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Introduction

The determination of the effective acoustic parameters of sound absorbing porous materials has receivedquite some attention during the last decades. However, both in lowand ultrasonic frequencyranges, the issue of accurately determining the elastic parameters needs further attention. The difficulty lies in the fact that frame materials are often viscoelastic, i.e. the Lamé coefficients are frequencyd ependent. Traditional quasi-static or vibrational techniques enable the recovery of these elastic parameters [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: spring-likem ethod[END_REF][START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: rod-likem ethod[END_REF][START_REF] Leclaire | The vibrational response of ac lamped rectangular porous plate[END_REF][START_REF] Etchessahar | Frequencydepencence of elastic properties of acoustic foams[END_REF] in the lowf requencyr ange (upt o5 00 Hz-1 kHz), butt here is aneed for extension of the accessible frequencyrange. Recently [START_REF] Boeckx | Investigation of the phase velocities of guided acoustic wavesinsoft porous layers[END_REF][START_REF] Boeckx | Guided elastic wavesinporous materials saturated by air under lamb conditions[END_REF], the frequencydependence of the elastic parameters of the frame of aporoelastic material wasdetermined in the kHz range from the analysis of the wave propagation in aporoelastic semi-infinite half space (Rayleigh wave), in aporoelastic plate (Lamb waves) and in aporoelastic plate on arigid surface (Lamb-likewaves).

Poroelastic materialsa re typically confined in ac ylindrical holder during the process of their manufacturing and testing. The monitoring of the poroelastic parameters while the material is changing from al iquid mixture to a solid foam during the polymerization process, as well as the evaluation of the final elastic modulus of the foam materials is of considerable interest for foam manufacturers.

The phase velocities of the wavesa ssociated with modes are also studied when the porous cylinder is coated with an elastic shell. The latter simulates the container in which the polymerisation stands. This article is afirst step toward the determination of the variation of the elastic properties, mainly the shear modulus and the density of the frame, during the manufacturing process of the porous sample. During the liquid phase, the cells are closed and the foam behavesasavisco-elastic material. At the end of the process, the cells are open and the foam behavesasaporoelastic material. The manufacturer knows when the foam has raised and we will monitor the rising of the foam at the end of the process.

With this goal, the approach in [START_REF] Boeckx | Investigation of the phase velocities of guided acoustic wavesinsoft porous layers[END_REF][START_REF] Boeckx | Guided elastic wavesinporous materials saturated by air under lamb conditions[END_REF] is further explored, and extended to acylindrical geometry.Rayleigh wavesin elastic cylinders [START_REF] Clorennec | Analysis of surface acoustic wave propagation on ac ylinder using laser ultrasonics[END_REF] or in acoated elastic cylinder [START_REF] Kawald | Investigation of the dispersion relations of surface acoustic wavesp ropagating on al ayered cylinder[END_REF] were extensively studied. To our knowledge, the present study is the first one that deals with Rayleigh wavesinporoelastic cylinders.

Contrary to its homologue in asemi-infinite half space, in circular shape configurations, the Rayleigh wave,which corresponds to the lowest velocity mode as evaluated from the dispersion relations, is dispersive.T he effect of dispersion is particularly visible at lowf requencies, where the wavelength becomes of the order of the radius. The high frequencylimit of the velocity dispersion curvetends to the Rayleigh velocity of the material in as emi-infinite half-space. Note that this dispersion is geometric and it should be distinguished from the material dispersion, e.g. due to porosity.While the dispersive Rayleigh wave propagates along the surface of the cylinder,t he energy of whispering gallery waves, which travela th igher velocities, and exist due to the curvature of the surface, is more concentrated in the inner part of the cylinder [START_REF] Royer | Theoretical and experimental investigation of rayleigh waveso nc ylindrical and spherical surfaces[END_REF]. Whispering gallery wavesc an be represented in ar ay model as the result of multiple reflections around the inner surface of the cylinder.Belowacut-off frequencytheyare highly damped.

Cylindrical porous materials were already studied in geophysics. Schmitt studied the process of drilling holes, which modifies the physical properties of the formation close to the borewall, leading to different coaxial, saturated porous shells [START_REF] Schmitt | Effects of radial layering when logging in saturated porous formations[END_REF].

In section 2, the calculation model that enables the determination and solution of the dispersion relation for wavesi na(coated)p oroelastic cylinder is briefly described. Dispersion curves are simulated, and the possible extraction of the poroelastic modulus from the phase velocity measurements is evaluated. Results of as ensitivity analysis, in which the dependence is determined of the wave velocity,inparticular for the dispersive Rayleigh wave,onthe shear modulus and the density of the frame, are presented in section 3. Also the influence of the elastic coating is investigated. Finally,t he results of experiments performed by twot echniques on ap oroelastic circular cylinder are presented and compared with the theoretical predictions.

Wavesinacircular porous cylinder with and without elastic coating

As an extension of the study of circumferential wavesi n layered elastic cylinders [START_REF] Va Lle | Guided circumferential waves in layered cylinders[END_REF], in this section we numerically determine the frequencyd ependence of the phase velocities of whispering gallery wavesa nd of the dispersive Rayleigh wave in aporous cylinder with and without an elastic shell coating. Forevery frequency, the velocities of different modes are found by searching the roots of a characteristic determinant, which is obtained by combining the wave equations with the boundary conditions that characterize the geometrical configuration, in the absence of asource. After projection on an appropriate basis and assuming sinusoidal solutions, most of the acoustic problems are reduced to the solution of al inear system of the form D • U = S,where U is the unknown vector, D is the propagation matrix and S the solicitation vector.Inthe absence of ad riving source, S = 0,n on-trivial solutions (the so called modes), are obtained when det (D) = 0. The roots of this determinant, which contains the material properties and is afunction of the wavenumber and frequencyof the modes, then lead to the relation between the phase velocity and frequency(c, ω)ofthe modes. In the particular case of circular cylindrical geometry,these roots are pairs (n, ω)a nd the projection on the basis explicitly provides ap ropagation matrix that depends on n,t he order of the Hankel and Bessel functions involved. 

Description of the configuration

The geometrical configuration is assumed to be invariant with respect to the Cartesian coordinate x 3 .

Figure 1depicts across-sectional plane viewofthe configuration. The domain Ω [0] represents the fluid medium around the porous cylinder M [0] .Ap olar coordinate system (r, O, θ)isused to, with its origin in the center of the cylinder (Ω [2] )ofradius R [2] filled with poroelastic material M [2] saturated by the fluid M [0] .T he cylinder is either in welded contact with the domain Ω [0] through the interface Γ,o ri nw elded contact with an elastic coating M [1] ,o ccupying the domain Ω [1] of thickness h through the interface Γ 12 .Inthe case of acoated cylinder, Ω [1] is in welded contact with Ω [0] through the interface Γ at R [2] +h. The radius of Γ will be denoted by R [0] for both configurations.

Field representations and material modeling

Rather than to solved irectly for ā(x,t), ā(x,t)b eing either avector or ascalar possibly denoting the time dependent pressure, displacement, scalar or vector potentials, etc., the following analysis is done for sinusoidal solutions. In the frequencyd omain we work with the Fourier transform, a(x,ω), related to ā(x,t)t hrough ā(x,t) = ∞ -∞ a(x,ω)e -iωt dω.H enceforth, we also drop the ω dependence in a(x,ω), so as to denote the latter a(x).

In Ω [0] ,the scattered pressure field can be written as

p [0] (x) = n∈Z B n H (1) n k [0] r e inθ , (1) wherein H 
(1)

n is the n-th order Hankel function of first kind, k [0] is the wavenumber in Ω [0] ,a nd B n are the scattered coefficients by the circular cylinder.

When an elastic coating is considered, the scattered scalar φ [1] and vector ψ [1] = ψ [1] i 3 potentials in Ω [1] ,r elated to the displacement u [1] through u [1] = ∇φ [1] + ∇× ψ [1] takethe forms φ [1] 

(x) = n∈Z C n J n k [1] P r + D n H (1) n k [1]
P r e inθ , ψ [1] 

(x) = n∈Z E n J n k [1] S r + F n H (1) n k [1]
S r e inθ , (2) wherein J n is the n-th order Bessel function, k

[1] P = ω/c [1] P and k [1] S = ω/c [1]
S are the wave numbers associated with compressional and shear waves, and C n , D n , E n and F n the coefficients of the diffracted potentials in Ω [1] .The constitutive equation in Ω [1] can be written in the form σ ij (x) = λ [1] e mm δ ij + 2µ [1] e ij = -λ [1] k [1] δ ij + 2µ [1] 

[1] P 2 φ
e ij , (3) 
wherein the Einstein summation is implicit, δ ij is the Kronecker delta, σ the stress tensor, e = ∇u [1] + ∇ T u [1] /2 the strain tensor,and λ [1] and µ [1] are the Lamé coefficients of M [1] .

In Ω [2] ,t he scattered scalar φ [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: rod-likem ethod[END_REF] 1 and φ [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: rod-likem ethod[END_REF] 2 and vector ψ [2] = ψ [2] i 3 potentials, related to the displacements u [2] in the solid phase through u [2] = ∇(φ

[2] 1 +φ [2]
2 )+∇×ψ [2] = ∇φ [2s] +∇×ψ [2] and U [2] in the fluid phase through U [2] = ∇(µ 1 φ

[2] 1 + µ 2 φ [2]
2 ) + ∇×µ 3 ψ [2] = ∇φ [2f ] + ∇×µ 3 ψ [2] takethe forms

φ [2] 1 (x) = n∈Z G n J n k [2] 1 r e inθ , φ [2] 2 (x) = n∈Z M n J n k [2]
2 r e inθ , ψ [2] 

(x) = n∈Z O n J n k [2]
3 r e inθ , (4) wherein k [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: rod-likem ethod[END_REF] i (i=1, 2, 3) are the wave numbers associated respectively with the so-called fast, slowand shear waves, and G n , M n ,a nd O n are the coefficients of the diffracted potentials inside the cylinder.T he expressions of µ i and k [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: rod-likem ethod[END_REF] i (i=1, 2, 3) can be found in [START_REF] Biot | The elastic coeffecients of the theory of consolidation[END_REF]. The constitutive relations in Ω [2] read as

σ s ij (x) = [(P -2N) e mm + Qε mm ] δ ij + 2Ne ij = a 1 k [2] 1 2 φ [2] 1 + a 2 k [2] 2 2 φ [2] 2 + 2Ne ij , σ f ij (x) = [Qe mm + Rε mm ] δ ij = -b 1 k [2] 1 2 φ [2] 1 -b 2 k [2] 2 2 φ [2] 2 = φp [2] , (5) 
wherein

a i = 2N -P -Qµ i and b i = Q + Rµ i , i = 1, 2,
and ε = ∇U [2] + ∇ T U [2] /2. The expressions of R, Q, and

P are[12] R = φK f , Q = R(1 -φ) φ , ( 6 
) P = (1 -φ) (1 -φ) -K sm /K s K s + φK s /K f K sm (1 -φ) -K sm /K s + φK s /K f + (4/3)N,
where K f is the compressibility of the saturating fluid, which is in considered to be identical to the ambient fluid, i.e. the air medium. K sm and K s = K sm /(1-φ(Q+R)/R) are respectively the compressibility of the frame and of the solid material, N is the shear modulus and φ the porosity. Yo ung'sm odulus E and Poisson'sr atio ν,r elated to N, and K sm through N = E/2(1+ν), K sm = EN/(3(3N-3)) are used as an alternative to E and N.

The thermal and viscous losses are accounted for by use of the Johnson-Champoux-Allard model [START_REF] Johnson | Theory of dynamic permeability and tortuosity in fluid-saturated porous media[END_REF][START_REF] Llard | Newe mpirical equations for sound propagation in rigid frame porous materials[END_REF], which involves the tortuosity α ∞ ,t he viscous (Λ)a nd thermal (Λ )characteristic lengths and the flowresistivity σ.

Circular poroelastic cylinder saturated by air

Since M [0] is afluid medium and M [2] is aporoelastic material, the normal total stress, pressure and normal component of the displacement should be continuous across Γ,

   σ s rr (R [0] ,θ)+σ f rr (R [0] ,θ)+p [0] (R [0] ,θ) = 0, σ s rθ (R [0] ,θ) = 0, -σ f rr (R [0] ,θ)/φ -p [0] (R [0] ,θ)) = 0, u [2] r (R [0] ,θ)+w [2] r (R [0] ,θ)-U [0] r (R [0] ,θ) = 0, (7) 
wherein w [2] = φ(U [2] -u [2] )i st he relative solid-fluid displacement [START_REF] Bourbie | Acoustics of porous media[END_REF].

Introducing the proper field and potential expressions, equations ( 1) and ( 4),inequation [START_REF] Clorennec | Analysis of surface acoustic wave propagation on ac ylinder using laser ultrasonics[END_REF],projecting the latter on the appropriate basis, i.e. 2π 0 •×e -ilθ dθ and making use of the orthogonality relation 2π 0 •×e i(n-l)θ = 2πδ ln ,lead, after rearrangement, to apropagation matrix

D =     a 11 a 12 a 21 /N a 22 /N a 31 d 1 a 32 d 2 b 1 α [2] 1 2 J n α [2] 1 b 2 α [2] 2 2 J n α [2] 2 (8) ••• a 13 R [0] 2 H (1) n α [0] a 23 /N 0 a 33 d 2 -α [0] . H (1) n α [0] / k [0] 2 K [0] 0 -R [0] 2 φH (1) n α [0]     
with the unknown column vector U = G n ,M n ,O n ,B n formed by the diffraction coefficients of each domain involved in the configuration. In [START_REF] Kawald | Investigation of the dispersion relations of surface acoustic wavesp ropagating on al ayered cylinder[END_REF],

d i = 1 + φ (µ i -1), i = 1, 2, α [j] i = k [j]
i R [0] , i = 1, 2and j = 0, 2, and K [0] the compressibility of M [0] are introduced. The expression of the matrix elements are reported in Appendix 5.

Circular poroelastic cylinder saturated by air and coated with an elastic material

Since M [0] is afl uid medium and M [1] is an elastic material, the normal stress and normal component of the displacement should be continuous across Γ,

   σ [1] rr (R [0] ,θ)+p [0] (R [0] ,θ) = 0, σ [1] rθ (R [0] ,θ) = 0, u [1] r (R [0] ,θ)-U [0] r (R [0] ,θ) = 0. (9)
Since M [1] is an elastic material and M [2] is aporoelastic material, the normal total stress and the displacements should be continuous across Γ 12 ,    σ s rr (R [2] ,θ)+σ f rr (R [2] ,θ)-σ [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: spring-likem ethod[END_REF] rr (R [2] ,θ) = 0, σ s rθ (R [2] ,θ)-σ [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: spring-likem ethod[END_REF] rθ (R [2] ,θ) = 0, u [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: rod-likem ethod[END_REF] r (R [2] ,θ)-u [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: spring-likem ethod[END_REF] r (R [2] ,θ) = 0, u [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: rod-likem ethod[END_REF] θ (R [2] ,θ)-u [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: spring-likem ethod[END_REF] θ (R [2] ,θ) = 0, u [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: rod-likem ethod[END_REF] r (R [2] ,θ)-U [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: rod-likem ethod[END_REF] r (R [2] ,θ) = 0. [START_REF] Schmitt | Effects of radial layering when logging in saturated porous formations[END_REF] Proceeding as in section 2.3, the propagation matrix becomes 

D =            a 11 a
           (11)
with the unknown column vector

U = G n ,M n ,O n ,B n ,C n ,D n ,E n ,F n
formed by the diffraction coefficients of each domain involved in the configuration and the expression of the matrix elements giveninthe Appendix 5.

Numerical evaluation of the roots of the dispersion curves

The determinant of D(n, ω)w as calculated as af unction of frequency ω = 2πf and of the order of the Bessel and Hankel functions n.T he pairs (ω min , n min )f or which |det (D(n, ω)) | is minimum typically correspond with the zeros of the determinant. The phase velocity v of the corresponding modes can then be evaluated as v = ω min R/n min in the case of aporoelastic cylinder,and

as v = ω min (R + h/2)(1 + h 2(R+h/2
) )/n min in the case of a porous cylinder covered by an elastic coating [START_REF] Kawald | Investigation of the dispersion relations of surface acoustic wavesp ropagating on al ayered cylinder[END_REF].

Forn on dissipative materials, the minima of |det(D)| correspond to the roots of det(D) = 0because these roots are real, with the exception of leakym odes. Ford issipative materials, such as poroelastic foams, the roots of det(D) = 0a re complex. Considering ad issipative material as ap erturbation of an on-dissipative one, dissipation can be accounted for by introducing complexs hear modulus and phase velocities. As ar esult, the roots of det(D) = 0are then shifted from the real axis in the complexp lane. Ac lassical wayt os olvet he dispersion equation would imply looking for ac omplexo rder of Bessel and Hankel funstions n.H owever,e valuating these functions is not straightforward and the involved calculation time makes this approach rather cumbersome. Most of the available routines enable the evaluation of Bessel and Hankelfunctions of integer or real order,but none of them enable their evaluation for complexo rder.F or this reason, we have chosen to approximate the real part of the phase velocity by using the expressions above with pairs (ω min , n min )that minimize |det(D)|.

Numerical results and discussion

As at ypical poroelastic material, we have chosen for the current study the material Fireflex( Recticel, Wetteren, Belgium). Va lues of the parameters of this material were determined by traditional methods [START_REF] Allard | Propagation of sound in porous media: Modelling sound absorbing materials[END_REF][START_REF] Allard | Frame borne surface wavesi na ir-saturated porous media[END_REF] and are summarized in Table I. The radius of the cylinder was R [2] = 75 mm. The Rayleigh wave velocity of this material in ap lane, semi-infinite configuration c R is 38 m/s. This value wasd etermined by means of the method described in [START_REF] Boeckx | Investigation of the phase velocities of guided acoustic wavesinsoft porous layers[END_REF][START_REF] Allard | Frame borne surface wavesi na ir-saturated porous media[END_REF].

Numerical results forporous cylinder saturated by air

The frequencydependence of the phase velocity of dispersive Rayleigh and whispering gallery waves, as calculated with the help of the previously described method, is shown in Figure 2. Below1 500 Hz, the geometric dispersion of the dispersive Rayleigh wave is clearly noticeable, and at high frequencies the velocity tends to ≈ 40 m/s, in correspondence with the value for c R mentioned above.

In the following, we address the influence of the Biot parameters on the phase velocities of the wavesassociated with the modes. One by one, parameters are varied, while keeping the other parameters fixed.

The dispersion curves turn out to be quasi insensitive to variations of the flowr esistivity between 3000 Ns.m -4 and 200000 Ns.m -4 (Figure 2a). This is not surprising, since the energy of these waves, particularly the dispersive Rayleigh wave,ismainly carried by the skeleton. The sensitivity of the dispersion curves on the porosity is shown in Figure 2. Only for porosities smaller than 30%, asmall effect of maximum 4% occurs in the phase velocity of the modes. The lower order modes of the poroelastic Fireflex cylinder are approximated very well by the ones of a(virtual)non-porous visco-elastic cylinder with the same elastic parameters and with density taken equal to the density of the frame, as shown in Figure 3. There is al ittle difference for higher order modes around their cut-off frequency. The fact that the differences are small is due to the fact that the material is highly porous and the air-solid interaction is weak. The theory with aporous layer is more general and is worth studying as it would apply to low porosity materials or materials saturated by aheavier fluid.

Figure 4s hows that the dispersion curves are strongly sensitive to variations of the shear modulus (a) as well as to variations of the density (b) of the frame, and only weakly sensitive to the longitudinal modulus of the frame, in accordance with [START_REF] Boeckx | Guided elastic wavesinporous materials saturated by air under lamb conditions[END_REF] for horizontal geometries. Figure 4a shows that when the shear modulus is decreased with 50%, the Rayleigh velocity decreases from 165 m/s to 50 m/s. Figure 4b shows that when the density is decreased by a factor 70%, the Rayleigh velocity increases from 22 m/s to 42 m/s.

It is well known that the high frequencyl imit of the Rayleigh wave velocity is mainly determined by the shear velocity,w hich, for viscoelastic materials, is equal to the square root of the ratio of the shear modulus and the density.Asaresult, quite often effects on the dispersion curves due to changes in shear modulus can be compensated by changes in density.F igure 5s hows that indeed the effect of shear modulus and density on the dispersion curves is highly degenerate: when the shear modulus and density are simultaneously doubled, then in the case of aporous cylinder of Fireflexwithout coating, then the dispersion curves remain unchanged. Forthe coated cylinder,there is aminor difference at lowf requencies. This degeneracyi sn ot problematic, since for most applications alternative techniques can be used to determine the density.T he guided acoustic wave method can then be used to determine the shear modulus only,using an apriori determined value for the density.T he high sensitivity of the considered waves to the value of the shear modulus opens nice perspectives to use this parameter as an indicator during the transition between the fluid to the solid phase while afoam is rising.

Numerical simulations foraporous cylinder with an elastic coating

We have performed as imilar analysis for ac oated foam cylinder,w hich is encountered quite frequently in manufacturing situations. Due to the presence of the elastic coating, it can be expected that the sensitivity is deteriorated due to the coating layer being typically stiffer than the foam of interest, thus dominating the Rayleigh wave propagation characteristics. However, for sufficiently low frequencies, the wavesa re expected to penetrate deeply into the foam, thus becoming sensitive to its properties. Twoc oatings were considered with h = 1mmt hickness, one made up of poly(methyl metacrylate)( PMMA) (c [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: spring-likem ethod[END_REF] P = 2740 m/s, c [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: spring-likem ethod[END_REF] S = 1120 m/s and ρ [1] = 1180 kg/m 3 ) and one of steel (c [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: spring-likem ethod[END_REF] P = 6320 m/s, c [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: spring-likem ethod[END_REF] S = 3230 m/s and ρ [1] = 7700 kg/m 3 ). Simulations were performed for a poroelastic cylinder of Fireflexw ith as hear modulus of N = 5 × 10 4 Pa and N = 1 × 10 5 Pa,Figure 6. Due to the coating, the wave mode that tends at high frequencies to the Rayleigh wave velocity of the bulk material disappears. However, higher order wave modes still exist. Since these modes are becoming faster with increasing shear modulus of the foam, it can be concluded that theycan be associated with modified whispering gallery wavesofthe foam, and also that analyzing the dispersion of these modes allows to elastically characterize the foam. The possibility for characterizing the foam is thus not affected by the presence of asteel or PMMA coating. The proposed method to deter- mine or monitor the foam density and shear modulus thus remains effective when the foam is contained in acylindrical tube e.g. during the polymerization process.
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Experimental validation

Experimental methods

Twoexperimental methods were used to determine the dispersion curves of the modes propagating in the system.

As chematic overviewo ft he experimental setup used to determine the dispersion curves of the modes propagating in the system is depicted Figure 7. Using ashaker (Qsources), circumferential waveswere generated on the surface of aporous sample. The normal component of the surface velocity wasdetected by aLaser Vibrometer (Polytec OFV-505), at different distances from the generation site. Acylindrical Fireflexsample of radius 7.5cmwas placed centered on acircular rotating plate. The shaker wasfirmly attached to the sample so that there wasn or elative motion between them. It wasfairly small and light and could provide signals at frequencies up to 10 kHz. The distance between the source and the detection point could be varied by rotating the set shaker/sample, while keeping the laser beam unchanged. The rotation angle of the sample wasp recision controlled by means of ac able connecting the periphery of the circular disk to acomputer controlled linear translation stage (a linear stepping motor). Anarrowstrip of steel, with dimensions 0.5 cm × 3cm, wasglued to the shaker,thus acting as aline source generating circumferential wavesalong the surface of the cylindrical sample. The strip waso riented parallel to the axis of the cylinder.Astrip of reflecting tape with negligible thickness wasg lued tangentially on the surface of the cylinder so that the circumferential wavesc ould be detected by the vibrometer at different angular positions along the surface.

Pulse excitation

In afi rst configuration, transient wavesw ere excited by means of apulser-receiver( Panametrics model 5058 PR) sending ashort pulse (with alength of 10 -4 sand aheight of 2.5 V) to the shaker.F igure 8s hows some waveforms detected at different distances from the generation site. The diagonal line clearly shows the time shift of the signal. The distance between twopulses is Δx = 0.028 mm. This configuration is av ariant of the one used in [START_REF] Boeckx | Guided elastic wavesinporous materials saturated by air under lamb conditions[END_REF]. In this method, by recording the signals on ad igital oscilloscope (Lecroy9 310M)a tr egularly spaced distances from the excitation source, at wo-dimensional signal matrix S(x, t)isacquired. By appropriately choosing the resolution in time and in space, dispersion curves can be di- rectly obtained by taking the dual time and space Fourier Transform, thus providing the 2D spectrum S(k, ω).

The maximum curves in the 2D map of |S(k, ω)| correspond with the dispersion curves k(ω)ofrespective wave modes. Figure 9s hows an example of an experimentally obtained dispersion curve, from which the phase velocities of the modes could be determined by c = ω/k.T he keya dvantage of this technique is that it simultaneously provides the dispersion curves of several modes, even if the velocities of the modes are close to each other.

Sine burst excitation

In asecond configuration, afunction generator provided a rather narrowband sinusoidal burst (with duration of 20T , with T = 1/f the sinusoidal period and f the frequency) to the shaker.A lso in this method the wavesc an be detected by al aser Doppler vibrometer and recorded by an oscilloscope. The phase velocity of aw avec an be determined by determining the differences in arrivaltime of the wavesc ollected at several distances (Δx = 2mm) from the source, cfr Figure 10.

The slope of the curve, which waso btained by plotting the recording distances Δx as afunction of the arrival times Δt,w as used to determine the phase velocity using These arrivaltimes were estimated by cross correlating the signal at different locations with the one obtained on the detection position closest to the source (Figure 10). An example of al inear fit performed to determine the phase velocity is plotted Figure 11. This method provides abetter signal to noise ratio than the pulse method, which is expected to be very valuable for highly damping poroelastic foams. However, the method is not applicable when modes have very similar velocities, since in that case the respective waveforms are hard to distinguish in time domain ( [START_REF] Boeckx | Investigation of the phase velocities of guided acoustic wavesinsoft porous layers[END_REF]).

Experimental results

Experimental dispersion curves as obtained with the pulse excitation method ( )a nd with the burst excitation method ( )are compared in Figure 12 for the Fireflexporoelastic cylinder under investigation. The experimental data are compared with simulated dispersion curves calculated on the basis of the literature values listed in Table I. In the analyzed frequencyrange, the dispersion curves match quite well. Due to the large damping and thus rather short accessible distance range, it wasdifficult to accurately extract data at lower wave numbers and frequencies. Both experimental methods enable the evaluation of the dispersive Rayleigh wave for frequencies between 1kHz and 4kHz. Forh igher frequencies, the burst method cannot be used, due to the proximity of several modes in velocity and thus in arrivalt ime of the respective bursts, which results in overlapping. In the asymptotic high frequencyr egime, both the theory and experiments tend to aR ayleigh velocity around 40 m/s.

Extraction of the frequency dependence of the shear modulus

The simulations above have shown that both the shear modulus and density significantly influence the phase velocities, while the other parameters only weakly affect the dispersion curves.

Since the density can be determined simply by other methods and since its influence is degenerated with the influence of the shear modulus, here we focus on the experimental extraction of the shear modulus. This is done by performing ao ne-parameter minimization of ac ost function involving the available experimental data for the lowest order mode.

The common wayt or ecovert he shear modulus would be to minimize the sum of squared differencies between the measured velocities and the calculated velocities. This procedure requires the highly time consuming evaluation of the root(s) of the determinant at each iteration. Here, we followa na lternative approach. Givent hat the dispersion curves are found by minimizing F = |det(D(ω, v, N))|, and that the experimental value for v exp for every given ω exp is known, N,the parameter of interest, can be found for every frequencybyminimizing the function F (N)for that frequencya nd corresponding experimental velocity. An example of this procedure is illustrated in Figure 14 for f = 1.1 kHz.

The shear moduli found with this numerical inversion method (Figure 14)a re roughly frequencyi ndependent and correspond reasonably well with the literature value of Table I.

Conclusion

Atheoretical model wasdeveloped for the numerical evaluation of the phase velocities of modes in the configuration of aporoelastic cylinder with and without elastic coating. Simulations were made with ap orous cylinder of Fireflexand an elastic coating of steel and PMMA. The influence of the Biot parameters of the poroelastic material on the dispersion curves of the modes wasstudied. Acoustic and structural parameters, i.e. the porosity,t he tortuosity, the thermal and viscous characteristic lengths and flowresistivity were found to have no or small influence on the phase velocities of the dispersive Rayleigh and whispering gallery waves. On the other hand, the shear modulus and density of the foam skeleton do have alarge and rather degenerate influence on the phase velocities of the modes, both for ab are cylinder and for ac ylinder coated with an elastic shell. Hence the phase velocity determination in (coated)cylindrical sample configurations givesasuitable waytoexperimentally determine and industrially monitor the shear modulus of poroelastic foams during the production process.

Both burst excitation and pulse excitation were used to determine the phase velocities of the wavesp ropagating along the surface of aF ireflexp orous cylinder with and without coating. Good agreement wasfound between the experimental results and the numerical simulations between 1kHz and 4kHz.

Appendix Expression of the elements of the driving agent matrices

The matrix elements in the determinant of the boundary conditions from section 2.4 for ap orous cylinder with (without)anelastic coating are P 2 -λ [1] J n ᾱ[1] P + 2µ [1] ..

a 11 = ᾱ[2]
J n ᾱ [1] P a 15 = - ᾱ[1] P 2 -λ [1] H (1) n ᾱ[1] 
P +2µ [1] .. H

P a 16 = -2µ [1] in ᾱ [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: spring-likem ethod[END_REF] S .

J n ᾱ[1] S -J n ᾱ[1]
S a 17 = -2µ [1] in ᾱ [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: spring-likem ethod[END_REF] S . H 3 a 24 = 2µ (1] in ᾱ [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: spring-likem ethod[END_REF] P .

J n ᾱ[1]

P -J n ᾱ [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: spring-likem ethod[END_REF] P a 25 = 2µ (1] in ᾱ [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: spring-likem ethod[END_REF] P . H

(1) n

ᾱ [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: spring-likem ethod[END_REF] P -H n (1) ᾱ [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: spring-likem ethod[END_REF] P a 26 = µ (1] a 44 = α

[1] P 2 -λ [1] J n α

[1] P + 2µ [1] .. J n α

[1] P a 45 = α

[1] P 2 -λ [1] H

(1) n α

[1] P + 2µ [1] .. H

(1) n α

[1] P a 46 = 2µ [1] in α a 47 = 2µ [1] in α n α [0] a 54 = 2in α 

k [0] 2 K [0]
. H

(1)

n α [0] (A6) j R [0] ,ᾱ

a 71 = inJ n ᾱ[2]
[1] j = k [1]
j R [2] , j = P (compressional), S (shear),and ᾱ [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: rod-likem ethod[END_REF] i = k [START_REF] Pritz | T ransfer function method for investigating the complexm odulus of acoustic materials: rod-likem ethod[END_REF] i R [2] , i = 1, 2, 3.

Figure 1 .

 1 Figure 1. Cross-sectional plane viewo ft he configuration of a poroelastic cylinder coated with an elastic shell.

Figure 2 .

 2 Figure 2. Phase velocity c of the Rayleigh and of the whispering gallery wavesa sc alculated for aF ireflexc ylinder (material parameters: Table I) (-).T he symbols represent curves obtained for one of the parameters varied, the other ones kept fixed: (a) sensitivity to the flowresistivity (σ = 3000Ns.m -4 (o), σ = 20000Ns.m -4 ( ), and σ = 200000Ns.m -4 ( )),(b) sensitivity to the porosity: (φ = 0(o), φ = 0.3( ), φ = 0.95 ( )).

Figure 3 .

 3 Figure 3. Simulation with aporous cylinder of Fireflex(-) and visco-elastic cylinder with density equal to the density of the frame material (---).

Figure 4 .

 4 Figure 4. Sensitivity of the phase velocity of the dispersive Rayleigh and of the lowest three whispering gallery wavesa s calculated for aF ireflex-material-likec ylinder: (a) variation of the shear modulus: N = 10 5 Pa, ρ =32 kg/m 3 (---)a nd N = 5 × 10 4 Pa, ρ =32 kg/m 3 (-) and (b) variation of the density: ρ =30 kg/m 3 , N = 56000 Pa (---)a nd ρ =100 kg/m 3 , N = 56000 Pa (-).

Figure 5 .

 5 Figure 5. Dispersion curves for aFireflexcylinder without coating (a),aFireflexcylinder with PMMA coating (b) and aFireflex cylinder with steel coating (c).T he shear modulus and density are multiplied with the same factor: N = 25000 Pa and density 16 kg.m -3 (-), N = 50000 Pa and density 32 kg.m -3 (---).

Figure 6 .

 6 Figure 6. Phase velocity of the lowest three modes of aFireflex cylinder of N = 10000 Pa, ρ =32 kg/m 3 (---)a nd of N = 50000 Pa, ρ =32 kg/m 3 (-):( a) coated with PMMA and (b) coated with steel.

Figure 7

 7 Figure 7. a) Schematical measurement setup for the determination of the phase velocity of the modes. b) Picture of themeasurement setup.

Figure 8 .

 8 Figure 8. Example of 3waveforms propagating along the surface of aporoelastic cylinder in the case of pulse excitation. The signals were detected at different distances from the source in steps of Δx = 0.028 mm. The curves are plotted with an off-set for clarity.

Figure 9 .

 9 Figure 9. Example of dispersion curves from |S(k, ω)| for aFireflexcylinder.The line is amode of the Fireflexcylinder that can be detected. The triangles are the experimental data extracted from the result in in Figure 12.

Figure 10 .

 10 Figure 10. Example of a) response to sine bursts detected at various distances from the source (the steplength Δx is 2mm) and b) zoom on the time difference between the maxima. The curves are plotted with an off-set for clarity.

Figure 11 .

 11 Figure 11. Example of adistance (tothe first measurement point) versus time curvefor the determination of the phase velocity.

Figure 12 .

 12 Figure 12. Experimental ( pulse excitation and burst excitation)and theoretical (-) phase velocities for aFireflexcylinder.

Figure 13 .Figure 14 .

 1314 Figure 13. Evolution of F as af unction of the shear modulus. The minimum corresponds to the extracted shear modulus.
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Table I .

 I Parameters of the Fireflex(Recticel, Wetteren, Belgium), i.e. the poroelastic material studied in this paper.

	φ 0.95	α ∞ 1.42	σ (Ns/m 4 ) 8900	Λ (µm) 180
	Λ (µm) 360	N (Pa) 56000	E (Pa) 140000	ρ (kg/m 3 ) 32
	(a)			
	(b)			
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