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Summary
The dispersion relations of acoustic modes in poroelastic cylinders with and without elastic shell coating are
determined and solved. The influence of elastic frame parameters and the Biot parameters on the dispersion curves
is studied in the configuration with and without coating. The dispersive Rayleigh and whispering gallery waves
are highly sensitive to the density and the shear modulus of the skeleton, opening a perspective for the evaluation
of the mechanical parameters of poroelastic materials confined in cylindrical tubes during the manufacturing
process. The predicted dispersion curves are validated with experimental results obtained by use of different
experimental set-up in the case of a porous circular cylinder.

PACS no. 43.20.Jr

1. Introduction

The determination of the effective acoustic parameters of
sound absorbing porous materials has received quite some
attention during the last decades. However, both in low and
ultrasonic frequency ranges, the issue of accurately deter-
mining the elastic parameters needs further attention. The
difficulty lies in the fact that frame materials are often vis-
coelastic, i.e. the Lamé coefficients are frequency depen-
dent. Traditional quasi-static or vibrational techniques en-
able the recovery of these elastic parameters [1, 2, 3, 4] in
the low frequency range (up to 500Hz–1 kHz), but there
is a need for extension of the accessible frequency range.
Recently[5, 6], the frequency dependence of the elastic pa-
rameters of the frame of a poroelastic material was deter-
mined in the kHz range from the analysis of the wave prop-
agation in a poroelastic semi-infinite half space (Rayleigh
wave), in a poroelastic plate (Lamb waves) and in a poroe-
lastic plate on a rigid surface (Lamb-like waves).

Poroelastic materials are typically confined in a cylin-
drical holder during the process of their manufacturing
and testing. The monitoring of the poroelastic parameters
while the material is changing from a liquid mixture to a
solid foam during the polymerization process, as well as
the evaluation of the final elastic modulus of the foam ma-
terials is of considerable interest for foam manufacturers.

Received 3 November 2010,
accepted 20 April 2011.

The phase velocities of the waves associated with modes
are also studied when the porous cylinder is coated with
an elastic shell. The latter simulates the container in which
the polymerisation stands. This article is a first step toward
the determination of the variation of the elastic properties,
mainly the shear modulus and the density of the frame,
during the manufacturing process of the porous sample.
During the liquid phase, the cells are closed and the foam
behaves as a visco-elastic material. At the end of the pro-
cess, the cells are open and the foam behaves as a poroe-
lastic material. The manufacturer knows when the foam
has raised and we will monitor the rising of the foam at
the end of the process.

With this goal, the approach in [5, 6] is further explored,
and extended to a cylindrical geometry. Rayleigh waves in
elastic cylinders[7] or in a coated elastic cylinder[8] were
extensively studied. To our knowledge, the present study is
the first one that deals with Rayleigh waves in poroelastic
cylinders.

Contrary to its homologue in a semi-infinite half space,
in circular shape configurations, the Rayleigh wave, which
corresponds to the lowest velocity mode as evaluated from
the dispersion relations, is dispersive. The effect of dis-
persion is particularly visible at low frequencies, where
the wavelength becomes of the order of the radius. The
high frequency limit of the velocity dispersion curve tends
to the Rayleigh velocity of the material in a semi-infinite
half-space. Note that this dispersion is geometric and it
should be distinguished from the material dispersion, e.g.
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due to porosity. While the dispersive Rayleigh wave prop-
agates along the surface of the cylinder, the energy of
whispering gallery waves, which travel at higher veloci-
ties, and exist due to the curvature of the surface, is more
concentrated in the inner part of the cylinder[9]. Whisper-
ing gallery waves can be represented in a ray model as
the result of multiple reflections around the inner surface
of the cylinder. Below a cut-off frequency they are highly
damped.

Cylindrical porous materials were already studied in
geophysics. Schmitt studied the process of drilling holes,
which modifies the physical properties of the formation
close to the borewall, leading to different coaxial, saturated
porous shells [10].

In section 2, the calculation model that enables the
determination and solution of the dispersion relation for
waves in a (coated) poroelastic cylinder is briefly de-
scribed. Dispersion curves are simulated, and the possi-
ble extraction of the poroelastic modulus from the phase
velocity measurements is evaluated. Results of a sensi-
tivity analysis, in which the dependence is determined of
the wave velocity, in particular for the dispersive Rayleigh
wave, on the shear modulus and the density of the frame,
are presented in section 3. Also the influence of the elas-
tic coating is investigated. Finally, the results of experi-
ments performed by two techniques on a poroelastic cir-
cular cylinder are presented and compared with the theo-
retical predictions.

2. Waves in a circular porous cylinder with
and without elastic coating

As an extension of the study of circumferential waves in
layered elastic cylinders [11], in this section we numer-
ically determine the frequency dependence of the phase
velocities of whispering gallery waves and of the disper-
sive Rayleigh wave in a porous cylinder with and without
an elastic shell coating. For every frequency, the velocities
of different modes are found by searching the roots of a
characteristic determinant, which is obtained by combin-
ing the wave equations with the boundary conditions that
characterize the geometrical configuration, in the absence
of a source.

After projection on an appropriate basis and assuming
sinusoidal solutions, most of the acoustic problems are
reduced to the solution of a linear system of the form
D ·U = S, where U is the unknown vector, D is the propa-
gation matrix and S the solicitation vector. In the absence
of a driving source, S = 0, non-trivial solutions (the so
called modes), are obtained when det (D) = 0. The roots
of this determinant, which contains the material proper-
ties and is a function of the wavenumber and frequency of
the modes, then lead to the relation between the phase ve-
locity and frequency (c, ω) of the modes. In the particular
case of circular cylindrical geometry, these roots are pairs
(n, ω) and the projection on the basis explicitly provides
a propagation matrix that depends on n, the order of the
Hankel and Bessel functions involved.
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Figure 1. Cross-sectional plane view of the configuration of a
poroelastic cylinder coated with an elastic shell.

2.1. Description of the configuration

The geometrical configuration is assumed to be invariant
with respect to the Cartesian coordinate x3.

Figure 1 depicts a cross-sectional plane view of the con-
figuration. The domain Ω[0] represents the fluid medium
around the porous cylinder M [0]. A polar coordinate sys-
tem (r, O, θ) is used to, with its origin in the center of the
cylinder (Ω[2]) of radius R[2] filled with poroelastic mate-
rial M [2] saturated by the fluid M [0]. The cylinder is ei-
ther in welded contact with the domain Ω[0] through the
interface Γ, or in welded contact with an elastic coating
M [1], occupying the domain Ω[1] of thickness h through
the interface Γ12. In the case of a coated cylinder, Ω[1] is in
welded contact withΩ[0] through the interface Γ at R[2]+h.
The radius of Γ will be denoted by R[0] for both configu-
rations.

2.2. Field representations and material modeling

Rather than to solve directly for ā(x, t), ā(x, t) being ei-
ther a vector or a scalar possibly denoting the time depen-
dent pressure, displacement, scalar or vector potentials,
etc., the following analysis is done for sinusoidal solu-
tions. In the frequency domain we work with the Fourier
transform, a(x, ω), related to ā(x, t) through ā(x, t) =
∞
−∞ a(x, ω)e−iωtdω. Henceforth, we also drop the ω de-
pendence in a(x, ω), so as to denote the latter a(x).

In Ω[0], the scattered pressure field can be written as

p[0](x) =
n∈Z

BnH
(1)
n k[0]r einθ, (1)

wherein H(1)
n is the n-th order Hankel function of first kind,

k[0] is the wavenumber in Ω[0], and Bn are the scattered
coefficients by the circular cylinder.

When an elastic coating is considered, the scattered
scalar φ[1] and vector ψ [1] = ψ [1]i3 potentials in Ω[1], re-
lated to the displacement u[1] through u[1] = ∇φ[1] + ∇ ×
ψ [1] take the forms

φ[1](x) =
n∈Z

CnJn k
[1]
P r + DnH

(1)
n k

[1]
P r einθ,

ψ [1](x) =
n∈Z

EnJn k
[1]
S r + FnH

(1)
n k

[1]
S r einθ,

(2)
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wherein Jn is the n-th order Bessel function, k
[1]
P = ω/c

[1]
P

and k
[1]
S = ω/c

[1]
S are the wave numbers associated with

compressional and shear waves, and Cn, Dn, En and Fn the
coefficients of the diffracted potentials in Ω[1]. The consti-
tutive equation in Ω[1] can be written in the form

σij(x) = λ[1]emmδij + 2µ[1]eij

= −λ[1] k
[1]
P

2
φ[1]δij + 2µ[1]eij,

(3)

wherein the Einstein summation is implicit, δij is the Kro-
necker delta, σ the stress tensor, e = ∇u[1] + ∇Tu[1] /2
the strain tensor, and λ[1] and µ[1] are the Lamé coefficients
of M [1].

In Ω[2], the scattered scalar φ
[2]
1 and φ

[2]
2 and vector

ψ [2] = ψ [2]i3 potentials, related to the displacements u[2]

in the solid phase through u[2] = ∇(φ[2]
1 +φ

[2]
2 )+∇×ψ [2] =

∇φ[2s]+∇×ψ [2] andU[2] in the fluid phase through U[2] =
∇(µ1φ

[2]
1 + µ2φ

[2]
2 ) + ∇ × µ3ψ [2] = ∇φ[2f ] + ∇ × µ3ψ [2]

take the forms

φ
[2]
1 (x) =

n∈Z
GnJn k

[2]
1 r einθ,

φ
[2]
2 (x) =

n∈Z
MnJn k

[2]
2 r einθ,

ψ [2](x) =
n∈Z

OnJn k
[2]
3 r einθ,

(4)

wherein k
[2]
i (i=1, 2, 3) are the wave numbers associated

respectively with the so-called fast, slow and shear waves,
and Gn, Mn, and On are the coefficients of the diffracted
potentials inside the cylinder. The expressions of µi and
k
[2]
i (i=1, 2, 3) can be found in[12]. The constitutive rela-

tions in Ω[2] read as

σs
ij(x) = [(P − 2N) emm + Qεmm] δij + 2Neij

= a1 k
[2]
1

2
φ

[2]
1 + a2 k

[2]
2

2
φ

[2]
2 + 2Neij,

σ
f
ij(x) = [Qemm + Rεmm] δij

= −b1 k
[2]
1

2
φ

[2]
1 − b2 k

[2]
2

2
φ

[2]
2 = φp[2],

(5)

wherein ai = 2N − P − Qµi and bi = Q + Rµi, i = 1, 2,
and ε = ∇U [2] + ∇T U [2] /2. The expressions of R, Q,
and P are[12]

R = φKf ,

Q =
R(1 − φ)

φ
, (6)

P =
(1 − φ) (1 − φ) − Ksm/Ks Ks + φKs/KfKsm

(1 − φ) − Ksm/Ks + φKs/Kf

+ (4/3)N,

where Kf is the compressibility of the saturating fluid,
which is in considered to be identical to the ambient fluid,
i.e. the air medium. Ksm and Ks = Ksm/(1−φ(Q+R)/R)
are respectively the compressibility of the frame and of the
solid material, N is the shear modulus and φ the porosity.
Young’s modulus E and Poisson’s ratio ν, related to N ,

and Ksm through N = E/2(1+ν), Ksm = EN/(3(3N−3))
are used as an alternative to E and N .

The thermal and viscous losses are accounted for by use
of the Johnson-Champoux-Allard model [13, 14], which
involves the tortuosity α∞, the viscous (Λ) and thermal
(Λ ) characteristic lengths and the flow resistivity σ.

2.3. Circular poroelastic cylinder saturated by air

Since M [0] is a fluid medium and M [2] is a poroelastic ma-
terial, the normal total stress, pressure and normal compo-
nent of the displacement should be continuous across Γ,


σs
rr(R

[0], θ) + σ
f
rr(R[0], θ) + p[0](R[0], θ) = 0,

σs
rθ(R

[0], θ) = 0,
−σ

f
rr(R[0], θ)/φ − p[0](R[0], θ)) = 0,

u
[2]
r (R[0], θ) + w

[2]
r (R[0], θ) − U

[0]
r (R[0], θ) = 0,

(7)

wherein w[2] = φ(U[2] − u[2]) is the relative solid-fluid
displacement[15].

Introducing the proper field and potential expressions,
equations (1) and (4), in equation (7), projecting the latter
on the appropriate basis, i.e. 2π

0 ·×e−ilθ dθ and making use

of the orthogonality relation 2π
0 · × ei(n−l)θ = 2πδln, lead,

after rearrangement, to a propagation matrix

D =


a11 a12

a21/N a22/N
a31d1 a32d2

b1 α
[2]
1

2
Jn α

[2]
1 b2 α

[2]
2

2
Jn α

[2]
2

(8)

· · ·
a13 R[0] 2

H(1)
n α[0]

a23/N 0

a33d2 −α[0]
.
H

(1)
n α[0] / k[0] 2

K [0]

0 − R[0] 2
φH(1)

n α[0]


with the unknown column vector U = Gn, Mn, On, Bn

formed by the diffraction coefficients of each domain in-
volved in the configuration. In (8), di = 1 + φ (µi − 1),
i = 1, 2, α

[j]
i = k

[j]
i R[0], i = 1, 2 and j = 0, 2, and K [0] the

compressibility of M [0] are introduced. The expression of
the matrix elements are reported in Appendix 5.

2.4. Circular poroelastic cylinder saturated by air
and coated with an elastic material

Since M [0] is a fluid medium and M [1] is an elastic ma-
terial, the normal stress and normal component of the dis-
placement should be continuous across Γ,

σ
[1]
rr (R[0], θ) + p[0](R[0], θ) = 0,

σ
[1]
rθ (R[0], θ) = 0,

u
[1]
r (R[0], θ) − U

[0]
r (R[0], θ) = 0.

(9)

Since M [1] is an elastic material and M [2] is a poroelas-
tic material, the normal total stress and the displacements
should be continuous across Γ12,



σs
rr(R

[2], θ) + σ
f
rr(R[2], θ) − σ

[1]
rr (R[2], θ) = 0,

σs
rθ(R

[2], θ) − σ
[1]
rθ (R[2], θ) = 0,

u
[2]
r (R[2], θ) − u

[1]
r (R[2], θ) = 0,

u
[2]
θ (R[2], θ) − u

[1]
θ (R[2], θ) = 0,

u
[2]
r (R[2], θ) − U

[2]
r (R[2], θ) = 0.

(10)
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Proceeding as in section 2.3, the propagation matrix be-
comes

D =



a11 a12 a13 a14 a15 a16 a17 0
a21 a22 a23 a24 a25 a26 a27 0
a31 a32 a33 a34 a35 a36 a37 0
0 0 0 a44 a45 a46 a47 a48

0 0 0 a54 0 a56 a57 0
0 0 0 a64 0 a66 a67 a68

a71 a72 a73 0 a75 a76 a77 a78

a81 a82 a83 0 0 0 0 0


(11)

with the unknown column vector

U = Gn, Mn, On, Bn, Cn, Dn, En, Fn

formed by the diffraction coefficients of each domain in-
volved in the configuration and the expression of the ma-
trix elements given in the Appendix 5.

2.5. Numerical evaluation of the roots of the disper-
sion curves

The determinant of D(n, ω) was calculated as a func-
tion of frequency ω = 2πf and of the order of the
Bessel and Hankel functions n. The pairs (ωmin, nmin) for
which |det (D(n, ω)) | is minimum typically correspond
with the zeros of the determinant. The phase velocity
v of the corresponding modes can then be evaluated as
v = ωminR/nmin in the case of a poroelastic cylinder, and
as v = ωmin(R + h/2)(1 + h

2(R+h/2) )/nmin in the case of a
porous cylinder covered by an elastic coating[8].

For non dissipative materials, the minima of |det(D)|
correspond to the roots of det(D) = 0 because these roots
are real, with the exception of leaky modes. For dissi-
pative materials, such as poroelastic foams, the roots of
det(D) = 0 are complex. Considering a dissipative ma-
terial as a perturbation of a non-dissipative one, dissipa-
tion can be accounted for by introducing complex shear
modulus and phase velocities. As a result, the roots of
det(D) = 0 are then shifted from the real axis in the com-
plex plane. A classical way to solve the dispersion equa-
tion would imply looking for a complex order of Bessel
and Hankel funstions n. However, evaluating these func-
tions is not straightforward and the involved calculation
time makes this approach rather cumbersome. Most of the
available routines enable the evaluation of Bessel and Han-
kel functions of integer or real order, but none of them en-
able their evaluation for complex order. For this reason,
we have chosen to approximate the real part of the phase
velocity by using the expressions above with pairs (ωmin,
nmin) that minimize |det(D)|.

3. Numerical results and discussion

As a typical poroelastic material, we have chosen for
the current study the material Fireflex (Recticel, Wet-
teren, Belgium). Values of the parameters of this mate-
rial were determined by traditional methods [16, 17] and
are summarized in Table I. The radius of the cylinder was

Table I. Parameters of the Fireflex (Recticel, Wetteren, Belgium),
i.e. the poroelastic material studied in this paper.

φ α∞ σ (Ns/m4) Λ (µm)
0.95 1.42 8900 180

Λ (µm) N (Pa) E (Pa) ρ (kg/m3)
360 56000 140000 32

(a)

(b)

Figure 2. Phase velocity c of the Rayleigh and of the whis-
pering gallery waves as calculated for a Fireflex cylinder (ma-
terial parameters: Table I) (—). The symbols represent curves
obtained for one of the parameters varied, the other ones kept
fixed: (a) sensitivity to the flow resistivity (σ = 3000Ns.m−4 (o),
σ = 20000Ns.m−4 ( ), and σ = 200000Ns.m−4 ( )), (b) sensi-
tivity to the porosity: (φ = 0 (o), φ = 0.3 ( ), φ = 0.95 ( )).

R[2] = 75mm. The Rayleigh wave velocity of this ma-
terial in a plane, semi-infinite configuration cR is 38m/s.
This value was determined by means of the method de-
scribed in [5, 17].

3.1. Numerical results for porous cylinder saturated
by air

The frequency dependence of the phase velocity of disper-
sive Rayleigh and whispering gallery waves, as calculated
with the help of the previously described method, is shown
in Figure 2. Below 1500Hz, the geometric dispersion of
the dispersive Rayleigh wave is clearly noticeable, and at
high frequencies the velocity tends to ≈ 40m/s, in corre-
spondence with the value for cR mentioned above.

In the following, we address the influence of the Biot
parameters on the phase velocities of the waves associated
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Figure 3. Simulation with a porous cylinder of Fireflex (—) and
visco-elastic cylinder with density equal to the density of the
frame material (− − −).

with the modes. One by one, parameters are varied, while
keeping the other parameters fixed.

The dispersion curves turn out to be quasi insensitive
to variations of the flow resistivity between 3000 Ns.m−4

and 200000 Ns.m−4 (Figure 2a). This is not surprising,
since the energy of these waves, particularly the dispersive
Rayleigh wave, is mainly carried by the skeleton. The sen-
sitivity of the dispersion curves on the porosity is shown
in Figure 2. Only for porosities smaller than 30%, a small
effect of maximum 4% occurs in the phase velocity of the
modes. The lower order modes of the poroelastic Fireflex
cylinder are approximated very well by the ones of a (vir-
tual) non-porous visco-elastic cylinder with the same elas-
tic parameters and with density taken equal to the density
of the frame, as shown in Figure 3. There is a little dif-
ference for higher order modes around their cut-off fre-
quency. The fact that the differences are small is due to the
fact that the material is highly porous and the air-solid in-
teraction is weak. The theory with a porous layer is more
general and is worth studying as it would apply to low
porosity materials or materials saturated by a heavier fluid.

Figure 4 shows that the dispersion curves are strongly
sensitive to variations of the shear modulus (a) as well
as to variations of the density (b) of the frame, and only
weakly sensitive to the longitudinal modulus of the frame,
in accordance with [6] for horizontal geometries. Figure 4a
shows that when the shear modulus is decreased with 50%,
the Rayleigh velocity decreases from 165m/s to 50m/s.
Figure 4b shows that when the density is decreased by a
factor 70%, the Rayleigh velocity increases from 22m/s
to 42m/s.

It is well known that the high frequency limit of the
Rayleigh wave velocity is mainly determined by the shear
velocity, which, for viscoelastic materials, is equal to the
square root of the ratio of the shear modulus and the den-
sity. As a result, quite often effects on the dispersion curves
due to changes in shear modulus can be compensated by
changes in density. Figure 5 shows that indeed the effect
of shear modulus and density on the dispersion curves is
highly degenerate: when the shear modulus and density are
simultaneously doubled, then in the case of a porous cylin-
der of Fireflex without coating, then the dispersion curves

0 500 1000 1500 2000 2500 3000 3500 4000

50

100

150

200

250

300

350

400

c
(m

/s
)

(a)

0 500 1000 1500 2000 2500 3000 3500 4000

20

40
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80

f (Hz)

c
(m

/s
)

(b)

Figure 4. Sensitivity of the phase velocity of the dispersive
Rayleigh and of the lowest three whispering gallery waves as
calculated for a Fireflex-material-like cylinder: (a) variation of
the shear modulus: N = 105 Pa, ρ =32 kg/m3 (− − −) and
N = 5 × 104 Pa, ρ =32 kg/m3 (—) and (b) variation of the den-
sity: ρ =30 kg/m3, N = 56000 Pa (− − −) and ρ =100 kg/m3,
N = 56000 Pa (—).

remain unchanged. For the coated cylinder, there is a mi-
nor difference at low frequencies. This degeneracy is not
problematic, since for most applications alternative tech-
niques can be used to determine the density. The guided
acoustic wave method can then be used to determine the
shear modulus only, using an a priori determined value for
the density. The high sensitivity of the considered waves
to the value of the shear modulus opens nice perspectives
to use this parameter as an indicator during the transition
between the fluid to the solid phase while a foam is rising.

3.2. Numerical simulations for a porous cylinder
with an elastic coating

We have performed a similar analysis for a coated foam
cylinder, which is encountered quite frequently in man-
ufacturing situations. Due to the presence of the elastic
coating, it can be expected that the sensitivity is deterio-
rated due to the coating layer being typically stiffer than
the foam of interest, thus dominating the Rayleigh wave
propagation characteristics. However, for sufficiently low
frequencies, the waves are expected to penetrate deeply
into the foam, thus becoming sensitive to its properties.

Two coatings were considered with h = 1mm thick-
ness, one made up of poly(methyl metacrylate) (PMMA)
(c[1]P = 2740m/s, c

[1]
S = 1120m/s and ρ[1] = 1180 kg/m3)
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(a)

(b)

(c)

Figure 5. Dispersion curves for a Fireflex cylinder without coat-
ing (a), a Fireflex cylinder with PMMA coating (b) and a Fireflex
cylinder with steel coating (c). The shear modulus and density
are multiplied with the same factor: N = 25000 Pa and density
16 kg.m−3 (—), N = 50000 Pa and density 32 kg.m−3 (− − −).

and one of steel (c[1]P = 6320m/s, c
[1]
S = 3230m/s and

ρ[1] = 7700 kg/m3). Simulations were performed for a
poroelastic cylinder of Fireflex with a shear modulus of
N = 5× 104 Pa and N = 1× 105 Pa, Figure 6. Due to the
coating, the wave mode that tends at high frequencies to
the Rayleigh wave velocity of the bulk material disappears.
However, higher order wave modes still exist. Since these
modes are becoming faster with increasing shear modulus
of the foam, it can be concluded that they can be associated
with modified whispering gallery waves of the foam, and
also that analyzing the dispersion of these modes allows to
elastically characterize the foam. The possibility for char-
acterizing the foam is thus not affected by the presence of
a steel or PMMA coating. The proposed method to deter-

(a)

(b)

Figure 6. Phase velocity of the lowest three modes of a Fireflex
cylinder of N = 10000 Pa, ρ =32 kg/m3 (− − −) and of N =
50000 Pa, ρ =32 kg/m3 (—): (a) coated with PMMA and (b)
coated with steel.

mine or monitor the foam density and shear modulus thus
remains effective when the foam is contained in a cylindri-
cal tube e.g. during the polymerization process.

4. Experimental validation

4.1. Experimental methods

Two experimental methods were used to determine the dis-
persion curves of the modes propagating in the system.

A schematic overview of the experimental setup used
to determine the dispersion curves of the modes propagat-
ing in the system is depicted Figure 7. Using a shaker (Q-
sources), circumferential waves were generated on the sur-
face of a porous sample. The normal component of the sur-
face velocity was detected by a Laser Vibrometer (Polytec
OFV-505), at different distances from the generation site.
A cylindrical Fireflex sample of radius 7.5 cm was placed
centered on a circular rotating plate. The shaker was firmly
attached to the sample so that there was no relative mo-
tion between them. It was fairly small and light and could
provide signals at frequencies up to 10 kHz. The distance
between the source and the detection point could be var-
ied by rotating the set shaker/sample, while keeping the
laser beam unchanged. The rotation angle of the sample
was precision controlled by means of a cable connecting
the periphery of the circular disk to a computer controlled
linear translation stage (a linear stepping motor).
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(a) (b)

Figure 7. a) Schematical measure-
ment setup for the determination of
the phase velocity of the modes. b)
Picture of the measurement setup.

Figure 8. Example of 3 waveforms propagating along the surface
of a poroelastic cylinder in the case of pulse excitation. The sig-
nals were detected at different distances from the source in steps
of Δx = 0.028mm. The curves are plotted with an off-set for
clarity.

A narrow strip of steel, with dimensions 0.5 cm × 3 cm,
was glued to the shaker, thus acting as a line source gener-
ating circumferential waves along the surface of the cylin-
drical sample. The strip was oriented parallel to the axis
of the cylinder. A strip of reflecting tape with negligi-
ble thickness was glued tangentially on the surface of
the cylinder so that the circumferential waves could be
detected by the vibrometer at different angular positions
along the surface.

4.1.1. Pulse excitation

In a first configuration, transient waves were excited by
means of a pulser-receiver (Panametrics model 5058 PR)
sending a short pulse (with a length of 10−4 s and a height
of 2.5 V) to the shaker. Figure 8 shows some waveforms
detected at different distances from the generation site.
The diagonal line clearly shows the time shift of the signal.
The distance between two pulses is Δx = 0.028mm.

This configuration is a variant of the one used in [6].
In this method, by recording the signals on a digital os-
cilloscope (Lecroy 9310M) at regularly spaced distances
from the excitation source, a two-dimensional signal ma-
trix S(x, t) is acquired. By appropriately choosing the res-
olution in time and in space, dispersion curves can be di-

ω ( rad/s)104

k
(1
/m

)

-3 -2 -1 0 1 2 3

-600

-400

-200

0

200

400

600

Figure 9. Example of dispersion curves from |S(k, ω)| for a Fire-
flex cylinder. The line is a mode of the Fireflex cylinder that can
be detected. The triangles are the experimental data extracted
from the result in in Figure 12.

rectly obtained by taking the dual time and space Fourier
Transform, thus providing the 2D spectrum S(k, ω).

The maximum curves in the 2D map of |S(k, ω)| corre-
spond with the dispersion curves k(ω) of respective wave
modes. Figure 9 shows an example of an experimentally
obtained dispersion curve, from which the phase veloci-
ties of the modes could be determined by c = ω/k. The
key advantage of this technique is that it simultaneously
provides the dispersion curves of several modes, even if
the velocities of the modes are close to each other.

4.1.2. Sine burst excitation

In a second configuration, a function generator provided a
rather narrowband sinusoidal burst (with duration of 20T ,
with T = 1/f the sinusoidal period and f the frequency)
to the shaker. Also in this method the waves can be de-
tected by a laser Doppler vibrometer and recorded by an
oscilloscope. The phase velocity of a wave can be deter-
mined by determining the differences in arrival time of the
waves collected at several distances (Δx = 2mm) from
the source, cfr Figure 10.

The slope of the curve, which was obtained by plot-
ting the recording distances Δx as a function of the arrival
times Δt, was used to determine the phase velocity using
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(a)

(b)

Figure 10. Example of a) response to sine bursts detected at var-
ious distances from the source (the steplength Δx is 2mm) and
b) zoom on the time difference between the maxima. The curves
are plotted with an off-set for clarity.

the relation 2πΔt/T = Δφ = −kΔx = −(ω/c(ω))Δx.
These arrival times were estimated by cross correlating the
signal at different locations with the one obtained on the
detection position closest to the source (Figure 10). An
example of a linear fit performed to determine the phase
velocity is plotted Figure 11. This method provides a bet-
ter signal to noise ratio than the pulse method, which is
expected to be very valuable for highly damping poroe-
lastic foams. However, the method is not applicable when
modes have very similar velocities, since in that case the
respective waveforms are hard to distinguish in time do-
main ([5]).

4.2. Experimental results

Experimental dispersion curves as obtained with the pulse
excitation method ( ) and with the burst excitation me-
thod ( ) are compared in Figure 12 for the Fireflex poroe-
lastic cylinder under investigation. The experimental data
are compared with simulated dispersion curves calculated
on the basis of the literature values listed in Table I. In
the analyzed frequency range, the dispersion curves match
quite well. Due to the large damping and thus rather short
accessible distance range, it was difficult to accurately ex-
tract data at lower wave numbers and frequencies. Both ex-
perimental methods enable the evaluation of the dispersive
Rayleigh wave for frequencies between 1 kHz and 4 kHz.
For higher frequencies, the burst method cannot be used,
due to the proximity of several modes in velocity and thus
in arrival time of the respective bursts, which results in
overlapping.

Figure 11. Example of a distance (to the first measurement point)
versus time curve for the determination of the phase velocity.

Figure 12. Experimental ( pulse excitation and burst excita-
tion) and theoretical (—) phase velocities for a Fireflex cylinder.

In the asymptotic high frequency regime, both the the-
ory and experiments tend to a Rayleigh velocity around
40m/s.

4.3. Extraction of the frequency dependence of the
shear modulus

The simulations above have shown that both the shear
modulus and density significantly influence the phase ve-
locities, while the other parameters only weakly affect the
dispersion curves.

Since the density can be determined simply by other
methods and since its influence is degenerated with the in-
fluence of the shear modulus, here we focus on the expe-
rimental extraction of the shear modulus. This is done by
performing a one-parameter minimization of a cost func-
tion involving the available experimental data for the low-
est order mode.

The common way to recover the shear modulus would
be to minimize the sum of squared differencies between
the measured velocities and the calculated velocities. This
procedure requires the highly time consuming evaluation
of the root(s) of the determinant at each iteration. Here, we
follow an alternative approach. Given that the dispersion
curves are found by minimizing F = |det(D(ω, v, N))|,
and that the experimental value for vexp for every given
ωexp is known, N , the parameter of interest, can be found
for every frequency by minimizing the function F (N) for
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Figure 13. Evolution of F as a function of the shear modulus.
The minimum corresponds to the extracted shear modulus.

500 1000 1500 2000 2500 3000 3500 4000 4500
4.5

5

5.5

6

6.5

7

7.5

8

frequency (Hz)

N
(

P
a
)

1
0
4

Figure 14. Shear moduli found with a numerical inversion of the
experimental results of Figure 12.

that frequency and corresponding experimental velocity.
An example of this procedure is illustrated in Figure 14
for f = 1.1 kHz.

The shear moduli found with this numerical inversion
method (Figure 14) are roughly frequency independent
and correspond reasonably well with the literature value
of Table I.

5. Conclusion

A theoretical model was developed for the numerical eval-
uation of the phase velocities of modes in the configuration
of a poroelastic cylinder with and without elastic coating.
Simulations were made with a porous cylinder of Fire-
flex and an elastic coating of steel and PMMA. The influ-
ence of the Biot parameters of the poroelastic material on
the dispersion curves of the modes was studied. Acoustic
and structural parameters, i.e. the porosity, the tortuosity,
the thermal and viscous characteristic lengths and flow re-
sistivity were found to have no or small influence on the
phase velocities of the dispersive Rayleigh and whispering
gallery waves. On the other hand, the shear modulus and
density of the foam skeleton do have a large and rather de-
generate influence on the phase velocities of the modes,
both for a bare cylinder and for a cylinder coated with
an elastic shell. Hence the phase velocity determination in

(coated) cylindrical sample configurations gives a suitable
way to experimentally determine and industrially monitor
the shear modulus of poroelastic foams during the produc-
tion process.

Both burst excitation and pulse excitation were used
to determine the phase velocities of the waves propagat-
ing along the surface of a Fireflex porous cylinder with
and without coating. Good agreement was found between
the experimental results and the numerical simulations be-
tween 1 kHz and 4 kHz.

Appendix

Expression of the elements of the driving agent ma-
trices

The matrix elements in the determinant of the boundary
conditions from section 2.4 for a porous cylinder with
(without) an elastic coating are

a11 = ᾱ
[2]
1

2
(a1 − b1)Jn ᾱ

[2]
1 + 2N

..
Jn ᾱ

[2]
1

a12 = ᾱ
[2]
2

2
(a2 − b2)Jn ᾱ

[2]
2 + 2N

..
Jn ᾱ

[2]
2

a13 = 2Nin ᾱ
[2]
3

.
Jn ᾱ

[2]
3 − Jn ᾱ

[2]
3

a14 = − ᾱ
[1]
P

2 − λ[1]Jn ᾱ
[1]
P + 2µ[1]..Jn ᾱ

[1]
P

a15 = − ᾱ
[1]
P

2 − λ[1]H(1)
n ᾱ

[1]
P

+2µ[1] ..H
(1)
n ᾱ

[1]
P

a16 = −2µ[1]in ᾱ
[1]
S

.
Jn ᾱ

[1]
S − Jn ᾱ

[1]
S

a17 = −2µ[1]in ᾱ
[1]
S

.
H

(1)
n ᾱ

[1]
S − H(1)

n ᾱ
[1]
S

(A1)

a21 = 2Nin ᾱ
[2]
1

.
Jn ᾱ

[2]
1 − Jn ᾱ

[2]
1

a22 = 2Nin ᾱ
[2]
2

.
Jn ᾱ

[2]
2 − Jn ᾱ

[2]
2

a23 = N − ᾱ
[2]
3

2..
Jn ᾱ

[2]
3 + ᾱ

[2]
3

.
Jn ᾱ

[2]
3

−n2Jn ᾱ
[2]
3

a24 = 2µ(1]in ᾱ
[1]
P

.
Jn ᾱ

[1]
P − Jn ᾱ

[1]
P

a25 = 2µ(1]in ᾱ
[1]
P

.
H

(1)
n ᾱ

[1]
P − Hn(1) ᾱ

[1]
P

a26 = µ(1] ᾱ
[1]
S

2..
Jn ᾱ

[1]
S − ᾱ

[1]
S

.
Jn ᾱ

[1]
S

+n2Jn ᾱ
[1]
S

a27 = µ(1] ᾱ
[1]
S

2 ..
H

(1)
n ᾱ

[1]
S − ᾱ

[1]
S

.
H

(1)
n ᾱ

[1]
S

+n2H(1)
n ᾱ

[1]
S

(A2)

a31 = ᾱ
[2]
1

.
Jn ᾱ

[2]
1

a32 = ᾱ
[2]
2

.
Jn ᾱ

[2]
2

a33 = inJn ᾱ
[2]
3

a34 = −ᾱ
[1]
P

.
Jn ᾱ

[1]
P

a35 = −ᾱ
[1]
P

.
H

(1)
n ᾱ

[1]
P

a36 = −inJn ᾱ
[1]
S

a37 = −inHn ᾱ
[1]
S

(A3)

a44 = α
[1]
P

2 − λ[1]Jn α
[1]
P + 2µ[1]..Jn α

[1]
P

a45 = α
[1]
P

2 − λ[1]H(1)
n α

[1]
P + 2µ[1] ..H

(1)
n α

[1]
P

a46 = 2µ[1]in α
[1]
S

.
Jn α

[1]
S − Jn α

[1]
S
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a47 = 2µ[1]in α
[1]
S

.
H

(1)
n α

[1]
S − H(1)

n α
[1]
S

a48 = R[0] 2
H(1)

n α[0]

a54 = 2in α
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[1]
S

(A7)

a81 = µ1 − 1 ᾱ
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.
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2

.
Jn ᾱ
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with α
[1]
j = k

[1]
j R[0], ᾱ

[1]
j = k

[1]
j R[2], j = P (compres-

sional), S (shear), and ᾱ
[2]
i = k

[2]
i R[2], i = 1, 2, 3.
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