
HAL Id: hal-01347455
https://hal.science/hal-01347455v1

Preprint submitted on 21 Jul 2016 (v1), last revised 30 Nov 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inverse regression approach to robust non-linear
high-to-low dimensional mapping

Emeline Perthame, Florence Forbes, Antoine Deleforge

To cite this version:
Emeline Perthame, Florence Forbes, Antoine Deleforge. Inverse regression approach to robust non-
linear high-to-low dimensional mapping. 2016. �hal-01347455v1�

https://hal.science/hal-01347455v1
https://hal.archives-ouvertes.fr


Inverse regression approach to robust non-linear high-to-low

dimensional mapping

Emeline Perthame, Florence Forbes and Antoine Deleforge

July 20, 2016

Abstract The goal of this paper is to address the issue of non linear regression with
outliers possibly in high dimension, without specifying the form of the link function and
under a parametric approach. Non linearity is handled via an underlying mixture of affine
regressions. Each regression is encoded in a joint multivariate Student distribution on
the responses and covariates. This joint modelling allows the use of an inverse regression
strategy to handle the high dimensionality of the data, while the heavy tail of the Student
distribution limits the contamination by outlying data. The possibility to add a number
of latent variables similar to factors to the model further reduces its sensitivity to noise
or model mispecification. The mixture model setting has the advantage to provide a
natural inference procedure using an EM algorithm. The tractability and flexibility of
the algorithm are illustrated on real high dimensional data with good performance that
compares favorably with other existing methods.

Keywords Robust regression, non linear regression, mixture of regressions, inverse re-
gression, high dimension, Generalized Student distribution, EM algorithm.

1 Introduction

A large amount of applications deal with relating explanatory variables (or covariates)
to response variables through a regression-type model. In many circumstances, assuming
a linear regression model is inadequate and more sensible models are likely to be non-
linear. Other complexity sources include the necessity to take into account a large number
of covariates and the possible presence of outliers or influential observations in the data.
Estimating a function defined over a large number of covariates is generally difficult because
standard regression methods have to estimate a large number of parameters. Then, even
in moderate dimension, outliers can result in misleading values for these parameters and
predictions may no longer be reliable. In this work, we address the three complication
sources by proposing a tractable model that is able to perform non-linear regression from
a high-dimensional space while being robust to outlying data.
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A natural approach for modeling non-linear mappings is to approximate the target rela-
tionship by a piecewise linear function. In the method we propose, non linearity is handled
via a mixture of locally linear regression models. Mixture models and paradoxically also
the so-called mixture of regression models [de Veaux, 1989, Goldfeld and Quandt, 1973,
Frühwirth-Schnatter, 2006] are mostly used to handle clustering issues and few papers
refer to mixture models for actual regression and prediction purposes. Conventional mix-
tures of regressions are used to add covariates information to clustering models. For
high dimensional data, some penalized approaches of mixtures of regressions have been
proposed such as the Lasso regularization [Städler et al., 2010, Devijver, 2015] but these
methods are not designed for prediction and do not deal with outliers. For moderate di-
mensions, more robust mixtures of regressions have been proposed using t-distributions
[Peel and McLachlan, 2000] possibly combined with trimming [Yao et al., 2014]. However,
in general, conventional mixture of regressions are inadequate for regression because they
assume assignment independence [Hennig, 2000]. This means that the assignments to each
of the regression components are independent of the covariate values. In contrast, in piece-
wise linear regression the covariate value is expected to be related to the membership to
one of the local linear regressions.

When extended with assignment dependence, models in the family of mixtures of re-
gressions are more likely to be suitable for regression application. This is the case of
the so-called Gaussian Locally Linear Mapping (GLLiM) model [Deleforge et al., 2015]
that assumes Gaussian noise models and is in its unconstrained version equivalent to a
joint Gaussian mixture model (GMM) on both responses and covariates. GLLiM includes
a number of other models in the literature. It may be viewed as an affine instance of
mixture of experts as formulated in [Xu et al., 1995] or as a Gaussian cluster-weighted
model (CWM) [Gershenfeld, 1997] except that the response variable can be multivariate
in GLLiM while only scalar in CW models. There have been a number of useful exten-
sions of CW models. The CWt model of [Ingrassia et al., 2012] deals with non Gaussian
distributions and uses Student-t distributions for an increased robustness to outliers. The
work of [Subedi et al., 2013] uses a factor analyzers approach (CWFA) to deal with CW
models when the number of covariates is large. The idea is to overcome the high dimen-
sionality issue by imposing constraints on the covariance matrix of the high dimensional
variable. Incrementally, [Subedi et al., 2015] combine then the Student and Factor an-
alyzers extensions in a so-called CWtFA model. As an alternative to heavy-tailed dis-
tributions, some approaches propose to deal with outliers by removing them from the
estimation using trimming. Introducing trimming into CWM has then been investigated
in [Garcia-Escudero et al., 2015] but for a small number of covariates and small number of
mixture components. All these CW variants have been designed for clustering and have
not been assessed in terms of regression performance.

In contrast, we consider an approach dedicated to regression. To handle the high
dimensionality, we adopt an inverse regression strategy in the spirit of GLLiM which
consists of exchanging the roles of responses and covariates. Doing so, we bypass the
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difficulty of high-to-low regression by considering the problem the other way around, i.e.,
low-to-high. We build on the work in [Deleforge et al., 2015] by considering mixtures of
Student distributions that are able to better handle outliers. As an advantage over the
CWtFA approach, our model can deal with response variables of dimension greater than
one and can be estimated with a standard EM algorithm while CWtFA is implemented
via an AECM algorithm which involves the computation of a large empirical covariance
matrix of the size of the higher dimension. Furthermore, under our approach, the observed
response variables can be augmented with unobserved latent responses. This is interesting
for solving regression problems in the presence of data corrupted by irrelevant information
for the problem at hand. It has the potential of being well suited in many application
scenarios, namely whenever the response variable is only partially observed, because it is
neither available, nor observed with appropriate sensors. Moreover, used in combination
with the inverse regression trick, the augmentation of the response variables with latent
variables acts as a factor analyzer modelling for the noise covariance matrix in the forward
regression model.

The present paper is organized as follows. The proposed model is presented in Section
2 under the acronym SLLiM for Student Locally Linear Mapping. Its use for prediction is
also specified in the same section. Section 3 presents an EM algorithm for the estimation
of the model parameters. Two important issues are discussed, namely initialization and
model selection. Proposals for selecting the number of components and the number of
latent responses are described in Section 4. The SLLiM model properties and performance
are then illustrated on real high dimensional data in Section 5. Section 6 ends the paper
with a discussion and some perspectives.

2 Robust piecewise linear regression in high dimension

We consider the following regression problem where the usual notation is reversed for
reasons that will become clearer below. For n ∈ {1, . . . , N}, xn ∈ RL stands for a vector
of response variables with dimension L and yn ∈ RD stands for a vector of explanatory
variables or covariates with dimension D. These vectors are assumed to be independent
realizations of two random variables X and Y. It is supposed that L� D and the number
of observations N can be smaller than D. The objective is to estimate the regression
function g that we will also call forward regression that maps a set of covariates y to the
response variable space, g(y) = E[Xn|Y = y].

Inverse regression strategy. When the number D of covariates is large, estimat-
ing g is difficult because it relies on the exploration of a large dimensional space. A
natural approach is therefore to, prior to regression, first reduce the dimension of the
covariates {yn}Nn=1 and this preferably by taking into account the responses {xn}Nn=1.
Methods like partial least squares (PLS), sliced inverse regression (SIR) and Principal
component based methods [Rosipal and Krämer, 2006, Li, 1991, Wu, 2008, Cook, 2007,
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Adragni and Cook, 2009] follow this approach, in the category of non or semi-parametric
approaches. When considering parametric models, the issue is usually coming from the
necessity to deal with large covariance matrices. A common solution is then to con-
sider parsimonious modelling of these matrices either by making oversimplistic indepen-
dence assumption or using structured parameterization based on eigenvalues decomposition
[Bouveyron et al., 2007] or factor modelling [Subedi et al., 2013]. In this work, we follow
a third approach based on the concept of inverse regression while remaining parametric
as described in [Deleforge et al., 2015]. The idea is to bypass the difficulty of estimating a
high-to-low dimensional mapping g by estimating instead the other-way-around relation-
ship, namely the low-to-high or inverse mapping from X to Y. This requires then to
focus first on a model of the distribution of Y given X (therefore the proposed reversed
notation where the low-dimensional variable X is the regressor) and implies the definition
of a joint model on (X,Y) to go from one conditional distribution to the other. The ref-
erence to a joint distribution is already present in the mixture of experts (MoE) model of
[Xu et al., 1995] in the Gaussian case. However, inversion is not addressed and generally
not tractable in non Gaussian MoE such as those proposed in [Chamroukhi, 2015].

Piecewise linear regression. Because X is of moderate dimension, the inverse re-
gression is likely to be much easier to estimate. However, it is still likely to be non linear.
An attractive approach for modeling non-linear data is to use a mixture of locally linear
models (e.g. [Xu et al., 1995, Gershenfeld, 1997, Deleforge et al., 2015]). Focusing on the
modelling of the inverse regression, we consider that each y is the noisy image of x ob-
tained from a K-component locally-affine transformation. This is modeled by introducing
the latent variable Z ∈ {1, ...,K} such that:

Y =
K∑
k=1

I(Z = k)(AkX + bk +Ek) (1)

where I is the indicator function, matrix Ak ∈ RD×L and vector bk ∈ RD define an affine
transformation and Ek ∈ RD is an error term not correlated with X capturing both the
observation noise in RD and the reconstruction error due to the local affine approximation.
Ek ∈ RD is assumed to be zero-mean. For the forward regression p(X|Y) to be easy to
derive from p(Y|X), it is important to control the nature of the joint p(X,Y). Once a
family of tractable joint distributions is chosen, we can look for one that is compatible
with (1). When Ek is assumed to be Gaussian, such a piecewise linear inverse regres-
sion strategy has been proposed and successfully applied to high dimensional problems in
[Deleforge et al., 2015] using Gaussian distributions.

Outliers accommodation. The tractability and stability properties of the Gaussian
distributions are very convenient and appropriate to the manipulation of conditional and
marginal distributions. However, Gaussian models are limited in their ability to handle
atypical data due to their short tails. Student t-distributions are heavy-tailed alternatives
that have the advantage to remain tractable. For a joint model of X and Y, we therefore
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consider a mixture of K generalized Student distributions with the following local L+D
dimensional generalized Student distributions:

p(X = x,Y = y|Z = k) = SL+D([x,y]T ;mk,Vk, αk, 1) (2)

where [x,y]T denotes the transpose of the vector [x,y], mk is a L+D dimensional mean
vector, Vk is a (D+L)×(D+L) scale matrix and αk a positive scalar. A generalized version
of the standard t-distribution is considered. It is also referred to as the Arellano-Valle
and Bolfarine’s Generalized t distribution in [Kotz and Nadarajah, 2004] p. 94, Section
5.5. In contrast to the standard t-distribution, the generalized t-distribution is stable
by conditioning and marginalizing. The probability density function of a M -dimensional
generalized t is given by:

SM (y;µ,Σ, α, γ) =

∫ ∞
0
NM (y;µ,Σ/u) G(u;α, γ) du (3)

=
Γ(α+M/2)

|Σ|1/2 Γ(α) (2πγ)M/2
[1 + δ(y,µ,Σ)/(2γ)]−(α+M/2),

where NM ( . ;µ,Σ/u) denotes the M -dimensional Gaussian distribution with mean µ and
covariance Σ/u and δ(y,µ,Σ) = (y − µ)TΣ−1(y − µ) is the square of the Mahalanobis
distance between y and µ. The first order moment exists for α > 1/2 and the mean is µ
in this case but Σ is not strictly speaking the covariance matrix of the t-distribution which
is γΣ/(α− 1) when α > 1. For identifiability reason, we assume in addition that γ = 1 as
the expression above depends on γ and Σ only through the product γΣ. The first equality
in (3) shows a useful representation of the distribution as a Gaussian scale mixture which
involves an additional Gamma distributed1 positive scalar latent variable U .

In applying the inverse regression strategy, the key point is to account for (1) into
the parameterization of mk and Vk. Given Z = k, it follows from (2) that X is Student
distributed and X can be assumed to have a mean ck ∈ RL and a scale matrix Γk ∈ RL×L.
Then using (1), it comes straightforwardly that

mk =

[
ck

Akck + bk

]
,

Vk =

[
Γk ΓkA

T
k

AkΓk Σk +AkΓkA
T
k

]
.

(4)

With no constraints on the parameters, parametrization (4) is general in the sense that
all admissible values of mk and Vk can be written this way (see a proof in Appendix A
of [Deleforge et al., 2015] or for D = 1 in [Ingrassia et al., 2012]). Counting the number
of parameters, we get for the joint model (2) 1/2(D(D − 1) + L(L − 1)) + DL + D + L,

1the Gamma distribution when the variable is X is denoted by G(x;α, γ) = xα−1Γ(α)−1 exp(−γx)γα

where Γ denotes the Gamma function
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which is not suprisingly symmetric in D and L. The inverse regression parameterization
becomes interesting when adding constraints. Typically one may add constraints on the
largest covariance matrix, namely Σk. If Σk is assumed diagonal, the number of parame-
ters reduces to 1/2(L(L−1))+DL+2D+L. It is then clear that proceeding the other way
around, that is assuming Γk diagonal instead, would not reduce the number of parameters
as drastically. As an example, for D = 500 and L = 2, the model has 2003 parameters
using the inverse strategy and 126,254 using a forward parameterization. But this gain in
complexity would not be useful if the forward regression p(X|Y, Z = k) was not easy to
derive. The advantage of the joint distribution defined by (2) and (4) is that all condi-
tionals and marginals can be derived and remain Student. More specifically, we obtain the
following Student distributions (see [Kotz and Nadarajah, 2004] Section 5.5 p. 94)

p(X = x|Z = k) = SL(x; ck,Γk, αk, 1) (5)

p(Y = y|X = x, Z = k) = SD(y;Akx + bk,Σk, α
y
k, γ

y
k), (6)

with αyk = αk + L/2

γyk = 1 +
1

2
δ(x, ck,Γk) .

and

p(Y = y|Z = k) = SD(y; c∗k,Γ
∗
k, αk, 1) (7)

p(X = x|Y = y, Z = k) = SL(x;A∗ky + b∗k,Σ
∗
k, α

x
k, γ

x
k ), (8)

with αxk = αk +D/2

γxk = 1 +
1

2
δ(y, c∗k,Γ

∗
k) .

and

c∗k = Akck + bk, (9)

Γ∗k = Σk +AkΓkA
T
k , (10)

A∗k = Σ∗kA
T
kΣ−1

k , (11)

b∗k = Σ∗k(Γ
−1
k ck −A

T
kΣ−1

k bk), (12)

Σ∗k = (Γ−1
k +AT

kΣ−1
k Ak)

−1. (13)

It is interesting to consider the structure of the D × D scale matrix Γ∗k in (10). If a
direct parameterization of the forward regression was considered, Γ∗k would be the high
dimensional covariance parameter. When Σk is assumed diagonal, we recover a factor
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analyzer structure. The factor decomposition of Γ∗k shows some similarity with the cluster-
weighted modelling approach of [Subedi et al., 2015] which assumes a factor decomposition
of the high-dimensional covariates covariance matrix in a forward modelling. However some
differences can be pointed out. Our parameterization is more parsimonious with qD less
parameters if q is the number of factors used in [Subedi et al., 2015]. Then, the joint model
used in [Subedi et al., 2015] (e.g. their eq. (4)) is not a joint Student model because the
degrees of freedom parameters in their joint probability density function decomposition are
the same for the conditional and marginal pdf. Typically a joint Student model would imply
instead a degree of freedom parameter that depends on y in the expression of p(x|y). Note
that the notation for x,y is reversed compare to [Subedi et al., 2015]. One consequence
of that is that [Subedi et al., 2015] cannot use a regular EM for parameter estimation but
have to use an AECM algorithm. In terms of performance, we could not really assess the
performance of their approach on very high dimensional data as the code of this recent
work is not available. However for comparison, we applied our method on the two real
data sets used in [Subedi et al., 2015] for which L = 1 and D = 6 and 13 respectively. The
results are reported in Appendix A and confirm that the two models yield to similar results
on simple well separated cluster examples and different results on more complex data.

Low-to-high mapping and prediction. Defining πk as the probability p(Z = k),
equations from (5) to (13), show that the whole model is entirely defined by a set of
parameters denoted by θ = {ck,Γk,Ak, bk,Σk, αk, πk}Kk=1 and an inverse regression from
RL (low-dimensional space) to RD (high-dimensional space) can be obtained using the
following inverse conditional density :

p(Y = y|X = x;θ) =

K∑
k=1

πkSL(x; ck,Γk, αk, 1)∑K
j=1 πjSM (x; cj ,Γj , αj , 1)

SD(y;Akx + bk,Σk, α
y
k, γ

y
k). (14)

Also, more importantly, the forward regression of interest, i.e., from RD (the high dimen-
sion) to RL (the low dimension), is obtained from the forward conditional density :

p(X = x|Y = y;θ∗) =

K∑
k=1

πkSD(y; c∗k,Γ
∗
k, αk, 1)∑K

j=1 πjSD(y; c∗j .Γ
∗
j , αj , 1)

SL(x;A∗ky + b∗k,Σ
∗
k, α

x
k, γ

x
k ). (15)

The latter involves parameters {πk, αk}Kk=1 and the forward regression parameters {c∗k,Γ
∗
k,

A∗k, b
∗
k,Σ

∗
k}Kk=1 that can be analytically derived from the inverse regression parameters θ

with a drastic reduction of the model size, making tractable its estimation. Indeed, if we
consider isotropic equal Σk, the dimension of the learned parameter vector θ is O(DL+L2),
while it would be O(DL+D2) using a forward model2.

2Recall that L� D.
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Then, when required, a prediction of response x corresponding to an input y can be
proposed using the expectation of p(X = x|Y = y;θ) in (15) that can be obtained using:

E[X|y;θ∗] =

K∑
k=1

πkSD(y; c∗k,Γ
∗
k, αk, 1)∑K

j=1 πjSD(y; c∗j ,Γ
∗
j , αj , 1)

(A∗ky + b∗k). (16)

Response augmentation. In some applications, it is known that some confusing
factors could interfere with the responses without being measured. This phenomenon
can be modeled by assuming that the response X is partially observed. The X vector is
therefore decomposed as follows:

X =

[
T
W

]
where T ∈ RLt is the observed part and W ∈ RLw is not observed and is considered as
latent. Accordingly, the dimension of the response is L = Lt +Lw where Lt is the number
of observed responses and Lw is the number of unobserved factors. To account for this
decomposition, we introduce the notations below

ck =

[
ctk
cwk

]
,Γk =

[
Γtk 0
0 Γwk

]
and

Ak = [At
k,A

w
k ]

with At
k (resp. Aw

k ) a p × Lt (resp. p × Lw) matrix. For identifiability, cwk and Γwk must
be fixed and are usually set to cwk = 0 and Γwk = 1ILw (1IM denotes the M ×M identity
matrix). This model in which the response variable is augmented with latent factors is the
one we refer to as Student Locally Linear Mapping (SLLiM) in the following of the paper.

Remark. Considering the addition of these factors W, one can show that the conditional
distribution function of Y given the observed T is:

p(Y = y|T = t, Z = k) = SD(y,Ak[t, c
w
k ]T + bk,Σk +Aw

k ΓwkA
w>
k , αyk, γ

y
k).

Therefore, compare to the non augmented version of our model, the high dimensional
matrix Σk is replaced by Σk +Aw

k ΓwkA
w>
k which corresponds to a factor model with Lw

factors. When Σk is set to a diagonal matrix, this allows for more general dependence
structures that can account for some additional dependencies while remaining tractable in
high dimension. Similarly in the forward model, Γ∗k = Σk +Aw

k ΓwkA
w>
k +At

kΓ
t
kA

t>
k is also

augmented with a Lw factor structure.
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3 Estimation procedure

In contrast to the Gaussian case, no closed-form solution exists for the maximum like-
lihood estimation of the parameters for a t-distribution but tractability is maintained,
both in the univariate and multivariate case, via the Gaussian scale mixture represen-
tation introduced in Equation (3) [Peel and McLachlan, 2000, Bishop and Svensen, 2005,
Archambeau and Verleysen, 2007]. An efficient closed-form EM algorithm provides maxi-
mum likelihood estimates of the parameters θ = {ck,Γk,Ak, bk,Σk πk, αk}Kk=1. The class
of EM algorithms consists in updating parameters by iteratively maximizing the condi-
tional expectation of the complete data log-likelihood, given the observed training data
(y, t)1:N = {yn, tn}Nn=1, and the last update θ(i). More generally, we will write ( )1:N to
indicate that a N -sample of the argument is considered. At iteration (i + 1), we look for
the new set θ(i+1) that verifies:

θ(i+1) = arg max
θ

E[log p((y, t,W, U, Z)1:N ;θ)|(y, t)1:N ;θ(i)],

Using that responses T and latent variables W are independent given hidden variables Z
and U and that cwk and Γwk are fixed, the expected log likelihood to be maximized splits
into the two following parts :

Er̃ZEr̃U|ZEr̃W |Z,U [log p((y)1:N |(t,W, U, Z)1:N ;θ)] + Er̃ZEr̃U|Z [log p((t, U, Z)1:N ;θ)] (17)

where r̃Z , r̃U |Z and r̃W |Z,U denote the following posterior conditional distribution functions
at iteration (i+ 1):

r̃Z = p((Z)1:N |(y, t)1:N ;θ(i)),

r̃U |Z = p((U)1:N |(y, t, Z)1:N ;θ(i)),

r̃W |Z,U = p((W)1:N |(y, t, Z, U)1:N ;θ(i)).

The proposed EM algorithm iterates over the following E and M steps.

3.1 Expectation step

The expectation step splits into three steps in which the distributions of r̃Z , r̃U |Z and
r̃W |Z,U are specified. Some of the computation is similar to that of the Gaussian case and
details can be found in [Deleforge et al., 2015].

E-W step. The distribution r̃W |Z,U is fully specified by computing the N ×K functions

p(wn|yn, tn, Zn = k, Un = un;θ(i)) which are all Gaussian distribution functions with
expectation µ̃wnk and variance S̃wk /un defined as:

µ̃wnk = S̃wk

(
A
w(i)>
k Σ

(i)−1
k

(
yn −At(i)

k tn − b(i)
k

)
+ Γ

w(i)−1
k c

w(i)
k

)
S̃wk =

(
Γ
w(i)−1
k +A

w(i)>
k Σ

(i)−1
k A

w(i)
k

)−1
.
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E-U step. Similarly, r̃U |Z is fully defined by computing for n = 1 : N and k = 1 :

K, the distribution p(un|yn, tn, Zn = k;θ(i)), which is the density function of a Gamma

distribution G(un, α
t(i)
k , γ

t(i)
k ) with parameters:

α
t(i+1)
k = α

(i)
k +

Lt +D

2

γ
t(i+1)
k = 1 +

1

2

(
δ
(
yn,A

(i)
k [tn, c

w(i)
k ]T + b

(i)
k ,Σ

(i)
k +A

w(i)
k Γ

w(i)
k A

w(i)>
k

)
+ δ

(
tn, c

t(i)
k ,Γ

t(i)
k

))
.

The values α
t(i+1)
k and γ

t(i+1)
k are deduced using that p(un|yn, tn, Zn = k; θ(i)) is propor-

tional to p(yn|tn, Zn = k, Un = un;θ(i))p(tn|Zn = k, Un = un;θ(i))p(un|Zn = k;θ(i)) and
by noticing that the Gamma distribution is a conjuguate prior for a Gaussian likelihood. As
in traditional Student mixtures (see eg [Peel and McLachlan, 2000]), the E-U step actually
reduces to the computation of the conditional expectation E[Un|tn,yn, Zn = k;θ(i)]:

ū
(i+1)
nk = E[Un|tn,yn, Zn = k;θ(i)] =

α
t(i+1)
k

γ
t(i+1)
k

=
α

(i)
k + (Lt +D)/2

1 + 1/2
(
δ
(
yn,A

(i)
k [tn, c

w(i)
k ]T + b

(i)
k ,Σ

(i)
k +A

w(i)
k Γ

w(i)
k A

w(i)>
k

)
+ δ

(
tn, c

t(i)
k ,Γ

t(i)
k

)) .
When yn gets away from A

(i)
k xn + b

(i)
k or when tn gets away from c

t(i)
k or both, then the

Mahalanobis distances in the denominator increase and ū
(i+1)
nk decreases. ū

(i+1)
nk acts as a

weight. A low ū
(i+1)
nk downweights the impact of tn and yn in the parameters estimations

(see below). In the following, the covariance matrix Σ
(i)
k +A

w(i)
k Γ

w(i)
k A

w(i)>
k is denoted by

S̃uk .

E-Z step. Characterizing r̃Z is equivalent to compute each r
(i+1)
nk defined as the posterior

probability that (tn,yn) belongs to the kth component of the mixture given the current
estimates of the mixture parameters θ(i):

r
(i+1)
nk =

π
(i)
k p(tn,yn|Zn = k;θ(i))

K∑
j=1

π
(i)
j p(tn,yn|Zn = j;θ(i))

(18)

where the joint distribution p(tn, yn|Zn = k;θ(i)) is a Lt + D dimensional generalized

Student distribution denoted by SLt+D([tn,yn]T ;m
t(i)
k ,V

t(i)
k , α

(i)
k , 1) with m

t(i)
k and V

t(i)
k

defined as

m
t(i)
k =

[
c
t(i)
k

A
(i)
k c

(i)
k + b

(i)
k

]
,V

t(i)
k =

[
Γ
t(i)
k Γ

t(i)
k A

t(i)>
k

A
t(i)
k Γ

t(i)
k Σ

(i)
k +A

(i)
k Γ

(i)
k A

(i)>
k

]
.
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3.2 Maximization step

The update of the parameters decomposes into three parts. Update equations for {πk, ck,Γk, αk}
are derived from the second part of the expected log-likelihood in Expression (17) and can
be straightforwardly derived from previous work on Student mixtures, e.g. [Peel and McLachlan, 2000].
The update of {Ak, bk,Σk} is deduced from the first part of Expression (17) and general-
izes the corresponfing step in [Deleforge et al., 2015]. The Student case involves classically
some double weights accounting for the introduction of an extra latent variable U :

r̃
(i+1)
nk = r

(i+1)
nk ū

(i+1)
nk .

We use also the following notation r̃
(i+1)
k =

N∑
n=1

r̃
(i+1)
nk and r

(i+1)
k =

N∑
n=1

r
(i+1)
nk .

M-(πk, ck,Γk) step. We recover the Student mixture formula. For this part the model
behaves as a Student mixture on the {tn}Nn=1, which gives the following updates:

π
(i+1)
k =

r
(i+1)
k

N

c
t(i+1)
k =

N∑
n=1

r̃
(i+1)
kn

r̃
(i+1)
k

tn

Γ
(i+1)
k =

N∑
n=1

r̃
(i+1)
kn

r
(i+1)
k

(tn − ct(i+1)
k )(tn − ct(i+1)

k )>

M-αk step. The estimates do not exist in closed form, but can be computed by setting
the following expression to 0 (see [Forbes and Wraith, 2014] for details):

−Υ(αk) + Υ

(
α

(i)
k +

Lt +D

2

)
− 1

r
(i+1)
k

N∑
n=1

r
(i+1)
nk log

(
1 +

1

2

(
δ(yn,A

(i)
k [tn, c

w(i)
k ]T + b

(i)
k , S̃

u
k ) + δ(tn, c

t(i)
k ,Γ

t(i)
k )
))

which gives that αk is estimated by numerically computing:

α
(i+1)
k = Υ−1

(
Υ

(
α

(i)
k +

Lt +D

2

)
− 1

r
(i+1)
k

N∑
n=1

r
(i+1)
nk log

(
1 +

1

2

(
δ(yn,A

(i)
k [tn, c

w(i)
k ]T + b

(i)
k , S̃

u
k )) + δ(tn, c

t(i)
k ,Γ

t(i)
k )
)))
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where Υ is the Digamma function that verifies E[logW ] = Υ(α)− log γ when W follows a

G(α, γ) distribution. The Digamma function also satisfies d log Γ(α)
dα = Υ(α).

M-(Ak, bk,Σk) step. The updating of the mapping parameters {Ak, bk,Σk}Kk=1 is also
in closed-form and is obtained by maximizing the first part in (17). It is easy to see that

the results in [Deleforge et al., 2015] can be used by replacing r
(i+1)
nk with r̃

(i+1)
nk to account

for the extra U variables. It follows,

A
(i+1)
k = ỸkX̃

>
k (S̃xk + X̃kX̃

>
k )−1 (19)

b
(i+1)
k =

N∑
n=1

r̃
(i+1)
kn

r̃
(i+1)
k

(yn −A(i+1)
k x̃nk) (20)

Σ
(i+1)
k = A

w(i+1)
k S̃wk A

w(i+1)>
k +

N∑
n=1

r̃
(i+1)
kn

r
(i+1)
k

(yn −A(i+1)
k x̃nk − b

(i+1)
k )(yn −A(i+1)

k x̃nk − b
(i+1)
k )>(21)

where

x̃nk = [tn, µ̃
w
nk]

T

Ỹk =
1
√
rk

[√
r̃1k(y1 − ỹk), . . . ,

√
r̃Nk(yN − ỹk)

]
ỹk =

N∑
n=1

r̃kn
rk

yn

X̃k =
1
√
rk

[√
r̃1k(x̃1k − x̃k), . . . ,

√
r̃Nk(x̃Nk − x̃k)

]
x̃k =

N∑
n=1

r̃kn
rk

x̃nk

S̃xk =

[
0 0

0 S̃wk .

]

3.3 Constrained estimations

The E and M steps above are given for general Σk. However in practice, for high D, a
great gain in complexity can be achieved by imposing some simplifying constraints on Σk.

When Σk is assumed diagonal, it can be estimated by the diagonal of Σ
(i+1)
k given by (21).

In the isotropic case, Σk = σ2
k1ID, we just need to compute

σ
2(i+1)
k =

trace(Σ
(i+1)
k )

D
. (22)
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In the isotropic and equal case, Σk = σ21ID for all k, the unique variance parameter is then
updated by

σ2(i+1) =
K∑
k=1

π
(i+1)
k σ

2(i+1)
k ,

with the expression (22) just above.

3.4 Initialization

Initial values for the E-U and E-Z steps are natural: the ū
(0)
nk ’s can be set to 1 while the

r
(0)
nk ’s can be set to the values obtained with a standard EM algorithm for a K-component

Gaussian mixture on (Y,T). Steps that involve W are less straightforward to initialize.
Therefore, one solution is to consider a marginal EM algorithm in which the latent variable
W is integrated out. Considering Expression (17), one can see that the E-Z and E-U
steps are unchanged and that the E-W step is removed. With cwk and Γwk fixed to 0Lw and
ILw respectively, the estimation of (πk, c

t
k,Γ

t
k) and αk is unchanged in the M-step. The

estimation of (Ak, bk,Σk) only involves the observed data (tn)n=1:N and can be performed
in two steps, a regression step for (At

k, bk) and a PPCA-like step for (Aw
k ,Σk):

M-(At
k, bk) step.

A
t(i+1)
k = ỸkT̃

>
k (T̃kT̃

>
k )−1 (23)

b
(i+1)
k =

N∑
n=1

r̃nk
r̃k

(yn −At(i+1)
k tn)

where

T̃k =

[√
r̃1k√
r̃k

(t1 − t̃k), . . . ,

√
r̃Nk√
r̃k

(tN − t̃k)

]
t̃k =

N∑
n=1

r̃nk
r̃k

tn

M-(Aw
k ,Σk) step. Updates are obtained by minimizing the following criterion:

Qk(Σk,A
w
k ) = log |Σk +Aw

kA
w>
k |

+
N∑
n=1

r̃nk
rk

(yn −At(i+1)
k tn − b(i+1)

k )>(Σk +Aw
kA

w>
k )−1(yn −At(i+1)

k tn − b(i+1)
k ) .

More details on the practical resolution are given in [Deleforge et al., 2015]. In practice,
only one iteration of this marginal EM is run to initialize the complete EM.
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4 Model selection issues

The SLLiM model relies on the preliminary choice of two numbers, K the number of local
linear regressions and Lw the number of additional latent variables. We mention below
simple ways to select such values. A more thorough study of this issue would be useful but
it is out of the scope of the present paper.

Determining the number of clusters K. This number can be equivalently interpreted
as the number of affine regressions or as the number of mixture components. In this latter
case, it is known that regularity conditions do not hold for the Chi-squared approximation
used in the likelihood ratio test statistic to be valid. As an alternative, penalized likelihood
criteria like the Bayesian Information Criterion (BIC) are often used for clustering issues
because interpretation of the results may strongly depend on the number of clusters. In
our piecewise regression context, the specific value of K may be less important. As pointed
in [Deleforge et al., 2015], the number of affine approximations K can be arbitrarily set to
a large enough value (e.g. K = 50) as the results are not very sensitive to the choice of
this parameter. In the same manner for SLLiM, K can be set to an arbitrary value large
enough to catch non linear relationships in a D-dimensional space, while being vigilant
that the number of observations is large enough to allow a stable fit of all K components.
In practice, we will compare this solution to the one using BIC to select K.

Determining the number of latent variables Lw. The selection of Lw is similar to the
issue of selecting the number of factors in a factor analyzer model [Baek et al., 2010]. Regu-
larity conditions usually hold for tests on the number of factors but like in [Baek et al., 2010],
we rather investigate the use of BIC for choosing Lw. When K is not fixed, BIC can be
computed for varying couples (K,Lw) but the available sample size usually limits the range
of values that can be tested with reliable BIC computation. For this reason, if necessary
we will rather fix K to some value not too large so as to be able to investigate a larger
range of Lw values.

5 Experiments on real data

5.1 An illustrative example: Paris’ subway air quality

We first consider a low dimensional example with D = L = 1 to illustrate the ability
of Student distributions to reduce the effect of outliers in a regression context. This is
a simple case that implies Lw = 0 but it has the advantage to provide results that can
be understood and displayed graphically. Rather than using simulated data, we consider
a data set provided by the RATP group which is a public operator in charge of public
transportation in Paris. This institution also studies the air quality in the subway net-
work. Gas concentrations and meteorological features are measured since 2013 every day,
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all day long. The dataset of interest contains the measures for three stations including
Châtelet, Franklin Roosevelt and Auber3. We focus here on the Châtelet station on line
4 in Paris. Every day at each hour, a number of features are measured including some
usual meteorological parameters (temperature, humidity), air exchange (Carbon dioxide)
and air quality (Nitrogen oxides and particles). Although the issue is usually to predict
pollutants concentrations over time or as function of meteorology, we do not focus here on
this aspect because meteorological and time variables are discretized in this data set. We
focus instead on the relationship between the Nitrogen monoxide concentration (NO, mea-
sured in µg/m3) and Nitrogen dioxide concentrations (NO2 measured in µg/m3). They are
both toxic air pollutants whose respective concentrations exhibit an interesting non linear
relationship (grey points in Figure 1 (a)) relevant for our illustration purpose. The dataset
consists in 341 measures during March 2015.

SLLiM is compared to its Gaussian counterpart GLLiM [Deleforge et al., 2015]. Fig-
ure 1 (a) shows the regression curves fitted by GLLiM (blue) and SLLiM (black) for K=2.
The K = 2 case clearly illustrates that although the model is built on only 2 underlying
linear transformations, the obtained regression curves are not piecewise affine but show
some clear nonlinearity. More importantly, Figure 1 (a) illustrates that the SLLiM fitted
curve is less affected by outliers (extreme large values of NO). We identified as outliers 6
data points with a NO concentration greater than 200. We then considered a data set with-
out these 6 observations. Figure 1 (b) shows the obtained regression curves after removing
these 6 points. The estimated GLLiM curve gets closer to the SLLiM one confirming the
sensitivity of GLLiM to oultiers.

The prediction error is assessed using the normalized root mean squared error (NRMSE4).
The NRMSE is a normalized version of the RMSE in which we compare the prediction rate
to the one reached by predicting all responses by the mean of the training responses, in-
dependently of the covariates. A NRMSE equal to 1 means that the method performs as
well as one that would set all predictions to the training responses mean. The smaller the
NRMSE the better. A 100-fold cross-validation is performed by randomly sampling data
into sets of 300 training observations using the 41 remaining ones (resp. 35 if outliers are
removed) for testing.

Figure 1 (c) displays the average NRMSE computed by cross-validation for SLLiM
(black) and GLLiM (blue) on the complete data (long dashed lines) and data without 6
outliers (dotted lines), for 10 values of K from 1 to 10. This plot shows that K = 2 is
optimal in terms of the reconstruction with a minimum average NRMSE at this value. Note
that we found that K = 8 provided a slightly lower BIC than K = 2. As already observed
in [Baek et al., 2010] in a clustering context, it seems that BIC does not always lead to
a choice of K that simultaneously minimizes BIC and the prediction error. The figure

3It can be downloaded at
http://data.ratp.fr/explore/dataset/qualite-de-lair-mesuree-dans-la-station-chatelet

4NRMSE =

√ ∑
i(ti−t̂i)2∑

i(ti−t̄train)2
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Figure 1: Nitrogen oxide with respect to Nitrogen dioxide during March 2015
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(a) complete data (b) after removing 6 outliers (c) average NRMSE

also illustrates the robustness of the proposed model as SLLiM achieves a better prediction
rate than GLLiM when performed on data with outliers (long-dashed lines). The difference
between GLLiM and SLLiM reduces when some outliers are removed (dotted lines).

5.2 Application on real high dimensional data

In this section, the performance of the proposed method is assessed on two datasets. The
following subsection illustrates the properties of the model on data with a small number of
observations regarding to the number of variables and the second subsection investigates
the contribution of SLLiM over the Gaussian version (GLLiM) on a dataset for which
GLLiM is already performing well.

5.2.1 Orange juice dataset

The proposed method is now applied to the Orange juice public dataset in order to illustrate
that SLLiM is competitive in high dimensional settings with D ≈ N . The goal is to assess
the efficiency of SLLiM in such a setting and to illustrate that latent factors W introduced
in the model are useful to catch dependency among features.

Data. The data contains near-infrared spectra measured on N = 218 orange juices5. The
length of each spectrum is 700 and the aim is to model the relationship between the level
of sucrose (L = 1) and the spectra. Figure 2 shows the N spectra. The curves are quite
similar, even if some spectra appear to have extreme values and exhibit isolated peaks.

5It can be downloaded at http://www.ucl.ac.be/mlg/index.php?page=DataBases or from the open-
source cggd R package available on the CRAN in the object data(OJ).
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Figure 2: Curves of orange juice spectra
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Method. First, spectra are decomposed on a splines basis using the smooth.splines

function of the R software. D = 134 knots are retained. Reducing the data to the splines
coefficients makes the variables exchangeable and is also convenient to reduce the dimension
while preserving information. The following methods are then compared:

• Two versions of the proposed model of robust non linear regression (SLLiM). In a first
version (denoted by “SLLiM (BIC)”), the numbers of clusters K and latent variables
Lw are both estimated by BIC. In a second version (denoted by “SLLiM (K=10)”),
the number of clusters is set to K = 10, which is large enough to catch non linear
relationships regarding to the dimension of the data. The number of latent factors
Lw is estimated by BIC.

• A Gaussian version of our model (GLLiM [Deleforge et al., 2015]) using the Matlab
toolbox available at http://team.inria.fr/perception/gllim toolbox/. Num-
bers K and Lw are chosen as above.

• Random forests [Breiman, 2001] performed using the default options of the R package
randomForest.

• Multivariate Adaptive Regression Splines [Friedman, 1991] using the mars function
of the mda R package.

• Support Vector Machine (SVM [Vapnik, 1998]) performed with several kernels (linear,
Gaussian and polynomial) as in the R package e1071 [Karatzoglou et al., 2006].

• Sliced Inverse Regression (SIR [Li, 1991]) followed by a polynomial regression of
degree 3 performed on the SIR components. We assess predictions with 1 to 10
directions, using the dr function of the dr R package which implements dimension
reduction methods.

• Relevant Vector Machine (RVM)6 which is known to perform better in some cases
than SVM [Tipping, 2001]. We compare results achieved by several kernels (Gaussian,
linear and Cauchy which is a heavy-tailed kernel) for 60 values of the scale parameter
from 0.1 to 6 with a 0.1 increment.

The prediction accuracy is evaluated using a Leave-One-Out cross-validation (LOO-CV).
The model is estimated on training data sets of size 217 and a normalized prediction error
is computed by predicting the sucrose level of the 1 remaining observation. Each method
is therefore assessed 218 times. As the number of observations is small regarding to the
number of variables, the presence of outliers in the testing dataset in the CV generates arti-
ficially bad predictions which are not absorbed by the size of the testing sample. For these
reasons, the computed NRMSE is affected by outliers: large prediction errors are observed
on outlying data points. We therefore compute the median instead of the mean of the
NRMSE values to get a better insight on the respective methods prediction performance.

6We use the Matlab code available at http://mi.eng.cam.ac.uk/ at315/MVRVM.htm.
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Table 1: LOO-CV results for Orange juice data after decomposition on splines. Median
NRMSE and % of outliers in parenthesis.

Procedure Median NRMSE (% outliers)
SLLiM (BIC) 0.420 (22.93)
SLLiM (K=10) 0.388 (27.06)
SLLiM–0 (K=10) 0.885 (45.87)
GLLiM (BIC) 0.623 (34.86)
GLLiM (K=10) 0.466 (29.36)
GLLiM–0 (K=10) 1.022 (50.46)
Random forests 0.589 (31.19)
MARS 0.629 (33.03)
SVM 0.425 (24.77)
SIR 1.020 (51.83)
RVM 0.536 (33.49)

Results. Table 1 shows the median of the NRMSE and percentage of outliers for the
compared methods. Outliers are defined as runs leading to an error greater than the
error obtained using the training data set mean as predictor. Results are presented with
parameters values leading to the best results, namely linear kernel for SVM, 1 direction
for SIR and Gaussian kernel with scale parameter set to 0.70 for RVM. For both GLLiM
and SLLiM, setting the number of clusters to 10 and choosing the number of latent factors
with BIC leads to the best prediction. For SLLiM, BIC criterion retained 9 to 12 latent
factors for 91% of the CV-runs (similar proportions for GLLiM). Selecting K by BIC leads
to values between 8 and 10 for 96 % of the CV-runs. For the two different ways to select K
and Lw, SLLiM always outperforms its Gaussian counterpart. In Table 1, GLLiM-0 (resp.
SLLiM-0) denotes the results for K = 10 and Lw = 0. It shows worse predictions for both
GLLiM and SLLiM and illustrates the advantage of adding latent factors to the model.
Results for Lw = 0 and K selected by BIC are not presented but are similar. Among the
other compared methods, the best prediction error is obtained using SVM with a linear
kernel. When choosing both K and Lw with BIC, SLLiM achieves the same prediction
rate. However, SLLiM performs better than SVM when K is fixed to 10 and Lw chosen by
BIC. RVM, SIR, MARS and random forests are not competitive on this example.

Figure 3 presents the adjustment quality for SVM (linear kernel), SLLiM and GLLiM
(K = 10, Lw estimated using BIC). The first row shows the predicted sucrose levels
against the true ones and the second row shows quantile vs quantile plots (QQ-plots)
of the predicted sucrose levels as a function of the observed ones. These plots illustrate
graphically that SLLiM achieves the best adjustment of the observed responses in particular
compare to SVM.
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Figure 3: Adjustment on training data
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(a) GLLiM
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(b) SLLiM
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(c) SVM
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(d) GLLiM-QQ-plot
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(e) SLLiM-QQ-plot
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(f) SVM-QQ-plot
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5.2.2 Hyperspectral data from Mars

We now investigate the effect of additional robustness on a dataset already studied in
[Deleforge et al., 2015] and for which good results were already observed with GLLiM.

Data. As described into more details in [Deleforge et al., 2015], the dataset corresponds
to hyperspectral images of the Mars planet. Spectra are acquired at several locations on
the planet and the goal is to recover from each spectrum some physical characteristics of
the surface at each location. To do so, a training dataset is available made of N = 6983
spectra of length D = 184 synthesized from surface characteristics using a radiative transfer
model designed by experts. A testing dataset is then available corresponding to spectra
acquired on the south polar cap of Mars and for which the true surface characteristics are
not known. More specifically, we focus on recovering two quantities, the proportion of CO2

ice and the proportion of dust. Our observed response variable is therefore bivariate with
Lt = 2.

Method. The same methods as in the previous section are compared, except SVM and
random forests which cannot handle multivariate responses. For GLLiM and SLLiM, the
number of clusters K is estimated by BIC or fixed to K = 10. A smaller value of K was
chosen compare to [Deleforge et al., 2015] for several reasons. We observe that for larger
values of K the likelihood exhibits some noisy behaviour and is not regularly increasing
as it should. We therefore suspect that the number of training data may be too small
when the number of parameters increases. Then, as mentioned earlier, we are rather
interested in investigating the choice of Lw and for the previous reason, it may not be
reliable to both increase K and Lw considering the available sample size in this example.
The number of additional latent variables Lw is chosen using BIC. The prediction accuracy
is first evaluated on the training set using the NRMSE and a cross-validation setting. 100
datasets of size 6000 are randomly sampled among the N = 6983 observations and NRMSE
are computed by predicting simultaneously the proportions of dust and CO2 ice on the 983
remaining observations.

Results on training data. Table 2 presents the prediction accuracy achieved by the
different tested methods. For SIR, best prediction rates are achieved for 10 directions.
For RVM, optimal results are obtained with a Cauchy kernel (heavy-tailed kernel) and a
scale parameter set to 1. SLLiM performs better predictions than GLLiM. Among other
methods, regression splines (MARS) achieves the best predictions but slightly worse than
SLLiM. SIR achieves good prediction rates for the proportion of dust but not for the
proportion of CO2 ice and RVM provides the worst results in this example.

Application to Mars surface properties retrieval from hyperspectral images.
The training of the radiative model database can then be used to predict proportions of
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Table 2: Mars data: average NRMSE and standard deviations in parenthesis for propor-
tions of CO2 ice and dust over 100 runs.

Method Prop. of CO2 ice Prop. of dust

SLLiM (BIC) 0.258 (0.035) 0.257 (0.043)
SLLiM (K=10) 0.168 (0.019) 0.145 (0.020)
GLLiM (BIC) 0.197 (0.024) 0.173 (0.022)
GLLiM (K=10) 0.180 (0.023) 0.155 (0.023)
MARS 0.173 (0.016) 0.160 (0.021)
SIR 0.243 (0.025) 0.157 (0.016)
RVM 0.299 (0.021) 0.275 (0.034)

interest from real observed spectra acquired as images. In particular, we focus on a dataset
of Mars South polar cap corresponding to a 128× 265 image [Bernard-Michel et al., 2009].
Since no ground truth is currently available for the physical properties of Mars polar
regions, we propose a qualitative evaluation using the three best performing methods among
the tested ones, namely SLLiM and GLLiM with K = 10 and MARS. Figure 4 shows
the obtained images for CO2 ice and dust proportions. All methods appear to match
satisfyingly the expected results from planetology experts. Indeed, the observed region is
expected to be made of CO2 ice with increasing amount of dust at the borders with non icy
regions. All retrieved images in Figure 4 show satisfyingly this dust proportion variation.
The main difference between the methods lies in the proportions ranges. SLLiM provides
CO2 ice proportions much higher in the central part of the cap, while MARS provides
smoother values all over the cap. According to SLLiM the CO2 ice would be purer with
almost no dust in the central part.

6 Conclusion

We proposed a new robust non linear regression model for high dimensional data based on
Student mixture distributions. Non linearity is captured via a piecewise linear modelling
into a number of simple linear regressions while extra robustness to noise is expected from
the possibility to augment the regression setting with a number of latent variables. In high
dimension, the tractability of our model lies upon an inverse regression strategy. In this
context, the use of Student distributions has at least two advantages. They allow the ran-
dom vectors to be heavy tailed and have tail dependence making the model less sensitive
to outliers while maintaining its tractability thanks to their representation as scale mixture
of Gaussians. These extra flexibilities make our proposal suitable for modeling real world
data for which high dimension and outliers contamination may combine and complicate the
analysis. Experiments on synthetic and real world data have been conducted to illustrate
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Figure 4: Orbit 41

(a) GLLiM - CO2 ice (b) SLLiM - CO2 ice (c) Regression splines - CO2 ice

(d) GLLiM - Dust (e) SLLiM - Dust (f) Regression splines - Dust
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the empirical usefulness of the proposed method. In practice, real applications raise the
issue of selecting appropriate numbers for the number of linear regressions and the number
of latent variables. We proposed to use a standard BIC to deal with this issue with satisfy-
ing results but this is certainly one aspect that could be further investigated, in particular
in a context where the number of available training data may not be large enough for
selection criteria to be theoretically reliable. Then, in this paper the main target was to
address the fact that an outlier may distort the derivation of the local linear mappings so
as to fit the outlier well, and therefore may result in wrong parameter estimation. Out-
lier contamination may then pose distortion to model building and subsequent prediction.
While we could indeed check on low dimensional synthetic examples that our modelling
was effective in dealing with this issue, in actual high dimensional examples it is often only
possible to check the better adjustment of our model in terms of prediction errors. The
concept of outlier in a high dimensional space is not obvious and it would be interesting
to investigate the use of our model for actual outlier detection, examining for instance the
intermediate weight variables computed in the EM algorithm. Also, our derivations would
be similar for other members in the scale mixture of Gaussians family or among other
elliptical distributions. It would be interesting to study in a regression context, the use
of distributions with even more flexible tails such as multiple scale Student distributions
[Forbes and Wraith, 2014] or various skew-t [Lee and McLachlan, 2014, Lin, 2010] or Nor-
mal Inverse Gaussian distributions [O’Hagan et al., 2014, Wraith and Forbes, 2015]. At
last, another interesting direction of research would be to further complement the model
with sparsity inducing penalties in particular for situations where interpreting the influen-
tial covariates is important.

A Comparison with a cluster-weighted modelling approach

Although our model was focused on regression aspects, it shares some similarity with the so-
called CWtFA clustering technique of [Subedi et al., 2015] that uses factor decompositions
of the high dimensional covariance matrices. To illustrate the difference, we apply SLLiM
to the data sets used in [Subedi et al., 2015] which are however not high dimensional: the
f.voles data from the Flury R package and the UScrime data from the MASS package.
The first data set is made of 86 observations divided into two known species of female voles
Microtus californicus (41 individuals) and M. ochrogaster (45 individuals). The goal is to
predict age (L = 1) on the basis of skull measurements (D = 6). The second data set
contains aggregate measurements on 47 states of the USA and the goal is to investigate
the relationship between the crime rate (L = 1) and a number of covariates (D = 13). An
additional grouping variable is available that indicates the 16 Southern states.

Table 3 shows the clustering results for CWtFA and SLLiM. As the purpose of this
study is to compare the clustering returned by these two methods, we set K to 2. We
consider a model for SLLiM equivalent to the one considered in [Subedi et al., 2015] with
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Table 3: SLLiM and CWtFA clustering results for f.voles (a) and UScrime (b) data sets.
The goal is to assess how the two estimated clusters (columns) fit the two known ones
(lines).

Cluster
1 2

CWtFA-CCCU
M. Ochrogaster 43 2
M. Californicus 0 41

SLLiM-K=2-Lw=1
M. Ochrogaster 43 2
M. Californicus 0 41

(a) Clustering on f.voles dataset library Flury

Cluster
1 2

CWtFA-UUUU
Not Southern 30 1

Southern 3 13

SLLiM-K=2-Lw=1
Not Southern 9 22

Southern 0 16

(b) Clustering on UScrime dataset library MASS

the same assumptions: full covariance matrix for covariates, constant across groups for
the f.voles data and unconstrained for the UScrime data. For the f.voles data, as
for the CWtFA model, BIC selects 1 latent factor. The clustering returned by SLLiM is
similar to the one returned by CWtFA. On this dataset, the specie appears to be a relevant
discriminant variable between individuals as the clustering separates subjects according to
this variable (except 2 errors). For the UScrime data, as for CWtFA, BIC selects 1 latent
factor. The clustering returned by SLLiM is different from the one returned by CWtFA
which illustrates that SLLiM and CWtFA are not equivalent. Moreover, in contrast to the
CWtFA result which finds 2 clusters, the other methods compared in [Subedi et al., 2015]
indicate that the estimated number of clusters is usually larger (3 clusters). This suggests
that the variable of interest (Southern states) is not the only discriminant variable between
states. For example, we suspect differences could exist between East and West states but
state labels are not available and results cannot be further analyzed.
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