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Abstract

The article introduces a kinetic scheme to solve the 1D Euler equations of hemo-

dynamics, and presents comparisons of a closed-loop 1D-0D model with real

measurements obtained after the hepatectomy of four pigs.

Several benchmark tests show that the kinetic scheme compares well with

more standard schemes used in the literature, for both arterial and venous wall

laws. In particular, it is shown that it has a good behavior when the section

area of a vessel is close to zero, which is an important property for collapsible

or clamped vessels. The application to liver surgery shows that a model of

the global circulation, including 0D and 1D equations, is able to reproduce the

change of waveforms observed after different levels of hepatectomy. This may

contribute to a better understanding of the change of liver architecture induced

by hepatectomy.
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1. Introduction

Liver partial ablation surgery, namely partial hepatectomy, is necessary to

treat some pathologies. In order to get a functional regeneration of the liver,

the weight ratio of the remaining liver to the body must be at least 0.5% for a

healthy human [1]. However, the liver ablation percentage needs sometimes to

be higher, in presence of large tumors for example. Post-operative liver failure

may then occur due to insufficient functional liver mass.

When partial ablation is performed, the remaining liver experiences pressure

and flow changes. The importance of the hemodynamics changes depends on ab-

lation size, but their relationship remains unclear. Moreover, the remaining liver

regeneration capacity seems to be impacted by the post-resection hemodynam-

ics. A better understanding of the hemodynamics impact of hepatectomy might

therefore help improve surgical practice. To contribute to this challenge, we

adopt two approaches: one is based on animal experiments, the other on math-

ematical modeling and simulation. The present work shows that the simulations

are able to reproduce, and possibly explain, some findings of the experiments.

Experiments have been performed on pigs. This species is a good animal

model for our problem since its liver to body weight ratio is close to human’s [2].

Pressure and flow in the main vessels of the liver have been recorded for differ-

ent resection percentages. An interesting finding of these experiments was the

following: at the resection time, waveform changes were observed repeatedly in

the pressure and flow measured in the hepatic artery. These changes differ for

75% and 90% hepatectomy. Since it is hypothesized that there is a link between

liver architecture and hemodynamics, and since liver architecture is important

to understand liver regeneration, there is a strong interest in explaining these

changes in pressure and flow waveforms.

A mathematical model able to reproduce this phenomenon must satisfy sev-

eral requirements. First, it has to be able to capture wave propagation. A

network of vessels modeled by systems of the one-dimensional (1D) hyperbolic

Euler equations is a natural candidate in this respect. The liver being perfused
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by both arterial and venous blood, the model should be able to address both

kinds of vessels. In addition, since during surgery some vessels can be clamped,

the model and the numerical scheme should be able to handle the limit of van-

ishing cross-section area. In this work, we propose to use a kinetic scheme, in

particular because of its interesting capability to preserve the positivity of the

cross-section area. This scheme was originally developed for the Saint-Venant

shallow water equations. To our knowledge, this is the first time that it is used

to model collapsible vessels.

Second, keeping in mind that the liver receives about 25% of the cardiac

output [3], hepatectomy may also influence the systemic circulation. It is there-

fore desirable to embed the network of 1D models within a closed-loop model of

the whole circulation, including the liver. To keep a moderate complexity, this

compartment can be treated with zero-dimensional (0D) models, also known as

lumped-parameter models, i.e. governed by ordinary differential equations.

The paper is organized as follows. In Section 2, the hyperbolic equations

are recalled and the kinetic scheme is described, along with the boundary and

coupling conditions. The kinetic scheme is validated on benchmark cases, for

both arterial and venous flows. In Section 3, the closed-loop 0D-1D model is

presented and the effects of partial hepatectomy are studied numerically and

compared with experimental observations. Section 4 ends the paper, with some

conclusions and perspectives.

2. Kinetic scheme for arterial and venous blood flow

2.1. The Euler equations of hemodynamics

Blood flow in large vessels of the cardiovascular system can be represented

with a collection of one-dimensional systems of nonlinear equations:
∂tA+ ∂x(Au) = 0

∂t(Au) + ∂x(κAu2) +
A

ρ
∂xp = Ag − f(A,A0, u),

(1)

The first equation corresponds to mass conservation and the second to momen-

tum conservation. x ∈ R denotes the coordinate along the longitudinal axis of
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the portion of vessel, t ∈ R+ is the time, A(x, t) is the vessel cross-section area,

u(x, t) is the mean velocity of blood through the corresponding cross-section, ρ

is the fluid density assumed constant, g denotes the gravity along the longitu-

dinal axis, f(A,A0, u) is a friction term, and κ is a momentum-flux correction

coefficient, assumed to be equal to 1 in this work.

These equations have been used by many authors (e.g. [4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14] to only name a few). Many variants exist, for example in the

treatment of dissipation, viscoelasticity, curvature, momentum-flux correction

coefficient, etc. Here we choose the simplest form of these different components,

adding complexity through gravity and dissipation as needed by the test cases.

The mean pressure p(x, t) in a cross-section is related to the cross-section area

through an algebraic constitutive law:

p(x, t) = P0(x) + ψ (A(x, t), A0(x), β(x)) ,

where A0(x) is a reference area, P0(x) is the pressure when A(x, t) is equal to

A0(x), β(x) is a parameter representing the vessel stiffness, and ψ is a given

function characterizing the “tube law”. The details regarding the tube law for

this work can be found in [7, 15] for arteries, and in [16, 17, 18, 19] for veins.

Eliminating the pressure from system (1) gives:
∂tA+ ∂x(Au) = 0

∂t(Au) + ∂x(Au2) +
A

ρ
(∂Aψ)∂xA = Ag − f(A,A0, u)

− A

ρ
(∂xP0 + (∂A0

ψ)∂xA0 + (∂βψ)∂xβ)

(2)

In order to write the system in conservative form, the term
A

ρ
(∂Aψ)∂xA is

reformulated:

A

ρ
(∂Aψ)∂xA =

1

ρ
∂x

(∫ A(x,t)

εA0

a∂aψ(a,A0, β)da

)
= ∂x

(∫ A(x,t)

εA0

c2(a)da

)
(3)

where ε is a constant whose value will be discussed later, and c(A) =
√

A
ρ ∂Aψ
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is the wave speed. With this reformulation, system (2) becomes:
∂tA+ ∂x(Au) = 0

∂t(Au) + ∂x(Au2) + ∂x

(∫ A(x,t)

εA0

c2(a)da

)
= Ag − f(A,A0, u)− A

ρ

(
∂xP0

+ (∂A0
ψ)∂xA0 + (∂βψ)∂xβ

)
(4)

When the reference cross-section area A0, the stiffness parameter β and the

pressure P0 are assumed to be constant in space, the system reads:
∂tA+ ∂x(Au) = 0

∂t(Au) + ∂x(Au2) + ∂x

(∫ A(x,t)

εA0

c2(a)da

)
= Ag − f(A,A0, u).

(5)

2.2. The kinetic scheme

Many numerical methods have been used in the literature to address the

solution of (5). In the arterial case, we refer to the recent overview presented

in [20], where six different methods were compared: discontinuous Galerkin, lo-

cally conservative Galerkin, Galerkin least-squares finite element, finite volume,

finite difference MacCormack, and a simplified trapezium rule method (STM). In

the venous case, a Godunov scheme has been used in [18], an ADER (Arbitrary

Accuracy DERivative Riemann problem) scheme in [19], and a Runge-Kutta

discontinuous Galerkin scheme in [21].

In the present work, a kinetic scheme is adopted for both arterial and venous

flows. A motivation for this method, which was initially proposed for the Saint-

Venant equations [22], is its capability to provably preserve the positivity of

the cross-section area, which is especially relevant in collapsible vessels. To

our knowledge, this is the first time this scheme is used in hemodynamics for

collapsible vessels. It was recently used for arterial flow in [23].

A kinetic interpretation of system (5) is obtained by introducing a linear

microscopic kinetic equation equivalent to the macroscopic model [24]. A real

function χ defined on R is introduced. It is compactly supported and verifies
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the following properties:
χ(−w) = χ(w) ≥ 0∫
R
χ(w)dw =

∫
R
w2χ(w)dw = 1.

(6)

Here, this function is defined by χ(w) = 1
2
√

3
1|w|≤

√
3, but other choices are

possible [24]. A distribution function M(x, t, ξ) is introduced:

M(x, t, ξ) =
A

γ
χ

(
ξ − u
γ

)
,

with γ2 =
1

A

∫ A(x,t)

εA0

c2(a)da. The wave speed c will be further specified in the

next section for arterial and venous blood flows. In the kinetic formalism, the

variable ξ represents the microscopic particle velocity.

Consider first the case without source terms. The equation verified by M

and the system (5) are linked with the following result [24]: the functions A and

u are solutions to the Euler equations (5), if and only if M(x, t, ξ) is solution to

the kinetic equation

∂tM + ξ∂xM = Q(x, t, ξ), (7)

where Q(x, t, ξ) is a collision term that satisfies:∫
R
Qdξ =

∫
R
ξQdξ = 0.

The link between the microscopic density function and the macroscopic variable

is given by the two relations:∫
R
Mdξ = A,

∫
R
ξMdξ = Au. (8)

Let ∆t and ∆x denote the time and space steps respectively. Let (Ani , u
n
i )

denote an approximation of (A(xi, tn), u(xi, tn)), with tn = n∆t and xi = i∆x.

The unknown (Ani , u
n
i ) is solution to a finite volume kinetic scheme deduced

from the kinetic interpretation of the equations. Let Mn
i be the discrete particles

density, defined by

Mn
i = Mn

i (ξ) =
Ani
γni

χ

(
ξ − uni
γni

)
,

6



with γni =

(
1

Ani

∫ Ani

εA0

c2(a)da

) 1
2

. Equation (7) is approximated by an upwind

scheme:

Mn+1,−
i = Mn

i −
∆t

∆x
ξ
(
Mn
i+ 1

2
−Mn

i− 1
2

)
,

with Mn
i+ 1

2

= Mn
i 1ξ≥0 +Mn

i+11ξ≤0. Then Ani and (Au)ni = Ani u
n
i are computed

with (8):

Xn+1
i =

 An+1
i

An+1
i un+1

i

 =

∫
R

 1

ξ

Mn+1,−
i dξ. (9)

The kinetic scheme reads:

Xn+1
i = Xn

i −
∆t

∆x
(Fni+ 1

2
−Fni− 1

2
), (10)

with Fn
i+ 1

2

=

∫
R
ξ

 1

ξ

Mn
i+ 1

2
dξ. Given the function χ chosen above, the

following integrals can be computed in closed form:∫
ξ≥0

[
ξp
A

γ
χ

(
ξ − u
γ

)]
dξ =

1

2
√

3

A

γ(p+ 1)

[
(ξγ + u)p+1

]ξ=max( −u
γ ;
√

3)

ξ=max( −u
γ ;−

√
3)

p = 1, 2∫
ξ≤0

[
ξp
A

γ
χ

(
ξ − u
γ

)]
dξ =

1

2
√

3

A

γ(p+ 1)

[
(ξγ + u)p+1

]ξ=min( −u
γ ;
√

3)

ξ=min( −u
γ ;−

√
3)

(11)

which gives the expression of the flux F .

In presence of a source term, we adopt the simple strategy of an explicit

treatment:

Xn+1
i = Xn

i −
∆t

∆x
(Fni+ 1

2
−Fni− 1

2
) + ∆tnS(Xn

i ), (12)

where S(Xn
i ) = (0, gAni − f(Ani , A0, u

n
i ))

T
.

Under the CFL condition ∆tmaxi(|uni | +
√

3γni ) ≤ ∆x, following the same

arguments as in [22] for the shallow water equations, it can be proved that the

scheme (12) preserves the positivity of the cross-section area, i.e Ani ≥ 0, if this

property holds at time zero. A second order extension of (12) can be obtained

with standard arguments (minmod flux limiter).

Remark 1. As mentioned above, A0 is assumed to be constant in each ves-

sel. If A0 was space-dependent, for example to account for the vessel tapering,
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the source term should be carefully treated to obtain a numerical scheme that

ensures the equilibrium at rest. A similar issue was addressed for the shallow

water equations in [25] with a technique called “hydrostatic reconstruction”. To

our knowledge, in the context of blood flow, this question was first addressed

in [23] and named “dead man equilibrium”. It was also addressed in [26] for a

different scheme.

Arteries and veins tube laws. The tube law for arteries [15] is defined by,

ψ (A,A0, βa) = βa

(√
A−

√
A0

)
, (13)

with

βa =
4
√
πEh0

3A0
, (14)

where E is the Young’s modulus, and h0 the thickness of the tube. The wave

speed is then defined by:

c2 =
βa
2ρ

√
A(x, t). (15)

Thus, with the arterial tube law, c2 is integrable in A = 0 and we can choose

ε = 0 in (3). The kinetic distribution function M is defined by M(x, t, ξ) =

A
γ χ
(
ξ−u
γ

)
, with γ2 = 1

A

∫ A(x,t)

0
c2(a)da = βa

3ρA
1
2 = 2

3c
2 and system (5) reads:

∂tA+ ∂x(Au) = 0

∂t(Au) + ∂x(Au2) + ∂x

(
β

3ρ
A

3
2

)
= Ag − f(A,A0, u),

(16)

with p(x, t) = P0 + βa

(√
A(x, t)−

√
A0

)
.

For collapsible tubes, like veins, we adopt the same tube law as in [17, 18, 19]:

ψ (A,A0, βv) = βv

((
A

A0

)m
−
(
A

A0

)n)
, (17)

where βv is an elasticity parameter. With m = 10 and n = −1.5, which are the

values commonly used in the literature, the squared wave speed defined by

c2 =
βv
ρ

(
m

(
A

A0

)m
− n

(
A

A0

)n)
(18)
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is not integrable at A = 0. This question would deserve a special study. Here,

for simplicity, we circumvent this difficulty by taking ε > 0 in (3):

γ2 =
1

A

βv
ρ

∫ A(x,t)

εA0

(
m

(
a

A0

)m
− n

(
a

A0

)n)
da

=
βv
ρ

(
m

m+ 1

(
A

A0

)m
− n

n+ 1

(
A

A0

)n
− A0

A

(
m

m+ 1
εm+1 − n

n+ 1
εn+1

))
.

(19)

The value of ε will be discussed in section 2.4.

2.3. Boundary treatments

Characteristic variables. The characteristic variables are computed from the

quasi-linear form of system (5). For arterial blood flow [15], the characteristic

variables are:

W+ = u+ 4

√
β

2ρ
A

1
4 , W− = u− 4

√
β

2ρ
A

1
4 . (20)

For venous blood flow [19], the characteristic variables are:

W+ = u+

∫ A

A0

c(a)

a
da, W− = u−

∫ A

A0

c(a)

a
da. (21)

In the following numerical examples, the characteristic variables are approxi-

mated with the trapezoidal rule for venous blood flow.

Transmission conditions. In presence of a bifurcation, or a change in material

properties, conservation of mass is imposed: Qm = Qd1 + Qd2 , where Q = Au

denotes the flow rate, m the mother vessel and d1, d2 the two daughter vessels.

Except in some specific cases detailed below, continuity of the total pressure

PT = ρ
2u

2 + p is also imposed: PT,m = PT,d1 = PT,d2 . These relations are

complemented with the relations provided by the outgoing characteristics, as

explained e.g. in [15]. The resulting system of nonlinear equations is then

solved with a Newton method.

Boundary conditions. Different types of boundary conditions are considered in

the numerical examples. At the inlet of the open-loop models, either the pressure

or the flow rate are imposed. At the outlet, either a constant pressure, or an
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absorbing boundary condition, or a coupling with a 0D model are used. For the

absorbing boundary condition, the incoming characteristic variable is assumed

constant in time. For the coupling with a 0D model, the differential equations

are approximated with an implicit Euler scheme. Again, these relations are

complemented with the information obtained from the outgoing characteristics.

A Newton method and a parabolic linesearch algorithm are used to solve the

resulting system of nonlinear equations.

2.4. Benchmark test cases

Arterial flow. Various benchmark test cases were proposed in [20] to compare

six numerical methods for 1D blood flow models. Two representative tests are

studied in the following paragraphs: a single pulse propagation, and an aortic

bifurcation simulation. The kinetic scheme is compared to the results from [20].

For the two cases, the system (5) is solved, with a friction function defined by

f(A,A0, u) = Kfu(x, t), Kf being constant, and gravity is neglected.

Single pulse propagation The first test case is the (non-physiological)

propagation of a pulse wave along a tube, with an absorbing outlet boundary

condition. Table 6 provides the parameters values. The inlet flow is imposed:

Q0(t) = exp(−104(t− 0.05)2) cm3s−1. First, the test is performed with the first

order kinetic scheme, and the friction is neglected. In [20] all the numerical

schemes give identical results for this benchmark. The kinetic scheme is here

compared with the STM scheme. For ∆t = 10−4 s and ∆x = 10−1 cm the

resulting pressure curves are shown in Figure 1 (blue curve). An excessive

numerical diffusion is observed, which is reduced when space and time steps are

refined (Figure 1 red curve), ∆t = 10−5 s and ∆x = 10−2 cm). The results

obtained with the second order in space kinetic scheme, with ∆t = 10−5 s and

∆x = 10−1 cm, are plotted in Figure 2 (a). Figure 2 (b) shows the results

obtained in the viscous case with the second order in space kinetic scheme

(∆t = 10−5 s and ∆x = 10−1 cm). Table 7 summarizes the normalized errors

for all presented simulations. With the second order kinetic scheme, the results
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Figure 1: Comparison between time and space first order kinetic scheme results with ∆x =

0.1cm, and ∆t = 1.0 10−4s (blue), with ∆x = 0.01cm, and ∆t = 1.0 10−5s (red) and numerical

results from [20] (dash black) for the inviscid single pulse propagation test. The pressure over

space is represented for different time instants: 0.1s, 0.3s, 0.5s, 0.7s, 0.9s, 1.1s, 1.3s, and 1.5s.

are in excellent agreement with the STM scheme.

Aortic bifurcation The second arterial test is an abdominal aorta branch-

ing into two symmetric iliac arteries. The vessel parameters are in Table 8. Two

three-element Windkessel models represent the rest of the systemic circulation

and are coupled to the two 1D iliac arteries. The flow rate is imposed at the inlet.

Space and time steps for the kinetic scheme are ∆t = 5 10−5 s and ∆x = 0.1 cm.

The CFL number (∆tmaxi(|uni | +
√

3γni )/∆x) remains around 0.63. Figure 3

shows pressure, flow rate and radius change for the middle and the end points

of the aorta, and the middle point of the iliac artery, compared to the results of

3D simulations and of the 1D scheme STM presented in [20].

11



0 2 4 6 8 10
x (m)

0.000

0.005

0.010

0.015

0.020

0.025
pr

es
su

re
 (k

Pa
)

kinetic scheme
STM scheme
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(b) Viscous blood

Figure 2: Comparison between first order in time and second order in space kinetic scheme

results with ∆x = 0.1 cm, and ∆t = 1.0 10−5s and numerical results from [20] with inviscid

(a) and viscous (b) blood for the single pulse propagation test. The pressure over space is

represented for various times: 0.1s, 0.3s, 0.5s, 0.7s, 0.9s, 1.1s, 1.3s, and 1.5s.
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In [20] errors with respect to 3D solution are computed. The errors are

defined by:

ERMS
P =

√√√√ 1

n

n∑
i=1

(
Pi − Pi
Pi

)
, ERMS

Q =

√√√√ 1

n

n∑
i=1

(
Qi −Qi

maxj(Qj)

)
(22)

EMAX
P = max

i

∣∣∣∣Pi − PiPi

∣∣∣∣ , EMAX
Q = max

i

∣∣∣∣ Qi −Qimaxj(Qj)

∣∣∣∣ (23)

ESY SP =
max(P )−max(P)

max(P)
, ESY SQ =

max(Q)−max(Q)

max(Q)
(24)

EDIASP =
min(P )−min(P)

min(P)
, EDIASQ =

min(Q)−min(Q)

max(Q)
, (25)

where Pi and Qi are the 1D simulation results at a given space point xi, i ∈

1...N , Pi and Qi are the 3D solutions at the same space location. The errors

for ∆P and ∆r are defined similarly. Table 9 presents the errors. Again, the

kinetic scheme is in very good agreement with the other schemes presented

in [20]. In that case, which is more physiological than the previous one, the

first order kinetic scheme is sufficient to reach a good accuracy with reasonable

discretization steps.

Venous flow. After having been tested on arterial benchmarks, the kinetic

scheme is now applied to venous flow, which is more challenging. For collapsible

tubes, such as veins, the squared speed wave (eq. 18) is not integrable at A=0.

This difficulty is avoided by taking ε > 0 in (3). In the following numerical

simulations, we took the value ε = 10−3. We noticed that the solution was

slightly sensitive to the value of ε, but this dependency is reduced when space

and time steps are decreased.

Jugular vein collapse The test of the “giraffe jugular vein” was proposed

in [17, 18], and used more recently in [21, 19]. A single vein is considered

with length L = 200 cm, cross-section area A0 = 5 cm2 and material property

parameter βv = 50 dyn/cm2. A constant flow rate is imposed at the inlet and a

fixed cross-section area at the outlet. The value of gravity is g = 980.0 cm/s2,
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Figure 3: Aorta bifurcation test case: kinetic first order scheme results with ∆t = 5.10−5 s

and ∆x = 0.1 cm, and 3D and STM scheme results from [20], over one cardiac cycle.
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and the friction is defined by f(A,A0, u) = Kf

√
A(t, x)

A0
u(t, x), with Kf = 0.96

cm2/s. The initial conditions are A(x, 0) = A0(0.2 + 1.8 xL ) and u(x, 0)A(x, 0) =

40 cm3/s. The boundary conditions are u(0, t)A(0, t) = 40 cm3/s and A(L, t) =

2A0. In case of a super-critical inlet, u(0, t)A(0, t) = 40 cm3/s and A(0, t) =

0.3825 cm2 are the two imposed conditions. The system is solved with the first

order kinetic scheme with ∆x = 1.0 cm and ∆t = 10−4 s. The CFL number

(∆tmaxi(|uni |+
√

3γni )/∆x) is around 0.06 for the chosen time and space steps.

Here, 201 nodes are used to solve the problem, whereas 1000 nodes were used

for the Godunov scheme in [18].

The results for α = A/A0 and the velocity u are plotted over the vessel

length for t = 5.7 s and t = 50 s in Figure 4. Gravity tends to empty the

upstream part of the vessel, thus a super-critical flow appears at the inlet. The

vessel cross-section area at the outlet is forced to remain equal to 2A0, hence the

flow remains sub-critical at the outlet and a shock appears in the middle of the

vessel. The position of the shock oscillates until the solution converges. Figure

4 shows the solution at time t = 5.7 s and the stationary state (time t = 50 s).

The obtained curves are very similar to the curves reported in [19, 21, 18]. The

front position is x/L = 0.8 in [18], x/L = 0.72 in [21], x/L = 0.74 in [19]. With

our numerical scheme, the front position is x/L = 0.74.

Portal vein uncollapse To illustrate the robustness of the kinetic scheme,

we propose a new benchmark test case mimicking the uncollapse of the portal

vein. During the surgery described in the following section, the surgeons clamp

the main vessels perfusing the organ to avoid blood loss. When the clamp is in

place, the vessel is collapsed. Once sutures are done, they remove the clamp.

The proposed test is mimicking the uncollapse of the portal vein, just after the

clamp removal.

We assume that a cross-section area of 0.5 % of A0 corresponds to a collapsed

vessel. The 1D blood flow equations (5) are solved with the vein constitutive

law (18) in a single vessel, with length L = 6 cm, cross-section area A0 = 0.8 cm2
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and material parameter βv = 10 dyn/cm2. The initial conditions are set to

represent a collapsed vessel due to the clamp in the middle of the tube:

A(x, 0) =

(
1.1− x10.95

4L

)
A0 for x < 4L/10

A(x, 0) = 0.005A0 for 4L/10 ≤ x ≤ 6L/10

A(x, 0) =

(
−1.6375 + x

10.95

4L

)
A0 for 6L/10 < x ≤ L

A(x, 0)u(x, 0) = 0cm3/s

(26)

The inlet and outlet pressures are imposed, corresponding to a cross-section area

of 1.1 A0. The pressure corresponding to A = A0 is P0 = 1.05 mmHg, the blood

density is ρ = 1 g.cm−3, the friction term is f(A,A0, u) = Kfu(t, x), with Kf

= 0.96 cm2/s. The gravity is neglected. The first order kinetic scheme is used,

with ∆x = 0.05 cm and ∆t = 10−4 s. Figure 5 shows the quantity α = A/A0

for various time instants. At time t = 0 s, just after unclamping, the vessel is

collapsed in the middle. Then, the vessel uncollapses and oscillates around the

equilibrium position (see t = 2 s and t = 5 s in Fig. 5) to eventually reach a

steady state (see t = 20 s in Fig. 5).

3. Application to hepatectomy

To our knowledge, only a few mathematical models were proposed in the

literature to describe the hemodynamics impact of liver surgeries. In [27], a

cast-based reconstruction of the rat liver vasculature was performed to compute

the resistance in the different vascular trees. Various sizes of virtual resection

were studied with a resistance model and two 90% resection techniques were

compared. The results indicated a portal hyperperfusion after resection and

demonstrated that probably better outcomes could be expected with one of the

two resection techniques. In [28], a 3D simulation was performed in the portal

vein after right lobe hepatectomy. The geometry, based on medical imaging

data, included superior mesenteric and splenic veins merging in portal vein

and three portal vein branches. Constant velocities boundary conditions were

prescribed in the mesenteric and splenic veins and zero pressure was imposed at
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the outlets. The right lobe hepatectomy was simulated changing the geometry.

Similarly, for a two-lobe liver 0D model, driving conditions were kept unchanged

before and after hepatectomy.

The model proposed in the present work differs from these two approaches

from several aspects that will be detailed below. Our strategy is to propose a

model of moderate complexity which can be parameterized to match measure-

ments, but with a sufficient level of realism to be able to capture non-trivial

phenomena observed in animal experiments.

3.1. A closed-loop model

To be able to consider waveform changes as a result – and not as an input – of

the simulations, a closed-loop model is proposed including 1D and 0D compart-

ments. Although this approach is not new, models of that sort, calibrated with

experimental measurements, are not numerous in the literature. Closed-loop

models, including 0D-1D-3D vessels, were proposed in [29] to study the impact

of aortic insufficiency on the local hemodynamics of a cerebral aneurysm, and

in [30] to study the effects of arterial and aortic valvular stenoses. Closed-loop

0D-1D models, including arteries and veins, were proposed in [31, 32]. The lat-

ter article focused on head and neck, to study possible connections between the

venous vasculature and a class of neurodegenerative diseases. The simulation

results were compared to Phase-Contrast MRI flow data.

The closed-loop model proposed in this work is represented in Figure 6. The

main arteries are modeled with the 1D Euler equations described above. The

arterial and venous trees at each outlet, as well as the pulmonary circulation

and vena cava, are modeled with three-element Windkessel models. The heart

and the liver are also represented by 0D models. The main features of each of

these compartments are now detailed.

For the 1D models, the length, the cross-section area A0 and the bifurcation

angles are estimated from CT-scans of the pigs which underwent the surgical

operations (CT-scans were done with a Siemens Somatom AS definition 128

machine). At the bifurcation, the continuity of total pressure is enforced as
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Figure 6: Schematic representation of the 1D-0D closed-loop model. 1D blood flow is simulated

in the thick lines arteries while thin lines represent the 0D model connections. All RCR units

and the liver are linked (thin arrows) to the vena cava (VC).

explained in Section 2, except at the bifurcation between the abdominal aorta

and the celiac trunk, and when the celiac trunk bifurcates into the hepatic and

the splenic arteries. In these two bifurcations, the condition proposed in [7] is

adopted: PT,d1 = PT,m − 2 sign(ud1)u2
d1

√
2(1− cos(α1), where α1 is the angle

of the branches d1 with respect to the mother vessel.

The elasticity parameters are computed with the following formula [6]:

Eh0

r0
= a exp(br0) + c, (27)

where E is the Young’s modulus, h0 and r0 are the vessel thickness and radius

when A = A0. This formula is scaled in order to obtain a pressure in the

carotid artery which is similar to the one measured in pigs. The parameters

are: a = 6.0 106g.s−2.cm−1, b = −22.53cm−1 and c = 2.595 105g.s−2.cm−1.

The values for each artery can be found in Table 2.

The total resistances for RCRs are computed with Rtot =
∆P

Q
, by a combi-

nation of flow splits from [33], assuming pig and human flow splits are similar,

and of available pressure and flow measurements. These total resistances are
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then separated into proximal Rp and distal Rd resistances, assuming the proxi-

mal resistance carries 10% of the total resistance in each RCR, within the ranges

used in [34, 35, 36]. The total systemic capacitance is fixed at 4.10−4 cm5.dyn−1

as reported in [37] for pig circulation, further split based on the number of large

arteries represented by each compartment according to [38]. Table 3 summarizes

RCR parameter values.

The liver model is based on the pig anatomy. The pig liver consists of three

separate lobes and is perfused by venous blood, through the portal vein, and

arterial blood, through the hepatic artery. The three lobes are represented by

three 0D models in parallel, connected to the heart through the 1D models, and

to the digestive organs through the venous input connected to the RCR models

of the splenic and mesenteric arteries. The vascular tree sizes are assumed

proportional to the perfused tissue mass. A larger vascular tree has a smaller

resistance, therefore the lobar resistances of the hepatic artery tree, the portal

vein tree and the liver tissue are assumed inversely proportional to the lobe

mass. The lobar capacitances of the hepatic artery tree and the liver tissue are

assumed proportional to the lobe mass. The proximal to total resistance ratios

of the hepatic artery tree reflect the lobar architecture differences [27]. The

values of the liver parameters are reported in Table 4.

The functions governing the heart contraction come from the literature [39,

40, 30, 29], but their parameters are adapted to the pig heart. Heart valves are

modeled with logistic functions, in order to obtain smooth yet sharp transitions

between open and closed states. The heart chamber equations read:
dVi
dt

= Qin,i −Qout,i

Pi = Ei(t)(Vi − V0i)

Qout,i = Gi(Pi − Pout,i)(Pi − Pout,i),

(28)

where i denotes either the right atrium (RA), right ventricle (RV), left atrium

(LA) or left ventricle (LV); Vi and V0i are respectively the volume and unloaded

volume of the heart chamber i; Qin,i and Qout,i are the incoming and outgoing

flows; Pi is the heart chamber pressure; Pi − Pout,i is the pressure across the
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valve; Ei is the elastance function, defined by Ei(t) = Eaie(t)
αi + Ebi with

αi = 1 if i = RA,LA and αi = 0.5 if i = RV,LV , as in [41]. Eai and Ebi

are the amplitude and baseline elastances respectively, and e is a normalized

time-varying function of the elastance, defined as follows for the ventricles:

e(t) =



1

2

[
1− cos

(
π
t

Tvc

)]
0 ≤ t ≤ Tvc

1

2

[
1 + cos

(
π
t− Tvc
Tvr

)]
Tvc < t ≤ Tvc + Tvr

0 Tvc + Tvr < t ≤ Tcc,

(29)

and for the atria:

e(t) =



1

2

[
1 + cos

(
π
t+ Tcc − tar

Tar

)]
0 ≤ t ≤ tar + Tar − Tcc

0 tar + Tar − Tcc < t ≤ tac
1

2

[
1− cos

(
π
t− tac
Tac

)]
tac < t ≤ tac + Tac

1

2

[
1 + cos

(
π
t− tar
Tar

)]
tac + Tac < t ≤ Tcc,

(30)

where Tcc is the duration of the cardiac cycle. The durations of the ventricular

and atrial contractions and relaxations are denoted by Tvc, Tac, Tvr and Tar

respectively; tac and tar are the times when the atria begin to contract and

relax, respectively. The heart parameter values are given in Table 1. The valve

conductance is described by the function G(∆P ) =
G0

1 + exp(−(∆P − d))
where

G0 = 0.1cm5.dyn−1.s−1, and d = 0.1dyn/cm2.

Hepatectomy simulation in the 1D-0D closed loop model. The system of equa-

tions (5) is solved for the large arteries, with the first order kinetic scheme, with

∆x = 0.1cm and ∆t = 10−4s (see Table 5). Gravity is neglected and the friction

function is defined as f(A,A0, u) = Kfu(x, t), with Kf = 3 cm2/s. The initial

conditions are p(x, t = 0) = 45 mmHg and u(x, t = 0) = 5.0 cm/s.

Before hepatectomy, the 1D-0D closed loop model is tuned with the available

measurements. Given the variability between subjects, the parameters are not

tuned to represent a specific animal but to obtain representative pressures and

flow rates. Figure 7 shows the measured carotid pressure curves over time for

the four animals and the simulated curve. The first cardiac cycles at the left
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hand side of Figure 10 show the pressure and flow rates in the hepatic artery,

to be compared with the experimental measurements represented in Figure 8.

Given the intersubject variability, we considered that we reached a qualitative

and quantitative agreement sufficient for our purpose.

The influence of partial hepatectomy on these hepatic artery waveforms is

then studied by simulating partial hepatectomy in the model. In pig surgery,

partial ablation is done in two steps. In a first stage, two of the three liver

lobes are removed, corresponding to approximately 75% ablation. Part of the

remaining lobe is removed in a second step to reach a final ablation around 90%.

The percentages of ablation are based on initial liver volume. In the model, the

first stage is taken into account by dynamically increasing the corresponding

lobe resistances and decreasing the corresponding capacitances, to simulate the

75% hepatectomy:

R(t) =

 R if t < T75

R exp(5(t− T75)) otherwise
C(t) =

 C if t < T75

C exp(−5(t− T75)) otherwise

(31)

where T75 is the time instant of the clamping, and R and C are the values before

clamping. Then, to simulate the second part of the surgery, the remaining lobe

mass is decreased, simulating a larger ablation resulting in a 90% hepatectomy.

The remaining lobe mass is given by:

M(t) =


M if t < T90

M

(
1− r +

r

1 + exp(−5(t− T90))

)
otherwise ,

(32)

where M is the initial lobe mass, T90 is the time of the second clamp, and r is the

percentage removed in the remaining lobe. The parameters for the simulated

hepatectomies are given in Table 4.

Typical changes in waveform occurring at 75% hepatectomy have been ob-

served in several animals; Figure 8 shows four examples. The pressure amplitude

goes up (between 5 and 10 mmHg). For the flow rate, although there is some

variability in the pre-hepatectomy shape, after the clamping two characteris-

tic changes can be observed besides the mean value decrease: the first peak is
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sharper, meaning the second peak is lower than before hepatectomy, and dias-

tolic flow is at low values for longer. By contrast, no major changes in waveform

have been observed for 75% to 90% hepatectomy, as shown in the experimental

curves for two different pigs in Figure 9. Apart from a small mean flow decrease,

in some pigs such as pig 4, the flow rate minimum that follows systole becomes

lower than the flow in diastole.

The two hepatectomies are simulated one after the other with the 1D-0D

model. Figure 10 shows the simulated pressure and flow rate in the hepatic

artery. For the 75% hepatectomy, the increase of pressure is well captured by

the model and the typical changes of the flow waveform are well reproduced.

For the simulated 75% to 90% hepatectomy, the pressure does not change and a

small decrease in the mean and minimum flow appear (Figure 10 (b)) as in the

experimental curves (Figure 9). Thus, the 1D-0D model is in good agreement

with the experimental observations before and after clamping, both for 75% and

75% to 90% hepatectomies.

3.2. Discussion

It is quite remarkable that the 1D-0D model can predict the pressure and

flow rate waveform changes for both 75% and 75% to 90% hepatectomies. This

may be an indication that the waveforms are related to the liver architecture.

To further understand this link, parameter sensitivity analysis can help to ex-

plain the changes in pressure amplitude and in flow waveform during the 75%

hepatectomy. Generalized sensitivity functions (GSFs) analysis help identify

correlations between parameters and the distribution over time of the informa-

tion on parameters contained into the model outputs. Generalized sensitivity

functions definitions are given in Appendix 5.2. Details on sensitivity analy-

sis can be found in [42, 43, 44, 45]. By definition, a GSF starts at value zero

and ends at value one. The increase in-between is not necessary monotonic; if

important correlations between parameters exist oscillations occur. The time

interval where the sharpest increase occurs is when most information on the

parameter is contained into the model output. The GSF is computed before
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lines) and 1D-0D closed-loop model simulated curve (solid line).
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(a) Pig 1 (b) Pig 2

(c) Pig 3 (d) Pig 4

Figure 8: Experimental measurements of hepatic artery pressure and flow rate during 75%

hepatectomy for four different pigs, the dark lines indicating the clamping time.

(a) Pig 3 (b) Pig 4

Figure 9: Experimental measurements of hepatic artery pressure and flow rate during 75% to

90% hepatectomy for two different pigs, the dark lines indicating the clamping time.
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(a) 75% hepatectomy simulation

(b) 75% to 90% hepatectomy simulation

Figure 10: 1D-0D closed-loop model results: hepatic artery pressure (mmHg) and flow rate

(L/min) during 75% simulated hepatectomy and 75% to 90% simulated hepatectomy, the dark

lines indicating the time of simulated clamping.
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and after the simulated 75% hepatectomy.

The GSFs of the total resistance and capacitance for flow and pressure in

the hepatic arterial trees are plotted in Figures 11 and 12. Before hepatectomy,

pressure and flow are sensitive to resistance during the entire cardiac cycle. This

result is expected as resistance impacts mean pressure and flow. The pressure is

more sensitive to the capacitance during its rising phase. The sharper increase of

capacitance GSF after 75% hepatectomy indicates that the pressure amplitude is

especially sensitive to capacitance. Between before and after 75% hepatectomy,

capacitance is divided by approximately four. Before 75% hepatectomy, the flow

is sensitive to resistance and capacitance during the entire cardiac cycle. After

75% hepatectomy, the flow is more sensitive to the capacitance between 0.3 s

and 0.45 s, corresponding to the sharp decrease in the flow curve.

Thus, the change in parameters due to the 75% hepatectomy – resistance

increases by around 75% and capacitance decreases by around 75% – seems to

explain the changes in pressure and flow waveforms. To confirm this hypothesis,

the pre-hepatectomy model is run but with hepatic artery resistance and capac-

itance parameters multiplied and divided by four respectively, as if each lobe

was 75% smaller. The new simulations are compared with the previous ones

after the 75% hepatectomy, in Figure 13. Contrarily to pressures, the flow rates

differ. Therefore, the change of global parameter values – total liver resistance

and capacitance – can explain the change in pressure amplitude but it is not

enough to obtain the sharp change observed in the flow waveform.

The fact that changes in hepatic artery flow waveform during experiments

are observed for 75% hepatectomy but not for 90% hepatectomy, can be ex-

plained by the change in architecture in the blood vessel trees. Indeed, in the

first hepatectomy, two of the three liver lobes are removed, which leads to an

important architecture change. For the second hepatectomy, the remaining lobe

mass is decreased and the vessel tree architecture does not change as much. In

the model, the simulation of the first stage corresponds to an impedance change

from 3 RCRs in parallel to a single RCR. For the second stage, the impedance

remains the one of a single RCR; only the remaining lobe model parameters are

28



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

GS
Fs

C
R

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (s)

30
35
40
45
50
55
60
65

HA
 p

re
ss

ur
e 

(m
m

Hg
)

(a) Before partial hepatectomy

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

GS
Fs

C
R

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
time (s)

35
40
45
50
55
60
65
70
75

HA
 p

re
ss

ur
e 

(m
m

Hg
)

(b) After 75% hepatectomy

Figure 11: Pressure GSF of hepatic arterial trees for the resistance and the capacitance
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(b) After 75% hepatectomy

Figure 12: Flow rate GSF of hepatic arterial trees for the resistance and the capacitance
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(a) Hepatic artery simulated pressure
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(b) Hepatic artery simulated flow

Figure 13: Simulated pressure and flow in the hepatic artery, with reduced capacitance and

increased resistance in each of the 3 lobes (blue) and with previous parameters after the

simulated 75% hepatectomy (red).
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changed, due to mass proportionality assumptions.

In summary, the modeling choices linking the liver resistances and capaci-

tances to the mass and to the lobar structure of the liver allowed us to repro-

duce the changes in the experimentally observed signals. Thus, the study and

reproduction of hepatectomy with a model enable us to better understand ex-

perimental observations and propose a novel link between architecture and flow.

Monitoring waveform changes during post-hepatectomy regeneration could thus

be a surrogate for the underlying architectural changes, which are currently not

possible to non-invasively quantify.

4. Conclusions

In this work, the kinetic scheme, mainly used for the Saint-Venant equations

in the literature, was successfully adapted to blood flow models. This scheme

proved to have a very good behavior for arterial and venous benchmark tests. In

particular, its theoretical properties of positivity make it especially well adapted

to simulate collapsible vessels.

The scheme was then used to simulate complex behaviors occurring dur-

ing liver surgeries. First, an idealized test representing the unclamping of the

portal vein was proposed. Then the effects of partial hepatectomies on the

hepatic artery pressure and flow waveforms were studied with a 1D-0D closed-

loop model. Interestingly, the changes observed experimentally on pigs were

correctly captured for different percentages of hepatectomy. To the best of

our knowledge, these experimental observations were never reported before in

the literature. The capability of the model to represent this complex behavior

allowed us to propose possible explanations of the observed phenomenon.

Future work will be devoted to a finer characterization of the change of the

liver architecture during hepatectomy, and to the adaptation of the model to

humans.
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Heart chamber Right atrium Right ventricle Left atrium Left ventricle

Ea (dyn/cm5) 80 750 200 1600

Eb (dyn/cm5) 110 100 400 350

Tc (s) 0.145 0.289 0.145 0.289

Tr (s) 0.145 0.128 0.145 0.128

tc (s) 0.68 - 0.68 -

tr (s) 0.824 - 0.824 -

V0 (cm3) 4 10 4 5

Rp (dyn.s/cm5) Rd (dyn.s/cm5) C (cm5/dyn)

Lungs 53 53 0.03

Vena cava 10 10 0.004

Table 1: Parameter for heart, lungs and vena cava 0D models. Ea is the contraction

function amplitude, Eb the contraction function baseline, Tc is the duration of contraction,

Tr is the duration of relaxation, tc and tr are the times when the atria begin to contract

and relax, respectively and V0 is the unstressed volume of the chamber. Rp and Rd are the

proximal and distal resistances of the RCR model and C is the capacitance.

5. Appendix

5.1. Parameter and error tables

In this appendix, tables of the 1D and 0D model parameters are summarized,

along with precise errors for benchmark test results as referred to in the text.

5.2. Generalized sensitivity functions

For those unfamiliar with the GSFs, we recall their definition [42, 45]. Con-

sider the model for the state vector x= [x1, x2, ..., xL]:

ẋi(t) = fi(t,x,θ) i = 1, 2, ..., L (33)

where θ = [θ1, θ2, ..., θP ] is the model parameters vector and the dynamic model

is represented with functions fi. The observation vector z = [z1, ..., zM ], can be

written as :

z(tn) = h(tn,θ) + ε(tn) n = 1, 2, .., N with h(t,θ) = H(x(t,θ)) (34)
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Figure 14: 1D arteries node number and arteries id; see Table 2 for their parameter values.
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id Name l (cm) A0 (cm2) β/ρ (cm/s2) Nel

a Ascending aorta 3.5 2.54 2.07 105 35

b Brachiocephalic trunk 2.92 0.46 4.88 105 30

c Aortic arch A 0.36 0.39 5.34 105 5

d Right subclavian 8.5 0.20 7.96 105 85

e Right common carotid 11.8 0.12 1.24 106 120

f Left common carotid 11.9 0.15 9.79 105 120

g Aortic arch B 0.68 2.30 2.17 105 7

h Left Subclavian 12 0.31 6.01 105 120

i Thoracic aorta A 9.1 2.06 2.30 105 91

j Thoracic aorta B 9.5 1.43 2.75 105 95

k Thoracic aorta C 9.5 0.81 3.66 105 95

l Celiac trunk 0.66 0.29 6.22 105 7

m Hepatic artery 5 0.10 1.45 106 50

n Splenic artery 12.8 0.10 1.45 106 130

o Abdominal aorta A 1.7 0.80 3.69 105 17

p Mesenteric artery 3 0.36 5.57 105 30

q Abdominal aorta B 3.55 0.80 3.69 105 36

r Right Renal 3.65 0.18 8.63 105 37

s Abdominal aorta C 0.5 0.78 3.72 105 5

t Left renal 1.37 0.24 6.95 105 14

u Abdominal aorta D 8 0.57 4.36 105 80

v Right iliac 2.9 0.29 6.33 105 29

w Left iliac 2.8 0.34 5.74 105 28

Table 2: Parameters for the 1D vessels of the pig cardiovascular model. The first

column contains the id number of the artery (Figure 14), the second the name of the artery,

the third l its length in cm, the fourth its cross-section area A0 in cm2 from CT-scan, the fifth

is the vessel elasticity coefficient β (defined in equation (14)) divided by the fluid density ρ,

and the last one the number of elements used to discretize the vessel.

39



id out Rp (dyn.s/cm5) Rd (dyn.s/cm5) C (cm5/dyn)

n 15 953 8584 2.0 10−5

p 16 864 7780 4.0 10−5

r 17 1189 10705 2.0 10−5

t 18 1196 10762 2.0 10−5

v 19 1655 1490 8.0 10−5

w 20 165 14907 8.0 10−5

h 21 1069 9622 6.0 10−5

f 22 1288 11592 4.0 10−5

e 23 1311 11806 4.0 10−5

d 24 1063 9566 6.0 10−5

Table 3: Parameters for the outlets RCR models. The first column contains the id of

the artery, the second node id, the third Rp the proximal resistance, the fourth Rd the distal

resistance, and the last one the capacitance.

Liver lobes Right lobe Middle lobe Left lobe

Mass (g) 250 500 180

Rp/Rtot arterial tree 0.1 0.5 0.1

Arterial tree Portal vein tree Tissue + Hepatic veins

Mass resistance (g.dyn.s/cm5) 1.9 107 1.86 105 7.44 104

Mass capacitance (cm5/dyn/g) 3.0 10−8 - 1.5 10−5

Hepatectomy

parameters

75% clamping time T75 (s) 8

90% clamping time T90 (s) 16

r (%) 35

Table 4: Liver 0D model parameters. First the different lobe masses are given and the

ratio between proximal and total resistances in each lobe for the hepatic artery RCR model.

Then, mass resistance and mass capacitance are given for hepatic artery tree, portal vein tree,

tissue and hepatic vein tree, followed by the clamping parameters. r is the right lobe resected

mass %.
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Time step (s) 10−5

Mesh size (cm) 0.1

initial pressure p(x, t = 0) (dyn.cm−2) 6.0 104

initial velocity u(x, t = 0) (cm/s) 5

P0 (dyn.cm−2) 6.6 104

Kf (cm2/s) 3

ρ (g.cm−3) 1.05

Table 5: 1D-0D closed-loop simulation parameters, time and space discretization parameters,

initial conditions for 1D part, P0, friction parameter and fluid density values.

Properties Values

Length L 10 m

Cross-section area A0 π cm2

Initial velocity u(x,0) 0 cm/s

Initial pressure P(x,0) 0 dyn.cm−2

Pressure P0 0 dyn.cm−2

Wall thickness h 0.15 cm

Young’s modulus E 4.0 105 dyn.cm−2

Elasticity parameter β 4.515 105 dyn.cm−3

Blood mass density ρ 1.05 g.cm−3

Blood viscosity µ 0 or 0.04 dyn.cm−2

Friction term Kf 22π
µ

ρ

Table 6: Parameters for the single pulse propagation benchmark test case from [20].
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Case 1 Case 2 Case 3 Case 4

instants El2 E∞ El2 E∞ El2 E∞ El2 E∞
t = 0.1s 0.036 0.043 0.017 0.007 0.007 0.012 0.007 0.012

t = 0.3s 0.145 0.166 0.060 0.024 0.028 0.047 0.029 0.047

t = 0.5s 0.230 0.251 0.104 0.040 0.049 0.073 0.049 0.077

t = 0.7s 0.292 0.314 0.147 0.055 0.067 0.099 0.067 0.101

t = 0.9s 0.343 0.364 0.189 0.069 0.083 0.121 0.083 0.122

t = 1.1s 0.384 0.402 0.229 0.083 0.099 0.140 0.097 0.141

t = 1.3s 0.419 0.438 0.267 0.096 0.111 0.158 0.111 0.158

t = 1.5s 0.448 0.465 0.305 0.109 0.124 0.173 0.122 0.174

Table 7: Normalized errors for the single pulse propagation test case; for cases 1,2,3 friction

is neglected and case 4 is the viscous blood case. The normalized errors are defined by El2 =

‖Xkin−XSTM‖l2/‖XSTM‖l2 and E∞ = ‖Xkin−XSTM‖∞/‖XSTM‖∞ where XSTM is the

solution with the 1D STM scheme from [20] and Xkin is the solution obtained with the kinetic

scheme. Case 1 presents the results of the first order kinetic scheme with ∆x = 0.1cm, and

∆t = 1.0 10−4s, case 2 of the first order kinetic scheme with ∆x = 0.01cm, and ∆t = 1.0 10−5s,

case 3 of the first order in time and second order in space kinetic scheme with ∆x = 0.1cm,

and ∆t = 1.0 10−5s, finally case 4 of the first order in time and second order in space kinetic

scheme with ∆x = 0.1cm and ∆t = 1.0 10−5s with a non-zero friction term.
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Properties Aorta Iliac

Length L 8.6 cm 8.5 cm

Cross-section area A0 2.3235 cm2 1.131 cm2

Initial velocity u(x,0) 0 cm/s 0 cm/s

Initial pressure P(x,0) 0 dyn.cm−2 0 dyn.cm−2

Pressure P0 9.46 104 dyn.cm−2 9.46 104 dyn.cm−2

Wall thickness h 0.1032 cm 0.072 cm

Young’s modulus E 5.0 105 dyn cm−2 7.0 105 dyn cm−2

Elasticity parameter β 4.671 105 dyn.cm−3 9.3728 105 dyn.cm−3

Blood mass density ρ 1.06 g.cm−3 1.06 g.cm−3

Blood viscosity µ 0.04 dyn.cm−2 0.04 dyn.cm−2

Friction term Kf 22π
µ

ρ
22π

µ

ρ

Windkessel proximal resistance Rp - 6.8123 102 dyn.s.cm−5

Windkessel distal resistance Rd - 3.1013 104 dyn.s.cm−5

Windkessel capacitance C - 3.6664 10−5 cm5.dyn−1

Table 8: Parameters for the aortic bifurcation benchmark test case from [20].
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Error Midpoint Aorta End point Aorta Midpoint Iliac

ERMS
P 0.39 0.42 0.45

ERMS
Q 0.93 1.17 0.53

ERMS
∆r 2.41 3.99 4.21

EMAX
P 0.67 0.78 0.9

EMAX
Q 2.81 3.64 2.09

EMAX
∆r 3.87 6.74 7.25

ESY SP -0.46 -0.64 -0.77

ESY SQ -2.51 -3.51 -1.56

ESY S∆r -3.72 -6.61 -7.03

EDIASP 0.4 0.45 0.46

EDIASQ 1.15 1.74 1.05

EDIAS∆r -1.42 -1.95 -2.37

Table 9: Error for the aortic bifurcation test case with respect to 3D solution in percent as

defined in [20].
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where H is the observation operator, h represents the noise-free observation

vector and the vector ε(tn) is the noise on measurements at time tn. The noise

vectors are assumed to be independent for all measurement times. Moreover, all

components of the noise vector are assumed independent with zero mean and

σ2
i (tn) variance associated with measurement zi(tn). The generalized sensitivity

function for the parameter θk is defined by :

gk(tn) =

n∑
i=1

M∑
j=1

(
1

σ2
j (tj)

(M−1∇θhj(ti,θ0))k(∇θhj(ti,θ0))k

)
(35)

The sensitivity is computed around a reference parameter vector θ0. The matrix

M denotes the Fisher information matrix, defined as

M =

N∑
i=1

M∑
j=1

1

σ2
j (tj)

(∇θhj(ti,θ0)) (∇θhj(ti,θ0))
T

(36)
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