdk)

Hijk = Y H(εikldldj + εjkldldi)

Mijkl = XMd
(0)
ijkl + YMd

(1)
ijkl + ZMd

(2)
ijkl

Pi = XP di

Qij = XQ(didj −
1

3
δij)

in which d is the unit vector from the particle centre to the wall. The fourth-rank tensors

d
(0)
ijkl, d

(1)
ijkl and d

(2)
ijkl can be found in Kim & Karrila (1991). The third-rank transpose in

Eq. (2.11) is such that G †ijk = Gkij .
For plane walls and a shear flow (which will be the case in this study), the functions

XM , ZM and XQ are actually not needed because the associated terms d
(0)
ijklEkl, d

(2)
ijklEkl

and (didj − 1/3δij)Eij are zero in that case. The required resistance functions are there-
fore XA, Y A, Y B , XC , Y C , XG, Y G, Y H , YM and XP . Some asymptotic near-wall
developments are available only for XA, Y A, Y B , XC , Y C , Y G and Y H (see Yeo &
Maxey (2010b) for a compiled set of expressions), so that XG, YM and XP seem to be
missing in the literature. Since these functions are primarily connected with stresslet and
particle pressure, this may confirm that the role of walls on rheology has not received
much attention. In appendix A, we report the near-wall asymptotic expressions used in
this work. They are taken from the literature except for XG, YM and XP for which we
propose new expressions.

2.4. Contact model

Contact interactions are modelled using Hertzian soft-spheres. For a pair of spherical
particles i and j (radius a) undergoing contact, the contact force F c is classically decom-
posed into its normal F cn and tangential F ct components : F c = F cn + F ct . The normal
contact force is modelled using a Hertz law

F cn = −kn|δ|3/2n (2.12)

in which δ = ‖r‖ − 2a is the overlap distance with r = xj − xi , and n is the normal
vector n = r/‖r‖. Surface roughness is accounted for in the model assuming sparse
asperities of size hr. Contact is therefore supposed to take place whenever ‖r‖ 6 2a+hr,
which corresponds to define a modified overlap distance δ

′
= δ − hr. Hence, contact

occurs if δ
′ ≤ 0. Note that lubrication forces are however still evaluated with actual

distance δ = δ
′

+ hr since the fluid is assumed to flow freely between asperities. In this
work, the roughness size will be fixed to hr/a = 5.10−3 which is a typical roughness
measured for suspension particles (Smart & Leighton 1989; Blanc et al. 2011). Walls are
assumed to be perfectly smooth. The normal stiffness kn in Eq. (2.12) is chosen sufficiently

high so as to mimic rigid particles and the non-dimensional stiffness kn/ηγ̇a
2h
−3/2
r is

about 2.103. This involves an average roughness deformation |δ′ |/hr lower than 0.1.
The exact value of stiffness has been shown to induce negligible effects on rheology if
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it is sufficiently large (Gallier et al. 2014b). For dense regimes however, roughness can
occasionally be deformed completely, leading to δ=0. This is not numerically tractable
since lubrication functions diverge at δ=0. To circumvent this problem, a threshold value
of 10−6a is prescribed when evaluating lubrication functions. This means that when
lubrication functions are being computed, any normalized distance δ/a lower than 10−6

is fixed to 10−6. This choice is similar to Sierou & Brady (2001). Note that this threshold
is useless and not considered when computing contact forces through Eq. (2.12).

The tangential force is given by

F ct = −ktΥ (2.13)

in which Υ is defined by integrating the slip velocity U s during the contact duration tc

Υ =

∫ tc

0

U sdt (2.14)

where the slip velocity is

U s = U i −U j − [(U i −U j) · n] · n+ (aΩi + aΩj)× n (2.15)

Using the classical Amontons-Coulomb law of friction, the actual tangential force mag-
nitude is limited by the friction limit µd|F cn| where µd is the dynamic friction coefficient.
The tangential stiffness kt is linked to the normal stiffness kn by kt/kn = 2|δ′ |1/2/7 (Sil-
bert et al. 2001; Shäfer et al. 1996). Finally, the corresponding contact torque is

T c = an× F c (2.16)

Contact forces also induce an additional contact stresslet and contact particle pressure
that are given for a particle as

Sc =
1

2
(F c ⊗ an+ an⊗ F c) (2.17)

Πc = −1

3
(F c · an) (2.18)

Contact forces with walls are handled similarly. Particle-wall interactions are friction-
less if particles are themselves frictionless. Conversely, the particle-wall interaction is
frictional if particle-particle friction is considered. The wall is assumed to be perfectly
smooth but since particles are rough, they can experience an actual contact with the wall
through particle roughness : particle-wall contacts therefore occur whenever δ 6 hr.

2.5. Validation : single sphere near a wall

A validation for the wall-particle hydrodynamic interactions is proposed for a single force-
free torque-free spherical particle in the vicinity of a wall in a shear flow. When a particle
is close to a wall, wall-particle interactions alter particle velocity and stresslet. In partic-
ular, the wall tends to impose its own velocity to the particle and this must be accurately
predicted so as to model wall-bounded suspensions. The present case considers a single
particle (radius a) freely suspended in a linear shear flow of magnitude γ̇ = 2Uw/Ly with
Ly=10a is the channel width and Uw (resp., −Uw) is the velocity prescribed at the upper
wall (resp., lower wall) in the x-direction. The domain size in the velocity and vorticity
direction is respectively Lx=20a and Lz=20a. The grid spacing is ∆=a/5 and the time
step is ∆t=10−3γ̇−1. Simulations are conducted for different particle vertical positions
Y in the channel and we note ξ = (Y − a)/a the non-dimensional gap between particle
surface and lower wall. The lubrication correction is activated for a non-dimensional gap
lower than 0.2.
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Figure 1. Translational particle velocity U/Uw (a) and particle stresslet Sxy/Sxy,∞ (b) in a
shear flow as a function of particle non-dimensional distance to wall ξ = (Y − a)/a. Channel
width is Ly=10a. Solid lines in (a) : simulations by Ganatos et al. (1982). Solid lines in (b) :
asymptotic expression by Sangani et al. (2011).

Figure 1(a) presents the particle translational velocity U rescaled by the wall velocity
Uw. Reference simulations by Ganatos et al. (1982) using a boundary collocation method
are also reported. Results show that the effects of wall can be observed as soon as ξ / 0.5
since a deviation is noted from the expected linear profile (dotted line). Our simulations
accurately match those from Ganatos et al. (1982) even in the very near-wall region. Wall
effects grow as the particle comes closer to the wall and particle velocity rapidly departs
from the linear profile and asymptotes to the wall velocity Uw.

Wall interactions also result in a significant increase in the particle stresslet as seen in
Fig. 1(b) which presents the non-dimensional hydrodynamic stresslet Sxy/Sxy,∞ where
Sxy,∞ is the stresslet of a unique particle in an unbounded domain Sxy,∞ = 10/3πηa3γ̇.
Similarly to particle velocity, particle stresslet rapidly increases in the near-wall region.
Predictions are in good agreement with theoretical works by Sangani et al. (2011) (solid
line in Fig. 1(b)). This curve is given by the following asymptotic development, valid for
ξ < 0.15

Sxy
Sxy,∞

=
0.847 ln ξ−1 − 0.41 + 1.44ξ ln ξ−1 − 0.3ξ

0.2 ln ξ−1 + 0.6376
(2.19)

This relation suggests that the stresslet Sxy remains finite at contact and can reach
0.847/0.2 ≈ 4.2. This means that the stresslet Sxy of a particle in contact with a wall is
4.2 times larger than the stresslet this particle would have in an unbounded domain.

3. Effect of confinement : results and discussion

The objective of this study is to investigate the role of walls on suspensions, especially
on rheology. Numerical simulations of suspensions are performed for different volume
fractions in the range 0.1 ≤ φ ≤ 0.55. The computational domain is a cell of size Lx, Ly,
Lz in the direction of velocity, velocity gradient and vorticity, respectively. The channel
width Ly will be varied whereas Lx=20a and Lz=20a. For Ly=20a (the most investi-
gated case) and φ=0.5, the total number of particles is about 1,000. We recall that the
magnitude of confinement is described by parameter κ which is the ratio between channel
width Ly and particle radius κ=Ly/a. An unbounded suspension has κ → ∞ whereas
the minimum value κ=2 is reached for a gap having the same size as the particle. A shear
flow of magnitude γ̇ is imposed by moving upper and lower walls with opposite velocities.
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Periodic boundary conditions are used in x (velocity direction) and z (vorticity direc-
tion). The numerical parameters are a grid spacing ∆ = a/5 and a time step 5.10−4γ̇−1.
All runs are started using random hard-sphere equilibrium configurations obtained from
a Monte-Carlo procedure. For steady results, the initial strain (γ̇t < 50) is discarded
and the computation is continued for another 100∼150 γ̇t. Rheological properties are
based upon the computation of the Batchelor particle stress Σpij (Batchelor & Green
1972) which is the contribution of particles to the bulk suspension stress. It is further
decomposed as

Σpij = Σhij + Σcij (3.1)

with

Σhij = n〈Shij〉 (3.2)

Σcij = n〈Scij〉 (3.3)

where Shij and Scij are the hydrodynamic and contact stresslets, respectively, n is the
number density of particles and brackets 〈·〉 indicate an ensemble average. For a linear
shear flow, the relative viscosity ηr = ηs/η (where ηs is the suspension viscosity) reads

ηr = 1 +
Σpxy
ηγ̇

(3.4)

The normal stress differences are given by

N1 = Σpxx − Σpyy (3.5)

N2 = Σpyy − Σpzz (3.6)

3.1. Wall-induced structuring

The onset of specific structures in the suspension can be monitored using orientational
order metrics such as Q6 and C6. The metrics Q6 is based on the spherical harmonics
Ylm(θ, ϕ) of the orientational bond angles (θ,ϕ) between particles and is defined as (Rin-
toul & Torquato 1996)

Q6 =

√√√√4π

13

6∑
m=−6

Y6m
2

(3.7)

where Y6m represents the average Y6m(θ, ϕ) over the neighbouring particles. For a com-
pletely disordered system, Q6=0 whereas the maximal value QFCC6 ≈ 0.575 is reached
for a face-centred cubic structure. Another metrics C6 has been introduced by Kulkarni
& Morris (2009) to specifically track hexagonal structures. It is based on the three-
dimensional pair-correlation function g(r, θ, ϕ) and given as

C6 = max
ψ

∫ 2π

0
g(2a, π/2, ϕ) cos[6(ϕ− ψ)]dϕ∫ 2π

0
g(2a, π/2, ϕ)dϕ

(3.8)

The angle ψ accounts for a possible tilt of the structure around the x-axis. In our com-
putations however, we have always found ψ=0 meaning that the obtained hexagonal
structure is untilted. C6 is 0 for a disorder random system and reaches 1 for a perfect
hexagonal lattice. Note that since particles are rough, they experience actual contact and
in Eq. (3.8), the pair-correlation function is therefore computed for r ≤ 2a+ hr.

Figure 2 plots the evolution of C6 and Q6 with respect to the suspension volume frac-
tion φbulk. Computations are performed for frictionless particles (µd=0) and confinement
κ=20. Both parameters have a similar profile with very small values in dilute regimes
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Figure 2. Order parameters Q6 (◦) and C6 (•) as a function of volume fraction (κ=20 ; µd=0).

Figure 3. Particle snapshots (φbulk=0.5 ; κ=20 ; µd=0) : (a) side view ; (b) end view. For
visualization, particle radius is half the actual size.

and an abrupt increase for a volume fraction in the range 0.45∼0.5. For this confinement
κ=20, this marks the transition between disordered and ordered states. High C6 values
show that the system preferentially crystallizes into an hexagonal structure, in accor-
dance with previous studies (Yeo & Maxey 2010c; Kulkarni & Morris 2009). Friction has
a weak effect on this structuring as will be seen later.

This structuring is easily noticed on particle snapshots as illustrated in Fig. 3. This
figure plots an instantaneous particle configuration at volume fraction φbulk=0.5 and
κ=20 in the shear plane x-y (side view, (a)) and in the velocity gradient-vorticity plane
y-z (end view, (b)). For the sake of clarity, particles are represented at half their actual
size. Particles are seen to form layers in the vicinity of the walls whereas the core of the
suspension remains disordered. The end view (plane y-z) in Fig. 3(b) clearly shows an
hexagonal structure close to walls with a given particle being at the centre of an hexagon
formed by six neighbours.

3.2. Wall effects on volume fraction

Since we are concerned with wall-bounded flows with periodicity imposed in x and z
directions, average quantities depend on vertical position y. As proposed by Yeo & Maxey
(2010b), an average volume fraction 〈φ(y)〉 can be defined as

〈φ(y)〉 =
1

LxLz
〈
∫∫

χ(x, y, z)dxdz〉 (3.9)

where χ is the particle indicator function which is 1 in the particle and 0 elsewhere.
Note that 〈φ(y)〉 is rather an areal fraction but it is known from stereology theory to
be equal to the volume fraction (Delesse principle). Figure 4 presents this local volume
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Figure 4. Local volume fraction 〈φ(y)〉 in the channel width for κ=20 and bulk fractions
φbulk = (0.2, 0.3, 0.4, 0.5). Open symbols are computations by Yeo & Maxey (2010b).

fraction 〈φ(y)〉 for four different bulk fractions φbulk in the case κ=20 and frictionless
particles. Some simulation results by Yeo & Maxey (2010b) at φbulk=0.4 (µd=0) are also
plotted. Local peaks in the wall region indicate the presence of a stable particle layering,
which is also attested in other computations (Yeo & Maxey 2010b; Kromkamp et al.
2006) or experiments (Blanc et al. 2013; Cheng et al. 2011; Snook et al. 2015; Pieper &
Schmid 2016). This layering exists irrespective of the bulk volume fraction φbulk. How-
ever, for moderate fractions such as φbulk=0.2, it is much less pronounced and is noted
only for the first two layers (y/a < 4). In present case κ=20, and for φbulk below 0.5,
there is still a flat profile in the core. In this core region, the suspension is devoid of
wall effects and is therefore expected to behave like an unbounded suspension. On the
opposite, for φbulk=0.5, wall effects are dominant across the whole channel. This value
is consistent with the rapid increase in order parameters as seen in Fig. 2. The size of
the wall-structured region ewall can be estimated from the spatial variations of 〈φ(y)〉.
A rough criterion used here is to define ewall such that a|d〈φ(y)〉/dy|/φbulk > 0.1. To
address dense suspensions, it is necessary to consider large domains so as to allow this
wall structuring to freely develop. Results are compiled in Fig. 5 for frictionless particles
with the chosen confinement κ specified for each volume fraction. For φbulk < 0.4, the
size of the wall structuring grows mildly with φbulk, from 3a to 6a. It however increases
abruptly for φbulk & 0.4, even though larger domains are considered. For φbulk ≥ 0.52,
there is a marked organized structure across the whole domain despite the wide channel
investigated Ly=80a. In that case, ewall is set to Ly/2=40a. This is not the physical value
but it only indicates that the size could not be determined since the whole suspension is
ordered. Simulations in larger domains were not performed. This result is reminiscent of
simulations from Kulkarni & Morris (2009) and Sierou & Brady (2002) who showed that
even in unbounded suspensions, there is a crystallization of the system for φbulk between
0.5 and 0.55 (although for φ ≥0.6, the system could become disordered again ; we have yet
not considered such high fractions). This behaviour is close to a system of hard-spheres
with a freezing point at φf ≈ 0.49. Since it can occur in infinite domains, the complete
ordering noted in our simulations at φbulk=0.52 and φbulk=0.55 in large domains may not
be due solely to walls. Monte-Carlo simulations have showed that the crystallisation of
hard sphere systems is faster when walls are present (Volkov et al. 2002). It can therefore
be considered as a wall-induced crystallisation since it is promoted by an existing local
ordering. This crystallisation is not experimentally attested in suspensions which might
be due to the present use of monodisperse particles while experiments always consider
slightly polydisperse particles.
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Figure 5. Size of the wall-structured region ewall as a function of bulk volume fraction φbulk
(µd=0). The confinement κ considered is provided in bold number in the figure. For the last two
points at ewall/a=40, the whole suspension is ordered.

Figure 6. Volume fraction profile 〈φ(y)〉 for κ=20 (solid lines) and κ=60 (dotted lines).
Simulations at φbulk=0.4 and µd=0.

When the wall-induced ordering can develop freely, it does not seem to depend much
on the channel height. Simulations at φbulk=0.4 were conducted in a moderately con-
fined suspension (κ=20) and a weakly confined suspension (κ=60). Results are presented
in Fig. 6 and show very similar structure near walls (peak heights and positions). This
absence of domain size influence was also reported by other simulations (Yeo & Maxey
2010b) and experiments (Eral et al. 2009).

Let us conclude this section on volume fraction by investigating the role of friction. The
same suspension at κ=20 and φbulk=0.4 is computed for frictionless (µd=0) and frictional
(µd=0.5) particles. The obtained volume fraction profiles are provided in Fig. 7 and glob-
ally share similar characteristics. However, frictional particles result in less marked peaks
in the wall region indicating a slightly weakened structuring. This is much clearer on the
first particle layer where the local volume fraction is lower in case of friction. Intuitively,
tangential contact forces between particles promote a more active momentum exchange
between adjacent layers, which may contribute to destabilizing well-ordered layers. This
may also be in connection with a higher diffusion noted for frictional particles (Gallier
2014).
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Figure 7. Volume fraction profile 〈φ(y)〉 for µd=0 (dotted lines) and µd=0.5 (solid lines).
Simulations at φbulk=0.4 and κ=20.

3.3. Wall effects on particle velocity

The effects of walls on axial particle velocity U can similarly be investigated using the
following particle-phase average velocity 〈U(y)〉 (Yeo & Maxey 2010b)

〈U(y)〉 =
〈
∫∫

χ(x, y, z)U (k)dxdz〉
〈
∫∫

χ(x, y, z)dxdz〉
(3.10)

with U (k) the translational velocity at the centre of particle k. Figure 8 presents this ve-
locity profile, normalized by the wall velocity Uw, for a suspension at κ=20 and φbulk=0.4
for frictionless (µd=0) and frictional particles (µd=0.5). Both profiles are similar with a
linear evolution in the core of the suspension and a strong effect of walls on the velocity.
The role of friction is limited and tends to smooth velocity variations, in accordance with
the previous effects on volume fraction. Because of significant wall-induced layering, the
velocity is quasi-constant within a layer and this forms plateaus in the velocity profile
close to the walls. This is particularly noted for the first layer and it is then progressively
damped farther in the flow until the expected linear profile is found in the centre of the
suspension. In the first layer (0 < y < 2a), the particle velocity is close to the wall veloc-
ity Uw because of lubrication forces. It is yet not exactly equal to wall velocity mostly
because of roughness. Since lubrication tangential forces scale as log ξ, they are bounded
by log ξr where ξr = hr/a is the non-dimensional roughness.

In their work, Jana et al. (1995) studied wall slip in suspensions and proposed an
experimental correlation for the slip velocity ue as

ue =
ηr
8
γ̇a (3.11)

where γ̇ represents here the local shear rate and ηr is the overall suspension viscosity. This
wall slip leads to a shear rate that is smaller than the macroscopic prescribed shear rate
γ̇bulk=2Uw/Ly. This shear rate γ̇Jana reads 2(Uw−ue)/Ly and, accounting for Eq. (3.11),
can be expressed as γ̇Jana = γ̇bulk− γ̇Janaηr/4κ. This eventually gives γ̇Jana = γ̇bulk/(1+
ηr/4κ) ≈ γ̇bulk(1−ηr/4κ). From the viscosity ηr taken from our simulations at φbulk=0.4
and κ=20, Jana’s model gives γ̇Jana/γ̇bulk ≈ 0.93 in the frictionless case (ηr=6.0) and
0.89 in the frictional case (ηr=9.1). These values can be compared to the numerical
shear rate obtained by a linear regression of 〈U(y)〉 in the suspension homogeneous
core γ̇core = (d〈U(y)〉/dy)5≤y/a≤15. From the profiles of Fig. 8, this regression yields
γ̇core/γ̇bulk ≈ 0.96 in the frictionless case and γ̇core/γ̇bulk ≈ 0.89 in the frictional case, in
good agreement with γ̇Jana from Jana’s model.
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Figure 8. Particle-phase axial velocity 〈U(y)〉/Uw for frictionless particles µd=0 (dotted lines)
and frictional particles µd=0.5 (solid lines). Simulations at φbulk=0.4 and κ=20.

Close to the walls, we have mentioned that the particle velocity is not exactly equal
to the wall velocity Uw. The scaled slip velocity | − Uw − 〈Uy=0〉|/γ̇a at the lower wall
y=0 is about 0.6 and 1.0 in the frictionless and frictional case, respectively. It is not zero
– meaning that particles are not stuck on walls – nor 0.5 which would be the expected
velocity of a particle rolling without slip on the wall (assuming Ωz=−γ̇/2). This occurs
mostly because lubrication tangential force is bounded by log ξr. This can be checked
by investigating the case where particle roughness is discarded for interactions with
the walls (however, roughness is still kept for particle-particle interactions). Particles can
thus come arbitrarily close to the walls with the possibility of vanishing distance between
particles and walls. As seen in Fig. 9 (frictionless case), the velocity of the first particle
layer is now much closer to the wall velocity. The slip velocity | − Uw − 〈Uy=0〉|/γ̇a is
reduced irrespective of friction and is about 0.3 (frictionless particles) and 0.4 (frictional
particles) which is lower than in the case of wall-particle roughness (0.6 and 1.0 in
the frictionless and frictional case, respectively). Because wall-particle gap ξ is reduced,
lubrication tangential forces are higher and increase particle entrainment by the moving
walls. In the case ξ=0 (actual contact), theoretical studies by Chaoui & Feuillebois (2003)
show that particles would be indeed stuck to the wall with translational velocity U = Uw
and zero rotational velocity. A linear regression of particle velocity in the core region gives
that γ̇core/γ̇bulk ≈ 1 in the frictionless case and 0.96 in the frictional one, suggesting a
reduction of apparent wall slip.

Finally, we investigate the effects of walls on particle rotation rate. Figure 10 presents
the particle-phase angular velocity 〈Ωz(y)〉 scaled by γ̇bulk for frictionless and frictional
particles. In the suspension homogeneous core, a value close to the expected −γ̇bulk/2
is found. The noted effect of friction can be explained by the different core shear rate
because of wall slip. Indeed, scaling by the core shear rate γ̇core leads to the same value
〈Ωz(y)〉/γ̇core ≈ −0.54, irrespective of friction. Note that unlike volume fraction, the
profile shows no plateau even in the suspension core, suggesting that the domain might
be too small here to obtain a local homogeneity of the rotational velocity. A plateau
is indeed found but for larger channel height. Walls are found to play a significant role
because tangential lubrication interactions hinder particle rotation. In the frictionless
case, the rotation rate is roughly divided by two compared to the suspension core. In the
theoretical case of a single smooth sphere at non-dimensional distance ξ=ξr=5.10−3, the
expected rotation rate (scaled by shear rate) is 0.249 (Chaoui & Feuillebois 2003) which is
close to the average rotation rate in the first layer, about 0.275. In the frictional case, the
additional tangential contact force imposes a torque on particles and increases rotation.
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Figure 9. Particle-phase axial velocity 〈U(y)〉/Uw with and without wall-particle roughness.
Simulations at φbulk=0.4, κ=20 and µd=0.

Figure 10. Particle-phase angular velocity 〈Ωz(y)〉/γ̇bulk for frictionless particles µd=0 (dotted
lines) and frictional particles µd=0.5 (solid lines). Simulations at φbulk=0.4 and κ=20. Dashed
line is −γ̇bulk/2.

On the walls, particles roll with partial slip since the ratio |a〈Ωz〉/(〈Uy=0〉+Uw)| is less
than 1. Interestingly, this ratio is about 0.4 for both frictionless and frictional particles.
This value is consistent with the theoretical case of a single smooth sphere at wall distance
ξr where this ratio is about 0.52 (Chaoui & Feuillebois 2003). Maximal rotation rate is
reached between first and second layer (y ≈ 2.5a) with 〈Ωz〉 ≈ −0.7γ̇bulk.

3.4. Wall effects on viscosity

Wall-induced structuring involves some suspension thixotropy with significant transients
until a steady regime is reached. This unsteady behaviour is noticed during strains about
10 or more. Figure 11 simultaneously plots the evolution of the relative viscosity ηr and
the order parameter Q6 with strain for a suspension at φbulk=0.5 and κ=20. The initial
configuration (at γ=0) is a random hard-sphere configuration in equilibrium. At the very
beginning, the viscosity suddenly increases from ηr ≈ 7 (the viscosity of a random con-
figuration) to about 13 before decreasing to a steady value. The evolution of Q6 mirrors
the viscosity which hints at a strong link between viscosity and suspension ordering. The
average steady-state is reached after a strain of about 40. This is close to the value of ap-
proximately 30 found in a similar simulation by Yeo & Maxey (2010c). This characteristic
strain is however significantly larger than a typical strain of ≈ 1 needed for the defor-
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Figure 11. Relative viscosity ηr (a) and parameter Q6 (b) as a function of strain γ = γ̇bulkt.
Simulations at φbulk=0.5, κ=20 and µd=0.

mation of the suspension microstructure due to the imposed shear. The latter basically
corresponds to the rapid initial transient between the starting isotropic microstructure
and a deformed anisotropic microstructure.

When a steady regime is eventually reached, confinement alters the suspension viscos-
ity depending on the bulk volume fraction φbulk. Results presented in Fig. 12 show the
suspension relative viscosity ηr for κ=20 and two friction coefficients µd=0 and µd=0.5.
As noted previously for this confinement κ=20, the wall structuring spreads across the
whole suspension as soon as φbulk=0.45∼0.5. In Fig. 12, this basically corresponds to
the point where the viscosity curve ηr(φbulk) shows an inflexion point. For very concen-
trated suspension (φbulk=0.55), the suspension viscosity decreases irrespective of friction.
This decrease in the viscosity is also reported in other simulations (Yeo & Maxey 2010c;
Kulkarni & Morris 2009) and is a consequence of particle layering. For the highest vol-
ume fractions – where the suspension is strongly ordered – results are expected to depend
much on confinement as well as how channel size and particle size commensurate (Yeo
& Maxey 2010c; Bian et al. 2014). Such commensurability effects will be discussed in
Sec. 3.7.

The spatial evolution of stresses in the suspension is studied using a particle-phase
average stress defined as

〈Σij(y)〉 = n
〈
∫∫

χ(x, y, z)S
(k)
ij dxdz〉

〈
∫∫

χ(x, y, z)dxdz〉
(3.12)

where S
(k)
ij is the stresslet (hydrodynamic, contact, or the sum thereof) of particle k and

n the number density of particles in the whole domain. Note that this is not a real local
stress but rather a local stresslet having the dimension of a stress due to the particle
density n pre-factor. Figure 13 presents the local particle tangential stress 〈Σpxy(y)〉 (re-
ferred to as total stress in the figure legend) as well as the hydrodynamic tangential stress
〈Σhxy(y)〉 and contact tangential stress 〈Σcxy(y)〉. Stresses are scaled by the fluid stress
ηγ̇ and are here computed for a suspension at φbulk=0.4 and κ=20 for frictionless (a)
and frictional particles (b). We recall that the total particle stress Σpxy is split up into

an hydrodynamic stress Σhxy and a contact stress Σcxy by virtue of Eq. (3.1). Let us first
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Figure 12. Relative viscosity ηr as a function of volume fraction (κ=20) for friction
coefficients µd=0 (◦) and µd=0.5 (•).

consider the frictionless case (Fig. 13(a)). As expected, stresses are relatively constant in
the homogeneous core. The maximum in the particle stress Σpxy (therefore, ηr) is reached
between the first and second layer, at y ≈ 2.5a. This results from a large contribution
from both hydrodynamics and contact. In the first layer (0 ≤ y ≤ 2a), the hydrodynamic
contribution remains important due to wall-particle lubrication interactions. The contact
contribution is here negligible since contact forces are mostly in the normal direction y
in the frictionless case, which results in a very small Σcxy. However, for 2a ≤ y ≤ 3a,
this corresponds to some particles located somewhere between the first two layers. Such
particles are expected to experience stronger contacts, which explains the increase in the
contact stress. Friction (Fig. 13(b)) does not profoundly modify those conclusions. Stress
levels in the suspension core are larger mostly because of contacts as already detailed
in Gallier et al. (2014b). The stress peak between first and second layer is less visible
than in the frictionless case due to a higher level of hydrodynamic and contact stress
at the wall. Because of frictional contact, the tangential contact force does involve an
additional contact contribution on the xy stress. It is important to recall that the chosen
average Eq. (3.12) accounts for an average stress density since the local stresslet is scaled
by the local volume fraction (denominator in Eq. (3.12)). Because of the wall depleted
zone, the local volume fraction is small in the near-wall region so that the contribution
of this wall region to the overall suspension stress is weak.

By and large, the profiles of 〈Σpxy(y)〉 are moderately affected by walls. Therefore,
the viscosity ηκr of a wall-bounded suspension (at confinement κ) may not be that dif-
ferent from the viscosity η∞r expected for an unbounded homogeneous suspension. This
unbounded viscosity η∞r is here computed in the homogeneous core of a suspension in a
large domain. Note that ηκr is calculated based on the prescribed macroscopic shear rate
γ̇bulk whereas η∞r is computed using the local shear rate γ̇core in the core of the suspen-
sion. This viscosity ratio is plotted in Fig. 14 for κ=20 as a function of volume fraction
for frictionless (µd=0) and frictional (µd=0.5) particles. This ratio is always close to 1,
regardless of the friction coefficient, except for φbulk=0.5 where a strong layering results
in a viscosity decrease. Note that this viscosity ratio is slightly below 1 for dilute suspen-
sions. Actually, the tangential stress ratio is indeed about 1, so that ηκr /η

∞
r ≈ γ̇core/γ̇bulk.

Because of wall slip, this shear rate ratio γ̇core/γ̇bulk is lower than 1 and is about 0.98
for low volume fractions, which explains the values of viscosity ratio in Fig. 14.
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Figure 13. Particle-phase particle stress 〈Σpxy(y)〉/ηγ̇ (solid lines), hydrodynamic stress

〈Σhxy(y)〉/ηγ̇ (dash-dotted lines) and contact stress 〈Σcxy(y)〉/ηγ̇ (dotted lines) in a suspension
at φbulk=0.4 and κ=20 for two friction coefficients : µd=0 (a) ; µd=0.5 (b)

Figure 14. Ratio of bounded to unbounded viscosity ηκr /η
∞
r as a function of volume fraction

for µd=0 (◦) and µd=0.5 (•) for κ=20.

3.5. Wall effects on normal stress differences

A similar analysis is conducted for the normal stress differences N1 and N2 due to their
importance in rheology. The local profiles of the particle-phase average 〈N1(y)〉 and its
contact contribution 〈N c

1 (y)〉 (scaled by the fluid stress ηγ̇) are presented in Fig. 15 for
a frictionless (a) and frictional case (b) for a suspension at φbulk=0.4 confined at κ=20.
Unlike viscosity, a strong effect of walls is observed which can locally modify the sign
of 〈N1〉. In the homogeneous core, 〈N1〉/ηγ̇ is about −1 but close to the walls, it can
increase to +1 or even +4 in case of friction. Irrespective of friction, the contact contri-
bution remains very small in the core (〈N c

1 〉 � 〈N1〉) but this is no longer the case in
the vicinity of the walls where it represents the major contribution, i.e. 〈N1〉 ≈ 〈N c

1 〉.
Furthermore, near the walls, 〈N c

1 〉 changes its sign from negative to positive while the
hydrodynamic part 〈Nh

1 〉 becomes close to zero.
In order to gain further insight on this strong wall effect, Fig. 16 plots the contact

stresses 〈Σcxx(y)〉 and 〈Σcyy(y)〉 for this case. Those results show that 〈Σcxx〉 ≈ 〈Σcyy〉 in
the suspension core from which 〈N c

1 〉 ≈ 0 is expected. This has been shown to arise from
a uniform distribution of contacts in the compression region (Gallier et al. 2014b). Con-
versely, simulations predict a substantial decrease of |〈Σcxx〉| close to the walls whereas
|〈Σcyy〉| remains similar (frictionless case) or even slightly increases (frictional case). Con-
tact forces in the y direction are only weakly affected and walls mostly act to reduce
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Figure 15. Particle-phase average 〈N1(y)〉/ηγ̇ (solid lines) and 〈Nc
1 (y)〉/ηγ̇ (dotted lines) in a

suspension at φbulk=0.4 and κ=20 for two friction coefficients : µd=0 (a) ; µd=0.5 (b).

Figure 16. Particle-phase average contact stresses 〈Σcxx(y)〉/ηγ̇ (solid lines) and 〈Σcyy(y)〉/ηγ̇
(dotted lines) in a suspension at φbulk=0.4 and κ=20 for two friction coefficients : µd=0 (a) ;
µd=0.5 (b).

contact forces in the velocity direction x. This is related to a layered configuration :
particles in the first layer have similar velocities so that particles hardly interact in this
direction. A decrease in |〈Σcxx〉| is therefore expected. This induces high positive values
of 〈N c

1 〉 which, in turn, involve the positive 〈N1〉 observed in Fig. 15.
From the marked effect of walls on N1, we can expect the Nκ

1 obtained in a bounded
suspension to be significantly different from its unbounded homogeneous counterpart
N∞1 . The ratio Nκ

1 /N
∞
1 is presented in Fig. 17 for a suspension at κ=20. This ratio is

always smaller than 1 meaning that N1 in a bounded suspension is always lower than in
an infinite suspension. This ratio decreases with friction as well as with volume fraction,
mostly for φ > 0.2. An important result is that this ratio is negative for dense suspen-
sions, meaning that the overall suspension N1 becomes positive due to confinement. It is
therefore possible that the combined action of walls and friction is liable to explain some
experimental results showing almost zero or positive values of N1 (Couturier et al. 2011;
Dbouk et al. 2013; Gamonpilas et al. 2016). This point will be reconsidered hereinafter.

We now move to the second normal stress difference N2. The local N2 profile in the
suspension is presented similarly in Fig. 18 with both total and contact contributions.
The contact N c

2 (dotted lines in Fig. 18) can be hardly distinguished from the total N2

meaning that N2 is entirely due to contacts (N2 ≈ N c
2 ) and that the hydrodynamic con-

tribution is negligible (Nh
2 ≈ 0). Note that this stands for the whole suspension (Gallier
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Figure 17. Ratio of bounded to unbounded Nκ
1 /N

∞
1 as a function of volume fraction for

µd=0 (◦) and µd=0.5 (•) for κ=20.

Figure 18. Particle-phase average 〈N2(y)〉/ηγ̇ (solid lines) and 〈Nc
2 (y)〉/ηγ̇ (dotted lines) in a

suspension at φbulk=0.4 and κ=20 for two friction coefficients : µd=0 (a) ; µd=0.5 (b).

et al. 2014b) but also locally everywhere in the flow. For frictionless particles (Fig. 18a),
N2 is almost constant across the suspension whereas in the frictional case (Fig. 18b),
a significant increase in |N2| is noticed close to the walls. This is due to the particle
structuring in the vorticity direction (see Fig. 3) which decreases contact forces in this
direction and |Σczz| accordingly.

Those results show that N2 is moderately affected by walls unlike N1. This is es-
pecially true in the frictionless case. For frictional particles, the variation of N2/ηγ̇ in
the wall region is significant (≈ −3) and is almost of the same order of magnitude as
for N1 (≈ +5). But because N1 is small, its relative variation is much higher than for
N2. Furthermore, there is no change in the sign of N2 as opposed to N1. Consequently,
the overall Nκ

2 computed in a confined suspension might not significantly differ from its
unbounded counterpart N∞2 . This is confirmed in Fig. 19 for a suspension confined at
κ=20. The ratio Nκ

2 /N
∞
2 is about 1 for dilute and moderately dense suspensions. For

frictionless particles and dilute suspensions (say, φbulk ≤ 0.2), it can however be lower
than 1 but this possibly comes from large statistical errors – as shown by the error bars
– primarily because values of N2 are extremely small in that case. This statistical error
is here computed as the standard deviation over statistically independent intervals of
20∼30 strain units each. For volume fractions above 0.4, the N2 for a confined suspen-
sion can be greater by up to 50 % compared to an homogeneous suspension and with a
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Figure 19. Ratio of bounded to unbounded Nκ
2 /N

∞
2 as a function of volume fraction for

µd=0 (◦) and µd=0.5 (•) for κ=20.

weak effect of friction.

3.6. Normal stress differences : comparison with experiments

One of the motivations of this work was to investigate to which extent the confinement
of a suspension can explain discrepancies between experiments, especially on N1. A first
study – described in a previous work (Gallier et al. 2014b) – has shown that friction leads
to a decrease in |N1| and can help match available experiments and simulations. However,
it was concluded that friction itself can not result in positive N1 as measured in some
experiments (Dbouk et al. 2013). The present results moreover suggest a significant role
of walls – even in moderately confined suspensions (κ=20) – leading to positive values
of N1. Figure 20 compiles experimental results on normal stress differences (normalized
by shear stress τ = ηrηγ̇) compared to our frictional (µd=0.5) simulations in a bounded
(κ=20) and unbounded suspension. The experiments are taken from six sources from the
literature (Zarraga et al. 2000; Singh & Nott 2000; Dbouk et al. 2013; Dai et al. 2013;
Couturier et al. 2011; Gamonpilas et al. 2016) using different techniques. These seem to
be the major experiments measuring simultaneously N1 and N2 (other experiments are
available but for N2 only, e.g. Garland et al. (2013)). Let us begin with N2 (Figure 20b)
since it deserves less attention. As expected, the effect of confinement is limited and does
not significantly change from unbounded suspension. In any case, simulation results are
close to experiments, which are moreover relatively consistent between them. Concerning
N1 (Figure 20a), simulations show a change of sign for dense suspensions, typically for
φ ' 0.4, and N1 becomes largely positive above. Confinement can be considered as a
potential source for experimental discrepancy since experiments are conducted in different
geometries and confinements. It is however still difficult to predict the experimental
data from Dbouk et al. (2013) that are visible in Fig. 20(a) as the most positive values
(� symbols). Even at φ ≈ 0.3 ∼ 0.4, the measured N1/τ is larger than 0.1 whereas
simulations predict N1/τ ≈ 0 for this range of volume fractions. Note that these latter
experiments are performed at κ ≈ 27, which is not far from our simulations at κ = 20. A
puzzling point is that their study proposed additional experiments in much less confined
suspensions (κ ≈ 100) but found similar N1 results. This suggests that measurements are
weakly dependent on confinement unlike our simulations since for κ ≈ 100, we expect
results close to our κ =∞ results (see (◦) symbols in Fig. 20). A possible explanation is
that these experiments – which rely on a measurement of Σyy on the rheometer walls –
describe a flow configuration which is different from the overall suspension (in the sense
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Figure 20. Normal stress differences N1 (a) and N2 (b) normalized by shear stress τ as a
function of volume fraction for a frictional suspension µd=0.5 : bounded suspension κ=20 (•) and
unbounded suspension (◦). Experiments (symbols) compile results from Zarraga et al. (2000);
Singh & Nott (2000); Dbouk et al. (2013); Dai et al. (2013); Couturier et al. (2011); Gamonpilas
et al. (2016). Data from Gamonpilas et al. (2016) are for monomodal particles (Mono) and
bimodal mixture (Bi).

of a volume average over the whole domain) but is rather characteristic of the near-wall
ordered state. Since this local structuring is independent of confinement (see Fig. 6), this
could explain why experiments from Dbouk et al. (2013) are unaffected by confinement.
The question of which stress is measured in experiments seems still open and should
deserve attention in future works. As a final remark, it is interesting to note that results
by Gamonpilas et al. (2016) show a difference in the sign of N1 depending whether the
suspension is monodisperse (positive N1) or bidisperse (negative N1). Monodispersity is
well known to promote ordering – as seen in present simulations – which is consistent
with our conclusion that N1 is positive because of wall-induced layering.

3.7. Effect of confinement on rheology

Most of the above analysis is conducted with a moderate confinement κ=20 and we here
intend to evaluate the effect of confinement κ on rheology, namely viscosity and normal
stress differences. The forthcoming computations are run only in the frictionless case
(µd=0) and for a single volume fraction φbulk=0.4. As noted previously, the friction en-
hances wall effects but does not seem to modify the underlying physics, which explains
that only frictionless particles are addressed here.

Figure 21 presents the effect of the confinement κ on the computed viscosity ηr in the
range 6 ≤ κ ≤ 60. Two different regimes are noted with a transition at κc about 12∼15
: an oscillating regime for κ . κc and a monotonic regime for κ & κc. The value of κc is
expected to correspond to a wall-induced ordering that spans across the whole channel.
For φbulk=0.4, the size of the wall-structured region ewall was found to be about 6a (see
Fig. 5). This would give κc ≈ 12, which is consistent with the present results.

In the very confined regime (κ . κc), the viscosity exhibits an oscillating behaviour
(see also the inset in Fig. 21). This is related to commensurability effects as already noted
by Yeo & Maxey (2010c). Their simulations show that order parameter C6 and particle
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Figure 21. Effect of confinement κ on viscosity ηr at φbulk=0.4 and µd=0 in the range
6 ≤ κ ≤ 60. (Inset : range 6 ≤ κ ≤ 11 ; the bold numbers indicate the number of layers).

pressure Π are very sensitive to the commensurability of the ordered structures with the
channel height. Unsurprisingly, our results reveal a similar behaviour on viscosity which
fluctuates depending on how the structure is frustrated by the narrow channel. The bold
numbers in the inset indicate the number of particle layers across the channel height. The
maximum in the viscosity seems to correspond to a situation when the number of layers
has just increased by one. In that case, the distance between layers is smaller making
particles less mobile and the suspension more ordered.

For the monotonic regime (κ & κc), the viscosity slightly decreases monotonically to-
wards an asymptotic value which is obtained for κ & 50∼60. This is consistent with exper-
iments by Zarraga et al. (2000) who have found that the asymptotic value is reached for
κ & 40. The viscosity computed at κ=30 is only off by 3 % compared to κ=60, suggesting
that a confinement ratio κ larger than 30 is suitable for reliable viscosity measurements.
The fact that viscosity decreases when κ increases is also found in simulations (Bian et al.
2014; Davit & Peyla 2008), as well as in the experiments from Peyla & Verdier (2011) and
the theoretical expressions by Sangani et al. (2011). On the contrary, simulations by Yeo
& Maxey (2010b) and experiments by Zarraga et al. (2000) show an increase in viscosity
with increasing channel height. There seems to be a predominant role of volume frac-
tion since the studies showing a viscosity decrease are for more dilute suspensions (range
0.05∼0.4) whereas the viscosity increase is noticed in denser regimes (range 0.4∼0.45). A
definite conclusion would require simulations for a wide range of volume fractions, which
were not done here. But it seems that the effects are quite complex and possibly result
from a subtle interplay between wall-enhanced hydrodynamic interactions, wall-induced
structuring, and apparent wall slip.

Figure 22 similarly presents the effect of the confinement κ on the normal stress dif-
ferences N1 and N2 scaled by the fluid stress ηγ̇. Analogously to viscosity, two regimes
are clearly noticed. For κ & κc, N1/ηγ̇ and N2/ηγ̇ show a monotonic evolution towards
an asymptotic value. The confined regime κ . κc displays a non-monotonic behaviour
in connection with commensurability effects. The fluctuations are large and N1 can be
strongly positive while N2 always remains negative. It is interesting to note that N1 and
N2 have mirrored behaviours : an increase in N1 is always related to a decrease in N2.
This is expected from our previous conclusions about the effect of layering on normal
stresses : particle layers result in an increase in Σpxx and Σpzz and a relatively unchanged
Σpyy. As a consequence, N1 = Σpxx − Σpyy is expected to increase while N2 = Σpyy − Σpzz
decreases concurrently.
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Figure 22. Effect of confinement κ on normal stress differences N1/ηγ̇ (◦) and N2/ηγ̇ (•) at
φbulk=0.4 and µd=0 in the range 6 ≤ κ ≤ 60. (Inset : range 6 ≤ κ ≤ 11 ; the bold numbers
indicate the number of layers).

4. Conclusions

In this paper, we have presented three-dimensional numerical simulations of concen-
trated suspensions in a wall-bounded shear flow. Simulations rely on a fictitious domain
method including long-range hydrodynamics, particle-particle and wall-particle lubrica-
tion forces, and contact frictional forces. Notably, wall-lubrication corrections are pro-
posed on rheological quantities, which does not seem to be reported in previous similar
computations.

Walls lead to a local hexagonal structuring of particles. The size of this layered zone
depends on volume fraction and is only weakly affected by friction. For a confinement
κ=20 (ratio between channel width and particle radius), this region represents half of
the suspension volume at φbulk=0.4 but the whole domain as soon as φbulk & 0.5. For
φbulk & 0.52, the system completely crystallizes even in very large domains (Ly=80a).
This result is expected for monodisperse particles and the effect of polydispersity was
not investigated. The wall structuring is relatively slow to develop with characteristic
strains of O(10). It involves wall slip, leading to a reduced shear rate in the suspension
core which seems consistent with the empirical model of Jana et al. (1995). For perfectly
smooth wall, the wall slip is mostly due to particle roughness that limits the wall-particle
gap and lubrication intensity accordingly.

Wall-induced ordering is shown to have a limited impact on viscosity and second nor-
mal stress difference N2 at least for moderately confined suspensions (κ=20). Conversely,
it significantly affects the first normal stress difference N1. Friction enhances this effect
which is shown to be due to a large decrease in the contact normal stress |Σcxx| because of
particle layering in the wall region. Our simulations suggest that confinement and friction
can promote positive values of N1. The obtained results seem in better agreement with
recent N1 measurements (Couturier et al. 2011; Dbouk et al. 2013) and eventually high-
light the importance of friction and confinement for quantitative predictions of actual
suspensions.

Some future work will have to address size polydispersity since most experimental
suspensions have finite polydispersity. This is needed to extend the relevance of our
results beyond single-sized spheres, especially regarding experiments. Polydispersity is
likely to reduce ordering and may alter the balance between confinement effects per se
and confinement effects through wall-induced layering. This could also help understand
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results by Gamonpilas et al. (2016) who found different normal stress differences between
monodisperse and bidisperse systems.
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Appendix A. Wall resistance functions

Asymptotic expressions for particle-wall resistance functions XA, Y A, Y B , XC , Y C ,
Y G and Y H can be found in various sources of the literature and have been recently
compiled by Yeo & Maxey (2010b). Note that in their paper, there seems to be a ty-
pographical error for the O(1) term in Y H which is 0.0916 instead of 0.923 (see Bossis
et al. (1991)).

XA

6πa
= ξ−1 +

1

5
ln ξ−1 +

1

21
ξ ln ξ−1 + 0.8193

Y A

6πa
=

8

15
ln ξ−1 +

64

375
ξ ln ξ−1 + 0.9557

Y B

4πa2
= − 3

15
ln ξ−1 − 43

125
ξ ln ξ−1 + 0.3852

XC

8πa3
= −1

2
ξ ln ξ−1 + 1.2021

Y C

8πa3
=

2

5
ln ξ−1 +

66

125
ξ ln ξ−1 + 0.3720

Y G

4πa2
=

7

10
ln ξ−1 +

221

250
ξ ln ξ−1 − 0.9230

Y H

8πa3
= − 1

10
ln ξ−1 +

2

250
ξ ln ξ−1 + 0.0916

where ξ is the gap between particle surface and wall normalized by particle radius a.
In order to obtain the missing functions XG, XP and YM , we start from their general
expressions for two particles having different size (Kim & Karrila 1991; Jeffrey 1992)
and we note β the size ratio. A variable change is first needed because in the theoretical
two-sphere expressions, distance ξ is non-dimensional using the average radius a(1+β)/2
while we want to keep a for a wall-particle interaction. Then, the limit β →∞ is taken
in the obtained expression. The O(1) non-singular term is taken from Jeffrey (1992) for
β = 100, which is the highest value available. The final asymptotic expressions are

XG

4πa2
=

3

2
ξ−1 − 6

5
ln ξ−1 + 0.268

XP

4πa2
=

3

2
ξ−1 − 6

5
ln ξ−1 − 0.552

YM

20
3 πa

3
=

24

25
ln ξ−1 +

1182

625
ξ ln ξ−1 − 0.685

Note that there seem to be no data available in the intermediate distance regime so that
those asymptotic expressions are always used.
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Snook, B., Butler, J.E. & Guazzelli, É. 2015 Dynamics of shear-induced migration of
spherical particles in oscillatory pipe flow. Journal of Fluid Mechanics 786, 128–153.

Stickel, J.J. & Powell, R.L. 2005 Fluid mechanics and rheology of dense suspensions. Annual
Review of Fluid Mechanics 37, 129–149.

Volkov, I., Cieplak, M., Koplik, J. & Banavar, J. 2002 Molecular dynamics simulations
of crystallization of hard spheres. Physical Review E 66 (6), 061401.



Effect of confinement in wall-bounded non-colloidal suspensions 27

Yeo, K. & Maxey, M.R. 2010a Anomalous diffusion of wall-bounded non-colloidal suspensions
in a steady shear flow. EPL (Europhysics Letters) 92 (2), 24008.

Yeo, K. & Maxey, M.R. 2010b Dynamics of concentrated suspensions of non-colloidal particles
in couette flow. Journal of Fluid Mechanics 649 (1), 205–231.

Yeo, K. & Maxey, M.R. 2010c Ordering transition of non-brownian suspensions in confined
steady shear flow. Physical Review E 81 (5), 051502.

Zarraga, I.E., Hill, D.A. & Leighton Jr, D.T. 2000 The characterization of the total stress
of concentrated suspensions of noncolloidal spheres in newtonian fluids. Journal of Rheology
44, 185.

Zurita-Gotor, M., B lawzdziewicz, J. & Wajnryb, E. 2007 Swapping trajectories: A
new wall-induced cross-streamline particle migration mechanism in a dilute suspension
of spheres. Journal of Fluid Mechanics 592, 447–469.


