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Airborne Broadband Ultrasound:
Wireless Channel and Motion Tracking Algorithms

Mohammed Alloulah∗ et al.

Abstract—Airborne broadband ultrasound (ABU) covers a
wide stretch of inaudible acoustic frequencies which have been
used to provide scalable (i.e. multiuser) and highly robust
ranging and localization of static tags in indoor environments.
This is useful for mobile computing applications and robotics.
However, because ABU signals are wideband and propagate
relatively slowly, they are prone to aggressive Doppler distortion
as a result of human-scale movements indoors. Additionally, the
ABU channel is characterized by pronounced distance-dependent
variations. This paper gives a treatment of the ABU channel both
theoretically and experimentally, in order to inform the design
of ABU tracking systems. Then, Doppler-tolerant ABU tracking
algorithms are developed. Their performance is reported, using
a direct-sequence (DS) code-division multiple access (CDMA)
signalling approach. Successful motion inference is demonstrated
in the ABU band.

I. INTRODUCTION

H IGH-resolution tracking of people and mobile devices
in buildings is of great significance to a number of

application domains for example: a handheld moving map for
indoor navigation, “throwing” video content from a mobile
phone to a wall-mounted display using gesture-based interac-
tion, and emergency search and rescue and live coordination
of personnel at disaster sites. In this paper, the term tracking
is used to encompass both the initial position estimation of
a person or object, followed by the continual monitoring of
movement thereafter.

Accurate, fine-grained indoor tracking has been classi-
cally achieved by infrastructure-reliant systems, using ultra-
wideband (UWB) radio, optical or magnetic sensing [1].
Ultrasonic sensing has also been used for the provision of
tracking services indoors [2]. Compared to radio, the low
frequency and propagation rate of airborne ultrasound yields
advantages in accuracy, processing requirements, and ease
of installation. However most systems to date have used
piezoceramic transducers which have a usable bandwidth of
less than five kilohertz. Such narrowband ultrasound poses
restrictions on the real-world utility of these tracking systems,
especially in scenarios where multiple users must be tracked
concurrently, or environments with aggressive ultrasonic noise.

The use of broadband ultrasound in-air was first shown
to afford a number of system-level enhancements to track-
ing [3]; this was demonstrated using a curved piezo film
transducer design [4] with a measured bandwidth of 40 kHz
and code division multiple access (CDMA) signalling [3].
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Others have since explored performance using MEMS trans-
ducer technology (bandwidth 15 kHz), and frequency-hopped
signalling [5]. Another related work investigated the outdoor
performance (bandwidth 14 kHz) also using direct-sequence
(DS) signalling [6]. Close in spirit too, a communications work
assessed airborne ultrasound’s short-range ability to carry data
using a practical bandwidth between 120 to 200 kHz with a
bit rate of 200 kb/s [7]. However, the literature lacks a formal
model for the airborne broadband ultrasonic channel, which is
needed to better inform the design of future ABU tracking
systems. Moreover, coded broadband ultrasonic signals are
prone to significant Doppler distortion even in the presence
of relatively slow rates of indoor movement, such as walking
(1 m/s or faster). Consequently, elaborate tracking applications
are best supported if ABU signals can continue to be detected
in the presence of Doppler shifting.

This paper has two primary contributions. First, it provides
(section II) a new description of the ABU channel. An
information theoretic analysis to ABU is given in order to
highlight the peculiarities of the channel, followed by statis-
tical characterization using real ABU signals. Second, phase
coherent direct sequence (DS) CDMA tracking for moving
ABU tags is derived (section III), leading to two algorithmic
configurations that belong to different classes of instantaneous
frequency estimators. Empirical performance (section IV) of
the two tracker configurations is then reported.

II. CHANNEL MODEL

In this section, the development of a channel model for
ABU follows closely that of its underwater acoustics kin [8].

A. Acoustic Propagation

The overall attenuation that characterizes the propagation of
airborne acoustics indoors is given by

A(l, f) = lβ · α(f)l (1)

A(l, f)
∣∣∣
dB

= β · 10 log l + l · 10 logα(f) (2)

where l denotes the distance from the source and f is the signal
frequency. As evident from equation (2), the propagation of
sound in free air is governed by two main phenomena: spread-
ing and absorption. The parameter β models the spreading
loss pattern, and assumes values between 1 and 2. The second
term models the distance and frequency-dependent absorption
of airborne acoustics, with the coefficient α(f).

Formulae for calculating the absorption rate per meter at a
single discrete frequency are previously developed [9], [10].
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(a) Acoustic absorption in air (dB/m). (b) PSD of the receiver noise floor. (c) The A(l, f)N(f) product.

Fig. 1: The dependency of SNR in the ABU channel on frequency and distance.

Using these formulae, figure 1a illustrates the distance and
frequency-dependent absorption coefficient of the airborne
acoustics of interest. Always calculated at one standard at-
mospheric pressure, nine reference temperature and humidity
permutations are shown in order to give a flavour for the
behaviour of the absorption coefficient indoors.

Typically, with a temperature of 25◦ Celsius and a humidity
of 40%, the absorption coefficient can be conveniently approx-
imated at by

10 logα(f) = 0.03592× 10−3f (3)

as indicated by the dashed line in figure 1a.

B. Signal-to-Noise Ratio
1) Noise generated by receiver: The broadband receiver

exhibits variability in terms of the ever present thermal noise
across its frequency range. In order to account for this effect in
the overall channel model, the receiver’s ambient noise is next
characterized using a dataset collected from a typical office
environment.

Six seconds of data are collected at a sampling rate of
500 kHz. The power spectral density (PSD) of the receiver’s
ambient noise is estimated using the Welch averaged modified
periodogram method. The PSD is referenced to the AC power
density of receiver’s bandwidth center (50 kHz), which is
also the average AC power density of the recorded six-second
sequence.

Figure 1b shows that a gradual decay of around 10 dB
across the ultrasonic band characterizes in general the ambient
noise PSD at the receiver. Outstanding ultrasonic noise spikes
can be radiated by everyday indoor machinery, such as air
conditioning fans. This is evident in figure 1b with the group
of narrowband harmonics just below 50 kHz. While such
ambient ultrasonic noise will vary subject to the specifics of a
given indoor environment, the general noise behaviour of the
broadband receiver can be approximately modelled as

N(f)
∣∣∣
dB

= 10 logN(f) = 7.0560− 0.1278× 10−3f (4)

where f is the frequency in Hz and the noise in decibels is
referenced to 50 kHz as pointed to above. The noise model is
illustrated by the dashed line in figure 1b.

2) SNR: The expressions for the attenuation A(l, f) and
noise N(f) can be combined to arrive at a frequency and
distance-dependent signal-to-noise ratio (SNR) for the ABU
channel, similar to underwater acoustics (UWA) [8]. In this
ABU formulation, the SNR does not factor in explicitly ambi-
ent noise—the accurate ambient noise PSD is dependent on a
particular indoor environment. Nonetheless, it still provides a
very informative account on the frequency and range variabil-
ity of the SNR in the ABU channel. This variability translates
into range-dependent bandwidth given a constant transmission
power. Sophisticated power control in ABU should take ad-
vantage of this model in order to optimize bandwidth and
capacity in a mobile medium with non-equidistant co-located
users. Specifically, the most comprehensive power control
could employ pre/de-emphasis techniques using this frequency
and distance-dependent SNR model along with estimates of
the range and speed of mobile users.

Defining a narrow band of frequencies ∆f around a single
frequency f , the SNR is expressed as

SNR(l, f) =
P

A(l, f)N(f)∆f
(5)

where P is the power of the signle frequency f .
From expression (5), we note that the variability in SNR

is characterized by the factor 1/A(l, f)N(f). Thus, this fre-
quency and distance-dependent factor can be used in order to
characterize SNR in the ABU channel. Figure 1c depicts such
a factor evaluated at eight distances across the frequency span
of interest, with a spherical spreading parameter of β = 2.

Near and far distances give rise to the most variability across
the the wide frequency band of interest ([30 kHz, 70 kHz] in
our system). At 1 meter, around 3.67 dB variability is in favour
of higher frequencies, whereas at 8 meters, about 6.39 dB is
in favour of lower frequencies. At 3 and 4 meters, SNR varies
little across the frequency band to around 0.8 and 0.64 dB,
respectively.

The A(l, f)N(f) product is linear in dB with a slope that
is dependent on distance. This fact gives rise to an optimal
frequency fo(l) at which the narrowband SNR is maximized.
Such optimal frequency is plotted versus distance in figure 2.
Next we will elaborate on one optimization criterion by means
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of which the capacity of a mobile ABU channel with non-
equidistant co-located users could be improved.
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Fig. 2: The optimal frequency that maximizes SNR.

C. Bandwidth and Capacity

In a mobile ABU tracking system, the capacity of the chan-
nel influences greatly the system’s quality of service. That is,
both the tracking update rate and number of participating users
are increased with the enhancing of the channel’s capacity.

Assuming a linear time-invariant channel during some ob-
servation interval, the overall capacity can be seen as the
summation of a number of sub-narrowband capacities. That is,
if the bandwidth is divided into I narrow sub-bands each of
width ∆f and a noise PSD N(fi)—noise can be approximated
as Gaussian—then the overall capacity is given as

C(l) =

I∑
i=1

∆f log2

[
1 +

Sl(fi)A
−1(l, fi)

N(fi)

]
(6)

where Sl(fi) is the ith frequency bin PSD of the transmitted
signal designed to propagate over distance l. The optimal
PSD Sl(f) which will maximize the capacity is given by [11,
p. 745]

Sl(f) +A(l, f)N(f) = Kl (7)

where Kl is a constant related to the total power constraint
P (l), and Sl(f) ≥ 0.

In turn, the power P (l) is related to SNR as

P (l) =

∫
B(l)

Sl(f)df (8)

SNR
(
l, B(l)

)
=

∫
B(l)

Sl(f)A−1(l, f)df∫
B(l)

N(f)df
(9)

Varying Kl according to the optimization criterion of equa-
tion (7) provides a means for achieving an SNR objective
SNR0 and a pre-specified transmission power. This can be
seen by substituting equation (7) into equations (8) & (9) so
as to obtain

P (l) = KlB(l)−
∫
B(l)

A(l, f)N(f)df (10)

SNR
(
l, B(l)

)
= Kl

∫
B(l)

A−1(l, f)df∫
B(l)

N(f)df
− 1 (11)

The details of a numerical procedure for arriving at Sl(f)
that maximizes capacity are supplied by Stojanovic [8]. After
such optimization, the distance-dependent transmission PSD
is given by

Sl(f) =

{
Kl −A(l, f)N(f), f ∈ B(l)
0, otherwise (12)

with the overall channel capacity being calculated from

C(l) =

∫
B(l)

log2

[
Kl

A(l, f)N(f)

]
df (13)

D. Numerical Model

The capacity-based model given previously is evaluated
numerically next. As stated before, the bandwidth of interest
is between 30 kHz and 70 kHz—outside this range, analysis is
meaningless due to physical transduction limitations. A typical
indoor temperature of 25◦ Celsius and a humidity of 40% are
chosen. A spherical spreading factor of β = 2 is used. The
SNR objective SNR0 is swept from -13 dB to 20 dB in 3 dB
increments.

The effect of SNR on bandwidth allocation per distance is
examined in figure 3a. The different slopes of the A(l, f)N(f)
product (figure 1c) result in a large bandwidth allocation
variance across distances when operating in a low SNR
regime. This is then gradually enhanced with the increasing
of SNR until bandwidth becomes almost uniform starting at
SNR0 = −2 dB (not shown), which is in line with Shannon’s
limit on reliable communication at -1.6 dB [11, p. 207].

The capacity follows a similar pattern to that of the band-
width as shown in figure 3b. The capacity peaks at the middle
of the distance range in the low SNR regime owing to the
almost constant A(l, f)N(f) product. At SNR0 = 4 dB, the
capacity takes on a consistent shape whereby the channel
changes little at farther distances. It is also observed that
beyond SNR0 = 1 dB, enhancements brought about with the
increasing of SNR tend to diminish in comparison with those
in the low SNR regime.

The power in micro Pascals is depicted in figure 3c.
Affected by the bandwidth and capacity observations, around
40 dB transmission is required to clear the low SNR regime.
Under the optimal capacity definition of bandwidth, this may
or may not be possible to accommodate depending on a
number of contending factors such as sound exposure safety,
transducer excitation limitations, and operational volume. The
3 dB increments in SNR objective steadily offset the power
curve in the high SNR regime.

A utilization measure of the available bandwidth is the
bandwidth over capacity B/C ratio. To investigate the effect
of SNR on the the utilization of the ABU channel, the B/C
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ratio at various distances is plotted in figure 4 against power
and against SNR in 4a and 4b, respectively. Expectedly, the
B/C ratio increases with power and SNR.

E. Time Variability

Away from the mobility-induced Doppler effect, the air-
borne acoustic channel indoors is influenced by factors such
as temperature and humidity. Other contributors also affect
the operation of the acoustic medium such as air conditioning
drafts and noise emanating from everyday human activities.
These factors are hard to model accurately in dynamic living
environments and assessing their aggregate effect statistically
remains the only viable approach at understanding the seem-
ingly random changes in the airborne acoustic channel.

To this end, a transmitter-receiver pair was placed at an
approximate distance of 2.25 m. The receiver was carefully
oriented next to a smooth hard surface as to detect two
path arrivals, direct and reflected. A Gold code sequence
of length 511 was BPSK-modulated onto a 50 kHz carrier
at a 20 kHz chip rate. A continuous transmission of about
18 seconds was recorded. The channel impulse response as
obtained by correlation is shown in figure 5. The channel
consists of a direct path and a reflected path which is always
more attenuated as a result of the loss in acoustic energy. The
variations over time in the magnitude and phase of the two path
arrivals are also illustrated in figure 5, along with the respec-
tive histograms. These histograms suggest a Rician or even
Gaussian distribution for the magnitude of two arrivals; while
the phase seems to follow a uniform distribution. Nonetheless,
further investigation is needed before formalizing the statistical
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nature of multipath in ABU under dynamic environmental
conditions indoors.

III. TRACKING

This section focuses on direct-sequence spread spec-
trum (DSSS) modulation. DSSS allows for explicit self
and multiuser-interference models that are computationally
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tractable, and as such highly amenable to embedded real-time
realizations. Such real-time realizations were investigated by
Alloulah using a high-level synthesis (HLS) methodology [12].

A. DSSS System Model

The complex baseband signal at the receiver is modelled as

v(t) =
∑
m

q(m)h(t−mTc) × ejθ(t) + w(t) (14)

where q is the spreading code, h(t) is the channel impulse
response which accounts for transmitter and receiver filtering,
Tc is the chip duration, θ(t) is a phase function modeling the
aggregate offset and/or distortion resulting from transmitter-
receiver oscillator mismatch and/or mobility respectively, and
w(t) is an additive noise which is assumed to be uncorrelated
with the signal.

At the receiver, the signal is oversampled by Ns samples
per chip and arranged in a column vector spanning the
spreading code length L and whose topmost entry is the most
recent input sample. The received signal vector expressed as
the spreading code convolved with the channel can now be
rewritten in vector format as

v(k) =
∑
m

h[m]q[k −m] · ejθ(k) + w(k) (15)

where

v(k) =

vL−1(k)
...

v0(k)

 , h(k) =

hL−1(k)
...

h0(k)

 = h[0] (16)

are LNs × 1 vectors whose entries vl(k) and hl(k) are
partial vectors containing the lth chip-worth of samples and
the fractional channel coefficient, respectively.

Further, noting the causality of the system, h[m] in the
convolution kernel is defined as h(k) shifted down by m×Ns
samples.

h[m] =


0
...

}
m

hL−1(k)
...

hm(k)

 (17)

θ(k) =

θ(k + L− 1)
...

θ(k)


(18)

Similarly, q[·] denotes modulo-L addressing of the spreading
sequence. Also, θ(k) is a vector containing L-chip phase de-
viations that are multiplied element-wise with their respective
L vl(k) as denoted with the dot operator · in equation (15).
Lastly, w(k) is an LNs × 1 vector of additive noise.

B. Receiver Algorithm

The proposed receiver structure is one that is user-oriented,
decoupled, and extensible. A block abstraction of the receiver
is presented in figure 6.

The derivation will proceed in a step-by-step manner to
build hybrid Doppler-tolerant trackers. This approach is im-
portant owing to the absence of prior experience on phase
tracking in the novel ABU band, hence the need to consider
different methods in order to assess their utility in ABU and
its applications.

1) Core DS CDMA Adaptive Engine: This subsection along
with subsection III-B3 follow closely the derivation of Sta-
janovic et al. [13]. Later subsections will depart—building in
places on the intuition from [14] and [15]—to introduce the
feedforward filter and linear interpolator stages developed for
ABU.

a) Channel-based formulation: The acquisition algo-
rithm is based on the fact that noise is uncorrelated with the
spreading sequence

h(k) = E
{

v(k) · e−jθ(k)q∗(k)
}

(19)

leading to a simple stochastic approximation of the form:

ĥ(k) = λchĥ(k − 1) + (1− λch)v(k) · e−jθ(k)q∗(k) (20)

where λch is an exponential forgetting factor. For the i.i.d.
Gold code sequences, optimal tap selection through truncation
in magnitude is readily achieved [14].

b) Recursive interference-free signal reconstruction:
Under inter-chip-interference (ICI)—be it caused by the time-
varying Doppler distortion w.r.t chips within an entire code,
or due to multipath—equation (15) can be expanded as

v(k) =

h[0]q[k] +
∑
m6=0

h[m]q[k −m]

 · ejθ(k) + w(k)

(21)
The ICI signal is defined as

v
ICI

(k)
∆
=
∑
m6=0

h[m]q[k −m] · ejθ(k)
(22)

and the ICI-free signal as

v0(k)
∆
= h[0]q[k] · ejθ(k) + w(k) (23)

The composite signal, not counting the noise, can thus be
expressed as

v̄(k)
∆
=

L−1∑
m=0

h[m]q[k −m] · ejθ(k)

= v
ICI

(k) + h[0]q[k] · ejθ(k)

(24)

Adding and subtracting a h[0]q[k] · ejθ(k) term from the
RHS of equation (21) gives:

v(k) = v
0
(k) + v

ICI
(k)

= v
0
(k) + v̄(k)− h(k)q[k] · ejθ(k)

(25)

In addition, v̄(k) obeys a shifting law such that

v̄(k) =

[
v̄L−1(k)

↓Ns v̄(k − 1)

]
(26)
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where

v̄L−1(k) =

L−1∑
m=0

q[k +m]hm(k) (27)

and ↓Ns v̄(k − 1) symbolizes down-shifting by Ns samples.
Replacing the channel vector by its estimate, we arrive at

a channel adaptation procedure that can be performed in two
coupled steps. Firstly, equation (25) is rearranged so as to
allow the reconstruction of an estimate of the ICI-free signal:

v̂
0
(k) = v(k)− ˆ̄v(k) + ĥ(k)q[k] · ejθ̂(k) (28)

Secondly, using the ICI-free signal in (20) for better channel
estimation yields

ĥ(k) = λchĥ(k − 1) + (1− λch)v̂
0
(k)q∗[k] (29)

Once the channel estimate and the ICI-free signal have
been computed, the chip estimate is defined by the filtering
operation

q̂(k) =
1

Eĥ(k)
ĥ
′
(k)v̂0(k) (30)

where

Eĥ(k) = ĥ
′
(k)ĥ(k) (31)

This model allows us to monitor the state of self-
interference explicitly. It can be shown [13] that this formu-
lation can be expanded in the multiuser case to account for
multiple access interference (MAI), albeit at the expense of
increased computation complexity and memory requirements.
Specifically, with a total of U users present in the system, the
recursive reconstruction of the average signal vector becomes

v̄L−1(k) =

U∑
u=1

v̄uL−1(k) (32)

where

v̄uL−1(k) =

L−1∑
m=0

qu[k +m]hum(k) (33)

with the superscript u denoting the uth user’s reconstructed
signal, spreading code, and channel vector.

c) Acquisition test: Monitoring the MSE of a run-
ning despreader provides a measure of signal-to-noise-plus-
interference ratio (SNIR) at the output:

d̂(k) = E{q̂(k)q∗(k)} =
1

L

k∑
m=k−L+1

q̂(m)q∗(m)

(34)

ed̂(k) = 1− d̂(k),SNIRout ∼ E
{
|ed̂(k)|2

}
(35)

SNIRout(k) = −10 log10

(
1

Nd

k∑
m=k−Nd+1

|ed̂(m)|2
)

(36)

where Nd is the length of despreader observation.
Once the MSE drops below a pre-specified threshold, it can

be used as an indication for successful acquisition.
2) Implicit DFE Extension: Applying a decision feedback

equalizer (DFE) to v(k) at the chip-rate, as if no spreading is
taking place, a chip estimate can be expressed as

q̂(k) = a′v(k)− b′q(k − 1) (37)

where a and b are the feedforward and feedback coefficient
vectors respectively, and q(k − 1) is the vector of the previ-
ously searched chips (during acquisition) whose length is in
accordance with distortion span in chips M .

q(k − 1) =
[
q[k − 1] · · · q[k −M ]

]T
(38)

If we substitute our signal model (15) into (37) and neglect
the noise for the moment, we obtain

q̂(k) =

[
a′ĥ[0]q[k] + a′

∑
m>0

ĥ[m]q[k −m]

]
· ejθ̂(k)

− b′q(k − 1) (39)

Inspecting equation (39) implies that

b′ = a′
∑
m>0

ĥ[m] · ejθ̂(k) (40)

is required so that the ICI contribution to the chip estimate
be eliminated. In other words, the task of backward filtering
is readily taking place through shifts of the channel estimate,
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where we assumed that the channel is zero outside the multi-
path span, i.e.

ĥn(k) = 0, n > M (41)

Equally, we can substitute (25) into (37) to obtain

q̂(k) = a′v̂0(k) + a′v̂ICI (k)− b′q(k − 1) (42)

= a′v̂0(k) + a′ˆ̄v(k)− a′ĥ(k)q[k] · ejθ(k) − b′q(k − 1)
(43)

Comparing equations (43), (39), and (28), one notices that
it is possible to further filter the incoming signal v(k) with a
linear adaptive equalizer a′(k) independent of ĥ(k) in order to
obtain an improved chip estimate at time kTc. The clean chip
estimate is defined by the term containing the reconstructed
ICI-free feedforward signal—which is dependent upon the
goodness of the channel estimate

q̂(k) = a′(k)v̂
0
(k) (44)

The combined operation effectively realizes an implicit DFE
wherein the separation of the incoming signal into forward
and backward components is denoted by the subscripts f and
b respectively.

Equating (44) and (30) is interesting:

a′(k) =
1

Eĥ(k)
ĥ
′
(k) (45)

In the absence of multipath, the sole role of a′(k) would be
to combat phase distortion in the fractional chip fed into the
spread spectrum algorithm. Equation (45) tells us that if the
channel alone fails at equalizing the chip estimate perfectly,
the feedforward filter of the implicit DFE would help in
accomplishing the task by eliminating residual distortion. This
is especially the case for a highly-Doppler-susceptible, non-
stationary indoor acoustic environment.

To this end and with the intuition of equation (45) in mind,
the modified fractional feedforward filter (FF) is made to
operate on incoming chips at the oversampling rate with Ns
samples per chip, although its adaptation remains at the chip
rate such that

v(t) =

Lff∑
m

a(mTc/Ns)s(t−mTc/Ns) (46)

where s(t) is instead the raw complex baseband signal at the
receiver now. In vector format, we define

c(k)
∆
=
[
c

Ns
(k) · · · c

1
(k)
]T

(47)

to be an oversampled chip of Ns entries at time kTc , and

v(k)
∆
=

[
a′(k)


c

Ns
(k) · · · c

1
(k)

... . . . ↓1 s(k − 1)

c1(k) . . .

↓Ns s(k − 1)


]T

(48)

to be the modified fractional feedforward filtering at time kTc.
The length of the filter is designed to span a certain number
of oversampled chips Lff , and is devoted to combating phase
distortion by means of matching the filter response to the
incoming signal. Inevitably, it also introduces ICI which will
be leaked away by the sparse channel-based backward filtering
and futher combated within the interference cancellation in
equation (43).

The LMS-adapted FF filter is given by

â(k + 1) = â(k) + µLMS e
∗
q̂(k) e−jθ̂(k) s(k) (49)

3) Integrated Second-order PLL: The signal baseband
model (15) includes an explicit term to account for transmitter-
receiver phase variations at the chip rate. While these vari-
ations are due to mismatch and/or node mobility, they also
affect the order-comparable carrier and code frequencies. This
phase term is estimated using a second-order, stochastic gradi-
ent phase-locked loop (PLL) according to the MMSE criterion
of the chip estimate as follows.

The chip estimate error is first generated

e(k) = q[k]− q̂(k) (50)

The gradient is then shown to be [16]

∂|e2(k)|
∂θ̂

= 2 Re

{
∂e(k)

∂θ̂
e∗(k)

}
= −2 Im

{
1

Eĥ(k)
ĥ
′
(k)
[
v̇(k) · e−jθ̂(k)

]
e∗(k)

}
(51)

where v̇(k) is the chip-by-chip, adaptively forwarded vector.
The PLL is then implemented as

ψ(k) = Im

{
1

Eĥ(k)
ĥ
′
(k)
[
v̇(k) · e−jθ̂(k)

]
e∗(k)

}
θ̂(k + 1) = θ̂(k) +K1ψ(k) +K2

∑
m≤k

ψ(k) (52)

where K1 and K2 are the loop constants and often chosen
such that K2 = K1/10.

4) Linear Interpolation Stage: Under the narrowband as-
sumption, the Doppler effect can be sufficiently modelled as
a frequency shift. On the contrary, in wideband signals the
ideal model is better represented by an accurate rate change
operation [15]

r(nTs) = s
(
(1 + δ)nTs

)
(53)

The removal of the non-uniform Doppler shift across the
spectral content of the wideband signal is then performed as
a sampling frequency rescaling operator

fs = (1 + δ)fDs (54)

where fDs is the original sampling frequency of the receiver
at which the Doppler effect is manifest.

The framework afforded by the DS CDMA adaptive engine
derived earlier facilitates a front-end linear interplator (LI)
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stage, also operating at the chip rate, that can seamlessly plug
into the global cooperative MSE minimization criterion.

To this end, we define a time-varying stage that linearly
interpolates the incoming complex baseband signal in accor-
dance with a cost function driven by the core DS CDMA
demodulator. In order to minimize the distortion introduced
by linear interpolation, the complex baseband signal is well
oversampled and decimation occurs tacitly, i.e. all oversamples
participate in interpolation.

In a decision-directed mode, the maximum likelihood (ML)
carrier phase estimator for the signal s(t;φ) with a known
information sequence {In} is given by [11, p. 304]

φ̂ML = − tan−1

[
Im

(
K−1∑
n=0

I∗nyn

)/
Re

(
K−1∑
n=0

I∗nyn

)]
(55)

where yn is the output of the matched filter in the nth signal
interval T , and K is a positive integer defining the observation
interval T0 = KT . Therefore, in a similar fashion [17], the
interpolation factor is adapted per step as

I(k + 1) = I(k) +Kp φ(k) (56)

where Kp is a phase tracking constant, and φ(k) is the
ML phase estimate. Within our code acquisition DS CDMA
formulation, φ(k) is updated at the chip rate using the chip
phase as opposed to the symbol phase

φ(k) = ∠q̂(k) (57)

C. Motion inference

1) First-order moment—Velocity: Velocity inference is ac-
complished through the estimation of the the instantaneous
frequency. The procedure for estimating IF varies depending
on the tracking configuration.

a) DFE-PLL: In the joint DFE-PLL mode, there is an
apparent phase tracking redundancy. In underwater acoustic
(UWA) systems, PLL’s tracking constants are made substan-
tially higher than the FF’s learning rate—which is character-
ized by its length and percentage of error feedback—such that
the PLL dominates the FF equalizer [18]. In the ABU band,
a special case arises when a competition between the feed-
forward complex filter and the second-order PLL is allowed.
When both attempt to compensate for Doppler-induced phase
distortion in near-equal strengths, it was observed empirically
that the unwrapped phase of the chip estimates is no longer
a monotonically increasing function. Rather, the unwrapped
phase possesses some notable attributes that are correlated
with motion:

1) It tends to inflect upon reversal of acceleration.
2) It drifts during motion pauses with a certain slope.
3) Provided that the responsiveness of the DFE-PLL con-

figuration is tuned accordingly, the range covered by
the unwrapped phase, in a time interval of continuous
motion, is very close to the limit of the speed in that

motion segment. This can be ascertained by converting
the unwrapped phase into a unitless turns-per-second
entity according to the direct weighing

Ωi(k) =
c

fcarr

1

2π
φchip(k) (58)

where Ωi is the weighted instantaneous phase, measur-
ing the turns per second that the phase makes throughout
the course of the periodic motion stimulus.

4) The shape of the unwrapped phase is also a function of
the responsiveness of this competition.

These observations seem to suggest that the unusual competi-
tion between the PLL and DFE in tracking the phase results
readily in a measure of the instantaneous frequency.

However, the low ABU speed of propagation is even less
than one fourth that of the underwater environment. The time-
dilation or compression that airborne acoustics undergo is
of the same order (up to a tenth of the center frequency)
often encountered in RF inter-satellite communications. This
is best visualized by examining the Doppler shift formula
fdv ↑= f v↑

c↓ that translates increased velocity into accentu-
ated Doppler shift. Moreover, the order-comparable chip rate
further exasperate the Doppler distortion.

Thus the ultra high velocities in the ABU band would strain
even a combined DFE-PLL equalizer being updated at the
chip rate. Among the symptoms of such strain are excessive
equalizer tap rotation and possible phase tracking loop insta-
bility [19]. This strain calls for leaky adaptive techniques [20]
for FF as to aid stability, tracking, and combat drift.

Building on adaptive filtering concepts [21, p. 384-387]
and techniques [22], we introduce the following ad hoc
perturbation to the standard LMS adaptation criterion. We dub
this arrangement Doubly Reinforced Code Epoch (DRCE) and
define it as follows: Once every code period, the last chip
is skipped and replaced by the first incoming chip which
is consequently used to generate the adaptation error. The
next iteration proceeds normally at the first chip again. This
effectively injects data-dependent perturbation to weights. The
modification introduced to the circular Gold sequence at time
kTc is simply

q(k) =
[
q[k] · · · q[k − L+ 2] q[k − L]

]T
(59)

where q[k] = q[k − L].
From empirical grounding, it was found that this ad hoc

technique has a critical effect on Doppler tracking for the DFE-
PLL configurations.

A less formal inspiration for DRCE leaky adaptation can be
found in the domain of pedestrian tracking using inertial sen-
sors. According to the so-called zero-velocity updates (ZUPT)
criterion, at the end of each estimation cycle, the velocity is
set to zero upon detection of a stance phase in order to prevent
excessive error growth in the navigation model [23]. This is
vaguely related to DRCE—observing the periodicity of back-
to-back code transmissions, DRCE injects a cyclic perturbation
to weights on a code-by-code basis. However, in DRCE, the
perturbation is derived from the incoming data too.
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b) DFE-LI: Despite LI’s agility in tracking Doppler,
distortion introduced by linear interpolation needs to be dealt
with. The matched filtering properties of the FF readily pro-
vides an equalizing effect for a variety of distortion sources.
Therefore, the LI-DFE combination represents a very viable
phase tracking mechanism whereby:

1) The interpolation factor’s polarity determines the direc-
tion of movement: backward or and forward.

Isgn(k) = sgn
(
I(k)

)
(60)

Isgn is then used to delimit the motion segment and
velocity estimation is performed as

vi(k) =
c

fcarr

1

2π

φuchip − φlchip
tu − tl

(61)

where the superscripts u and l denote respectively the
upper and lower bounds of the motion segment as
determined by Isgn.

2) Minimal tap translation and rotation per motion segment
takes place in FF since LI will dominate phase tracking.

3) Acceleration and/or jerk can tip the balance of LI such
that the interpolation factor will not return to rest. In
this case, the FF will intervene briefly to adjust the
phase resulting in ambiguity in the measured rate of
change from the slope of the unwrapped phase of the
chip estimate.

2) Second-order moment—Acceleration stress: The adap-
tive estimation of instantaneous acceleration (IA) is desir-
able. This desirability is because online mechanisms for the
inference of additional physical properties of motion (e.g.
acceleration) could add to the richness of the sensory model
and allow for sophisticated workarounds in the presence of
higher motion moments in the ABU band.

The IA estimator for coherent ABU is developed here in
analogy with a single-tone, frequency-modulated (FM) signal.
Specifically, we note that the running despreader d̂(k) in
equation (34) can be thought of as a phasor at any given
time kTc. This phasor represents a measure of how much, after
demodulation, the receiver code is in-lock with the undistorted
transmitted code. The rate of change in the demodulated
despreader phase is now associated with the second motion
moment, acceleration. That is, the complex depreader is al-
ready a first-order statistical moment of the chip estimates,
which in turn can be seen as a complex-valued random variable
(note the expectation operator in equation (34)). The de-
spreader phasor can therefore be modelled in the continuous-
time domain as

zd̂(t) = ad̂(t) e
jφd̂(t) = xd̂(t) + j yd̂(t) (62)

with

φd̂(t) = 2π

∫ t

−∞
f ′i(τ) dτ (63)

and f ′i(t) denoting the time-varying, second-order instanta-
neous frequency.

Differentiating the despreader phase, using the classic
continuous-time formula for FM discriminators [24], yields
the discrete-time estimator

f̂ ′i(k) =
1

2π

xd̂(k)y′
d̂
(k)− x′

d̂
(k)yd̂(k)

x2
d̂
(k) + y2

d̂
(k)

(64)

For a convergent d̂(k) i.e. after acquisition has been declared
and tracking has begun, a number of approximations hold.
First, if Re{d̂(k)} is stable, then xd̂(k) ≈ 1, x′

d̂
(k) ≈ 0, and

x2
d̂
(k) ≈ 1. Second, if phase lock is maintained, y2

d̂
≈ 0.

These approximations lead to the following second-order IF
estimator in our ABU system

f̂ ′i(k) ∝ 1

2π
y′
d̂
(k) (65)

The second-order IF component is proportional to the rate
of change (first derivative) of the imaginary part of the
running despreader. In expression (65), equality is substituted
for proportionality bearing in mind the limited code-length
average which is provided by the running despreader. That is,
additional processing (such as exponential statistical weight-
ing) will be required if we were to convert this unitless entity
into a meter-per-second-squared instantaneous acceleration
estimator.

The final IA estimator is then obtained by scaling the
second-order IF component according to

ai(k) =
c

fcarr
f̂ ′i(k) (66)

IV. EXPERIMENTAL RESULTS

A. Signal Design and Experimental Setup

A Gold code of length 511 was BPSK-modulated onto a
50 kHz carrier at a 20 kHz chip rate. Chips were pulse-
shaped using a raised-cosine filter with roll-off factor of 1.
The sampling rate utilized was 160 kHz.

One data set will be used for the characterization of the
two algorithmic configurations. This data set has typical max-
imum speed (about 0.8 m/sec) and contains high-order motion
moments. In order to facilitate characterization, we utilize a
vision-based tracking system for the generation of real-time
position and speed ground truth. A transmitter is mounted on
a Lego Mindstorms robot moving forward and backward on
a track while facing a stationary ABU receiver, at a distance
of 2.9 m. The robot is tagged with a fiducial marker [25].
A PC-based application monitors the movement of the robot
using the computer vision-based tracking. Upon motion, the
application triggers an FPGA-based ABU transmitter and
simultaneously commences data acquisition. The all-digital
transmitter has an independent oscillator to the PC clock.
The experimental setup used for data collection is shown in
figure 8.
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Fig. 8: Experimental setup. (a) Transmitter path moving forward and
backward while facing a stationary receiver. (b) Lego Mindstroms
robot with mounted transmitter.

B. Performance

The acquired signal was down-converted to baseband where
all processing takes place. Figure 7 illustrates the performance
of the DFE-LI and DFE-PLL tracking configurations. The
upper set of plots belong to DFE-LI. The first plot shows
the channel which is maintained throughout tracking. The
adaptation mean-square error (MSE) begins its decent initially
until tacking reaches a steady-state around 1 sec. The second
plot depicts of the evolution of the linear interpolation factor
in time and the chip estimate scatter. The sensitivity of the
DFE-LI tracker to acceleration and jerk was avoided initially
by a priori knowledge of the Doppler stimulus. As such, the
instance at which LI is activated was delayed. As shown, DFE-
LI tracks Doppler very accurately during the first and most
of the second motion legs. The velocity for the first motion
segment was estimated to be 0.8047 m/s, which is virtually
identical to ground truth. However, following the decelerating
motion moments in the second leg, LI diverges away from
rest condition owing to high second-order motion stresses.
The third plot examines this stress resulting from second-order
motion moments. The IA estimator shows distinct sustained
acceleration spikes in three places: at the beginning of the
Doppler stimulus around 0.5 sec; around the momentary pause
of the robot at roughly 3.5 sec between leg 2 & leg 3; and at
the end of the test case slightly before 7 sec. These instances
are in line with the acceleration groundtruth of the Doppler
stimulus.

Similarly, the performance of the DFE-PLL tracking con-
figuration is illustrated in the second row of plots of figure 7.
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Justifiably, the crude DFE-PLL tracker is noisier even though
code timing stays in-lock. In the second plot the PLL phase
evolution is shown alongside the chip estimate scatter, which
is considerably more spread in comparison to that of the DFE-
LI configuration. The third plot shows the scaled unwrapped
phase of the chip estimate overlaid on the vision tracking
ground truth. The scaled instantaneous phase is evidently cor-
related with motion in this competitive mode, which provides a
crude means for estimating velocity. This method for inferring
the motion pattern could be useful in certain applications not
requiring precise velocity measurements.

V. CONCLUSION

This paper has given a novel characterisation of the ABU
channel, providing a summary of expectations for signal-
to-noise ratio, channel bandwidth and capacity, for typical
indoor office conditions. Real-world ABU location systems
require Doppler tracking in order to cope with typical in-
door movements. This paper has developed the first Doppler-
tolerant ABU tracker (figure 6). It is based around an implicit
decision feedback equaliser, incorporating a feedforward filter
which has been modified to operate on incoming chips at the
oversampling rate. The DFE works in conjunction with two
other blocks: (1) an integrated second-order PLL to estimate
phase variations (due to mismatch or node mobility); and (2) a
linear interpolator which models Doppler shift as a rate change
operation. Methods for computing the first– and second-order
moments (velocity and acceleration) were also presented.

The ABU Doppler tracker is thus an hybrid one, operating
as DFE-PLL or DFE-LI. Experimental analysis shows that the
DFE-PLL tracker stays locked on, but produces noisier chip
estimates and can only give a crude indication of velocity
based on its unwrapped, scaled instantaneous phase. By con-
trast, the DFE-LI variant can produce highly accurate velocity
estimates, but tends to lose track in the presence of significant
acceleration and jerk.
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