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1 INTRODUCTIONS 

1.1 Resilience in water transportation systems 

Safety has been a major concern in water transporta-

tion due to the potentially hazardous and dangerous 

environment. The state-of-the-art technology has 

provided advanced equipment for waterborne navi-

gation and shore-side surveillance, yet the inherent 

complexity and the uncertainty in water transporta-

tion still make it a safety-critical system for the re-

searchers and practitioners.  

Risk is strongly featured in water transportation, 

and the study on the maritime risk analysis or as-

sessment has attracted sustained work for years. For 

this reason, risk analysis has attracted sustained 

work for years in the field of water transportation. 

Recently, resilience is receiving growing attention 

(Zio 2016). The resilience study analyzes the adverse 

situation with multiple facets rather than only from 

the angle of pre-event prediction. Strategic planning, 

pre-event preparedness and post-event recovery are 

all encompassed in the resilience study (Zobel et al. 

2014). Emphasis is placed on the capability of the 

system to withstand disruptions and the actions tak-

en to hedge against the damages or losses by absorp-

tion, adaption and restoration.  

This shift of paradigm in safety research is ex-

pected to bring forth profound influence upon the 

domain-specific research. Nevertheless, the study of 

resilience encounters similar difficulties as follows. 

The first challenge comes from the setup of the 

problem, i.e., how to formulate resilience for water 

transportation, which are human-intensive, loosely 

coupled system, with autonomous bodies (the ships) 

distributedly moving a large area. Some recent re-

search work has been carried out on resilience of wa-

ter transportation. John et al (2016) studied the resil-

ience of a seaport system by using Bayesian 

networks, with the CPT (conditional probability ta-

ble) being estimated by a fuzzy analytical hierarchy 

process; Praetorius et al (2015) investigated the re-

silience aspect of the VTS (Vessel Traffic Service) 

operation in maritime administration by using 

FRAM (Functional Resonance Analysis Method). 

The second challenge is the quantification of re-

silience. Results from theory exist (Ferrario & Zio 

2014) in the literature, yet the engineering applica-

tion to the transportation domain calls for a practical, 

explainable and suitable quantitative model such that 

the process and behavior of the system is clearly re-

flected(Gao et al. 2016). Currently, the resilience 

quantification is conceptually prescribed in terms of 

the system performance curve, but to compute such 

curve in compliance with multiple and interrelated 

factors, with uncertainties and evolution over time, 

is quite challenging.  
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ABSTRACT: The study of resilience has aroused significant interest in the literature recently. The domain-

specific applications of the concept have led to diverse definitions and characteristics described therein. In 

general, resilience is measured with respect to a system performance or figure-of-merit. Three foundational 

aspects have to be taken into consideration for this. Firstly, the description of the pre-, during and post- dis-

ruptive event should be built upon a model that can account for the evolution and intervention of the dynamic 

trajectory of the potential adverse event. Secondly, the subjective and epistemic nature of resilience analysis is 

to be reflected in the family of curves, which convey the knowledge of the analysts. Thirdly, resilience is de-

pendent upon the foreseen adverse scenarios, especially the stress of the disruptive event: thus, a spectrum of 

scenarios with varying profiles should be scrutinized. 



The third challenge relates to the pre-event as-

sessment. Resilience analysis can be applied as both 

pre-event and post-event assessment in which ex 

ante knowledge is indispensable because there usual-

ly do not exist absolute laws with which the induc-

ing factors can conform(Kaplan & Haimes 2001). 

Prior knowledge from past experience, and subjec-

tive judgement from analysts should be highly ac-

commodated in the evaluation model(Creaco et al. 

2014).  

To meet the above challenges, this paper proposes 

a network of factor model according to the function, 

component and structure analysis of water transpor-

tation systems. The contribution aims to build a way 

to formulate knowledge for obtaining resilience 

curve and its quantitative assessment.  

2 THE BACKGROUND 

2.1 The resilience and modeling of system evolution  

The ex ante resilience assessment should be con-

ducted in terms of more specific disruption. Figure 1 

illustrates the conceptual resilience curve proposed 

by Henry et al (2012). 

 
Figure 1. The conceptual resilience curve (Henry et al. 2012). 

  A resilient system should show a curve with shal-

low drop and a steep rise after the point of minimum 

system resilience is reached. However, this quantita-

tive description only conveys a conceptual basis for 

the analysis, and in order to obtain a more rigorous 

quantitative form, various aspects should be ad-

dressed, which including the system dynamics and 

modeling the uncertainty of system behavior under 

disruption. 

  Possibly relevant methodologies for quantification 

are DET (Dynamic Event Tree) (Hofer 2004), and 

the DBN (Dynamic Bayesian Networks) (Murphy  

2002). DET is utilized to analyze the stochastic 

events that occur during accidental evolution from 

an initial adverse event (Karanki et al. 2015). DBN 

is a time-sliced Bayesian network, in which the con-

ditional probability among the nodes is dependent 

upon the correlation of the factors not only in-slice 

but also cross-slice. Both DET and DBN models 

have been extended from their original static ver-

sions to model the discrete event (Mercurio & 

Podofillini, 2009). However, limitations exist for the 

two models. DET does not fully account for the in-

ter-restrictions among factors, and DBN does not 

explicitly indicate the time scale. Besides, DBNs as-

sume that the values of some of the nodes can be ob-

served, which is not the case for an ex ante study.  

The rest of the paper is organized as follows. Sec-

tion 3 discusses the methodology and proposes a 

model in response to the requirements; section 4 in-

troduces some of the properties of the model; section 

5 conducts numerical study by Monte Carlo simula-

tion and discusses the inclusion of knowledge; sec-

tion 6 summarizes the work and suggests the future 

research. 

3 MODELING THE CYCLE OF DISRUPTION IN 
WATER TRANSPORTATION 

3.1 The generic model of incident disposal  

Human-intensiveness in water transportation system 

implies that the interactions between the human and 

the software/hardware are closely interweaved, and 

that the decisions and actions from some key indi-

viduals can largely influence the overall situation. 

Moreover, the main decision/action entities in a con-

text of water transportation accident are the ship and 

the shore-side administration. Figure 2 illustrates the 

simplified process of parallel decision and action 

dynamics between the two entities, when confront-

ing an incident. The humans in the system mainly 

include the crews (at the ship-side) and the adminis-

trative personnel (at the shore-side). Decision objec-

tive refers to the aims of decision, and action plan re-

fers to the implementation options. 

 
Figure 2. Accident management model of the ship-shore coor-

dination.    

  Although the diagram above is structured with 

some resemblance to Bayesian networks by a DAG 

(Directed Acyclic Graph), the process would hardly 

be straightforwardly modeled by it, as traditional 

Bayesian network model does not support the dura-

tion of a status. In this regard, the following two lay-



er structure is proposed as a generic model, as is de- picted in Figure 3. 

 
Figure 3. An intuitive two layer structure of accident management. 

With the two layer structure, the process of the acci-

dent development is divided into two planes: the de-

cision plane (DP) and the evolution plane (EP). The 

decision plane is described by a series of Bayesian 

networks, which illustrate the logical dependence. 

The evolution plane is used to depict the evolving 

process by sequential state transitions.  

The idea behind is to create a plane that can ac-

commodate the system state transition over time, 

while the nodes in the original plane are regarded as 

transient nodes that do not reflect time factors. In 

Figure 3, the node S1 has logically direct interlace 

with T0. Obviously, there should be a time elapse 

between the time slice 0 and time slice 1, hence the 

two time slices are bridged by a continuum of state 

transitions. It is worth noting that, each time slice is 

a snapshot of the system, and that the time elapse is 

represented by the number of transitions in EP. 

3.2 Quantification  

The conventional BN is formulated as a DAG, in 

which each node stands for a variable. These varia-

bles represent the factors that make the building 

blocks of the whole reasoning map. We use a triplet 

 , ,G N E P  to denote the BN, where 

 1 2, , ...,X X XN N denotes the set of nodes, 

 , , ,i j i j i jX X X X X X  E N is the set of directed 

edges, and the directed pair ,i jX X indicates that is 

the parent of jX , or jX  is the child of iX . A node 

may have none or multi iX ple parents/children.  

Denoted by  jX =  ,i i jX X X E  the parent 

set of jX , then is the CPT set of all the nodes. For a 

node jX , each of its parent nodes  jX  can have 

impact on jX , and this dependence is depicted by the 

CPT. For a BN, the foundational property is given 

by the factoring of the joint probability distribution 

as follows: 

    1 2

1

, ,..., i i

i

p X X X p X X



N

N  

By placing a set of BNs in a sliced tandem, a 

general DBN is formed. In DBN, the directed edges 

can connect two nodes within a slice, or across two 

slices. Moreover, DBN allows a node at tth time slice 

to be conditionally dependent not only on its parents 

at the same time slice (intra-slice) but also on its 

parents and its own states at previous time slices (in-

ter-slice) (Khakzad 2015).  

The proposed two layer model is based on the 

DBN with some modifications. For the decision 

plane, the inter-slice dependence is allowed only in 

two consecutive slices. This assumption does not 

lose practical value because the epistemic cognitive 

capability of an analyst will decay sharply when ap-

plied to longer term reasoning. For the evolution 

plane, the sequential nodes can be regarded as an in-

ter-slice edge connecting two BNs.  

Referring to Figure 3, we use the italic font to in-

dicate the variables that are hosted in the corre-

sponding nodes. In the conventional BN, each node 

stands for exactly one variable. However, in real 

problems, if a combination of variables can be treat-

ed as one, it will help to make the model more con-

cise. Theoretically, there does exist an equivalent 

variable in the product space for the combination of 

the sub-variables, hence, we also use one italic capi-

talized letter to denote the variable when necessary 

and with little ambiguity.  

4 IMPLEMENTATION OF THE MODEL  

4.1 System status and scoring 

The essential information that a resilience curve 

aims to convey is the quantified system status and its 

changes over time. In this sense, the status of a sys-

tem is associated with a scored value. Denote by 

 1 2, , , ms s s  the state set of the system in question, 

   i i ip X X X P N and by   [0,1]iR s  1 i m  the 



scoring of each state. It can be assumed without loss 

of generality that 

       1 2 31 0mR s R s R s R s      ,  

meaning the sequential states of 
is are of descending 

order in terms of the system score, with being nor-

mal and ms being complete failure. In this manner, 

the iS  ( iℕ∪{0}) of node Si in DP are probability 

vector variables over [0,1]m, where the sum of the 

vector components is 1. If one is concerned with the 

resilience curve from the very beginning, i.e., the 

normal state, he can set the initial distribution for 

the root node as  0 1,0,...,0S   (almost sure), implicat-

ing that
1(System State ) 1p s  .   

4.2 State transition matrix 

The system dynamics is modeled by the state transi-

tion matrix. Let [ ]ij m mM P   be the one-step Markov 

state transition matrix over . We assume that the 

state transitions take place at uniform step, so that 

the time gap between two consecutive transitions is 

a constant . In other words, the number of transi-

tions determines the evolution time. According to 

the Markov property, if the distribution of the sys-

tem states is ( )r at the rth transition, then 

( 1)r  = ( )r M . 

As is illustrated in Figure 3, after the action plans, 

when Ei and Fi take effect, the system enters the 

evolving process until another external event occurs. 

The action plans are modeled by the state transition 

matrix. Furthermore, the initial state and the initial 

event within the time slice on the DP are also the 

causal factors that lead to the beginning state of the 

evolution on the EP. The third key parameter is how 

long the evolution will last before a renewed evolu-

tion starts. 

All necessary parameters are obtained from the 

data in the knowledge, and are grouped in the node 

Ti in the model of Figure 3. 

  The nodes Ti and Si+1 are bridged by a series of 

interim states in EP. This network setup reflects the 

dependence relationship that the node Ti involves. In 

fact, the node Ti is a comprehensive variable that in 

fact consists of three components: def

iT , inst

iT and 
forword

iT , where def

iT is the time for the evolution till the 

next event 1iU  , inst

iT is the instant state distribution 

when the evolution begins, and forword

iT is the one-

step Markov state transition matrix M introduced in 

in the previous section. As also discussed in the pre-

vious section, def

iT can be represented as the number 

of state transitions for the inter-slice evolution. 

For the input dependence, the iT  is jointly de-

termined by the prior state ( iS ), the nature of the 

event ( 0I  for the initial and iU for the follow-up), 

and the actions taken to dispose the event from the 

ship-side ( iF ) and from the shore-side ( iE ).  

 
Figure 4. A partial enlargement of the node Ti’s dependence. 

5 THE TEST CASE 

5.1 Application background and the states set  
 In this section, the proposed two-layer model is ap-
plied to the case of not under command (NUC) 
ships. NUC is a kind of accident with non-negligible 
occurring-rate in the middle and lower reaches of 
Yangtze River, and it will give raise to secondary 
accident if it is not tactically handled. The main 
causes of NUC include the failures of main en-
gine/rudder, or black out. For the purpose of sim-
plicity, we define six elements for the state set of the 
system, as is described in Table 1 below.   

5.2 The envisioned event set   

Let be the event set that makes the basic sample 
space for I0 and Ui . Table 2 lists the elements of the 
event set for the problem of interest. These events 
are considered within the scope of epistemic 
knowledge, and the sequence and inter-dependence 
are described by a series of Conditional Probability 
Tables related to actions and system states.

Table 1. The state set of the NUC incident. 

State 
Description Resilience 

Scoring Pre-accident Post-accident 

1s  Normal state. 

All the post-accident operation is com-

pleted, and the loss and damage have 

been ascertained. 

 1 

2s
 

If no action is taken, accident is un-

avoidable. 

A major part of search and rescue (SaR) 

operation is completed. 
0.8 



3s
 Potential accident looms up. 

The accident is largely under control, and 

the SaR operation is proceeding linearly. 
0.6 

4s
 

Close-quarters situation; special ef-

fort and maneuver is needed to get 

out of trouble. 

Minor accident occurs, which may be in-

tentionally made to prevent a serious ac-

cident; SaR operation is being conducted, 

but the total loss is still unknown. 

0.4 

5s
 

The serious accident is approaching 

steadily and the stakeholders make 

efforts to reduce the intensity of the 

accident as far as possible. 

SaR resources is available and SaR oper-

ation begins. 
0.2 

6s
 

Serious accident, i.e. collision, cap-

sizing etc., actually occurs, with life 

loss or damage to the environment.  

SaR forces are yet to come. 0 

Table 2. The event set of the NUC accident. 
Event Description Remark 

i0 Ship not under command (NUC) is detected. The initial event 

1u
 

A bridge appears at the downstream between the NUC 

ship and the nearest anchorage. 
 

The pre-accident event. 

 

2u
 

There is dense vessel traffic between the NUC ship and 

the nearest anchorage. 

3u
 The anchorage is at the downstream shortly ahead. 

4u
 There are relatively open waters around the NUC ship. 

5u
 Collision with other ships.  

The accident occurs factually. 

 
6u  Contact with bridge or other hydraulic structures. 

7u  Strand on the shore. 

8u  The NUC ship anchors. 
The accident is partially under control. 

9u  First/More Tug(s) or maritime cruiser is approaching.  

10u  
The whole accident is completely settled. (There may be 

different extent of damage and loss.) 
The final event. 

Table 3. The decision objectives of the NUC incident. 

Di (ship-side decision objectives) Ci (shore-side decision objectives) 

Variable  

outcomes 
Description 

Variable  

outcomes 
Description 

d1 

 Immediately dispose the incident at 

the cost of potential hindrance to the 

circumambient traffic or other ships. 

c1 
Protecting the hydraulic structures (e.g. the 

bridge) is of higher priority. 

d2 
Tolerate a certain amount of sacrifice 

to stabilize the situation quickly. 
c2 

Protecting the NUC ship and the ships 

passing by is of higher priority. 

d3 
Take adventures to seek the most ele-

gant settlement. 
  

d4 
Scrambled choice is taken.   

Table 4. The option plans of the NUC incident. 

Fi (ship-side action plans) Ei (shore-side action plans) 

Variable  

outcomes 
Description 

Variable  

outcomes 

Description 

f1 
Ask for tug assistance operation 

while drifting. 
e1 

Send one/more tug(s) to the incident site 

to facilitate further operation. 

f2 
Try to beach or anchor in outer lim-

it of the channel. 
e2 

Send one/more maritime cruiser(s) to the 

incident site.  

f3 
Try to traverse crowded waters or a 

bridge to find the anchorage. 
e3 

 Regulate the sailing restriction of all 

ships.  

f4 
Try to immediate anchoring in the 

channel. 
e4 

Regulate the one-way traffic organiza-

tion. 

 



5.3 The decision objectives of the ship-side and the 
shore-side 

The decision objectives reflect the preferences of the 

decision makers. In the resilience assessment con-

text, the analysts do not know exactly which actual 

preference the decision makers will adopt, and the 

judgements made by the analysts come from the ex-

perience data they know about. In the same way, the 

quantitative formulation of the epistemic knowledge 

is presented by CPTs. Table 3 lists the possible out-

comes of the variables Di and the Ci. 

5.4 The action plans of the ship-side and the shore-
side 

The action plans belong to the set of control op-
tions to be taken by the decision-makers, and they 
are the implementation tactics in accordance with 
the given decision objectives. Although confronting 
the same scenario, the action plan chosen by the two 
sides(the ship-side and the shore-side) may not nec-
essarily be the most compatible. This compatibility 
is usually due to the asymmetry of the scenario per-
ception or the ambiguity in the ship-shore commu-
nication. Table 4 lists the action plan variables and 
the possible variable outcomes.  

5.5 Building the conditional probability tables with 
knowledge 

5.4.1 The CPT of Ci and Di   

Considering that the case is focused on the evalua-

tion of NUC ship accident starting from normal   

state, we set the prior probability of the variable S0 

and I0 to be the value for the root node S0 and I0, 

such that  0 1,0,...,0S  , I0=i0. With this regard, a 

sample CPT of Ci and Di is given below in Table 5 

and Table 6. 

Table 5. The CPT of C0 and D0.   

0S  I0 Di  Prob  Ci Prob 

 1,0,...,0  i0 

d1 0.4 c1 0.5 

d2 0.3 c2 0.5 

d3 0.2   

d4 
0.1   

Table 6. A section of the CPT of Ci and Di (i⩾1).  

iS  Ui Di  Prob  Ci Prob 

- u1 

d1 0.2 c1 0.7 

d2 0.3 c2 0.3 

d3 0.4   

d4 
0.1   

- u2 

d1 0.25 c1 0.3 

d2 0.25 c2 0.7 

d3 0.4   

d4 
0.1   

… … 

5.4.2 The CPT of Ei and Fi  

The variables Ei and Fi depend upon Ci and Di, re-

spectively. Table 7 depicts the dependence in terms 

of probabilities.                

5.4.3 The component of Ti and the CPT 

As has been introduced previously, the node Ti hosts 

three variables, namely def

iT , inst

iT and forward

iT . In the 

context of the current problem, the number of state 

transition is 1 10def

iT  . In practice, if we assume 

that the time scale of transition is a constant, for in-

stance, one minute, def

iT defines the evolution length 

for the implementation of the decision. inst

iT is a 1⨯m 

vector to indicate the instant distribution of  system 

state after the event occurs, and forward

iT  is a m⨯m 

stochastic matrix to denote the state transition. Due 

to space limit, the details of these matrices are omit-

ted. Table 8 shows a section of the CPT. 

Table 7. The CPT of Ei and Fi. 

     Ei       

Ci     
e1 e2 e3 e4 

c1 0.4         0.3 0.1 0.2 

c2 0.2 0.2 0.4 0.2 

    Fi       

Di     
f1 f2 f3 f4 

d1 0.1 0.4 0.1 0.4 

d2 0.2 0.3 0.2 0.3 

d3 0.2 0.3 0.4 0.1 

d4 
0.1 0.3 0.3 0.3 

 
Figure 5. The resilience curves generated by one round of sim-

ulations.  

 
Figure 6. The resilience measure values based on the calcula-

tion of the resilience curve.



Table 8. A section of the CPT for the component of Ti.  

iE  iF  0 / iI U  iS  def

iT
 

inst

iT
 

forword

iT
 1iU   Probability 

e1 f1 i0  1,0, ,0  

3 1101

instM  
1101

forwardM  u4 0.4 

3 1102

instM  
1102

forwardM  u2 0.4 

4 1102

instM  
1102

forwardM  u3 0.1 

4 1102

instM  
1102

forwardM  u1 0.1 

e1 f1 u1  0.2,0.8, ,0  

2 1111

instM  
1111

forwardM  u5 0.1 

3 1112

instM  
1112

forwardM  u6 0.1 

5 1113

instM  
1113

forwardM  u4 0.4 

5 1114

instM  
1114

forwardM  u2 0.3 

4 1115

instM  
1115

forwardM  u9 0.1 

… … 

 

 
Figure 7. The resilience measure of multiple tests. 

5.4.4 Monte Carlo simulation results and analysis 

Using the above setup, a series of Monte Carlo sim-

ulations are conducted to gain a family of resilience 

curves given the NUC as the initial event. Figure 5 

depicts the sampling of one round of simulation. 

The curves convey the rough resilience behavior un-

der the epistemic estimation provided by the ana-

lysts. To characterize the resilience in a more 

straightforward way, we employ the resilience 

measurement for each resilience curve, as follows: 

 

1

0

1 0

( )
t

t
f t dt

t t




R                (1) 

This definition of resilience measure is very simi-

lar to what is given by Bruneau et al (2003). The 

main idea of (1) is to find the proportion of non-loss 

part during the disruption and recovery process. t0 

stands for the starting point of disruptive event, and 

t1 stands for the time point of complete recovery. 

Figure 6 shows the interpretation of the measure 

based upon the resilience curve. Obviously, greater 

R implies a stronger capability to withstand the dis-

ruption. Figure 7 displays the resilience measures of 

the multiple simulation tests where the simulation is 

repeated for 1600 times to account for the complexi-

ty of the resilience process. From the result, it can be 

seen that the samples of full-cycle disruption han-

dling show their resilience measure largely within 

the interval [0.7, 0.9], while there may be extremely 

negative cases with resilience as low as 0.4 or even 

less. 

6 CONCLUSION AND FUTURE WORK 

In this paper, we present a method for the epistemic 

assessment of system resilience by using a revised 

model of a dynamic Bayesian Network and a dis-

crete Markov process. The key features of the work 

are outlined below. 

(i) Resilience focuses on the process and dynamics 

of system evolution under negative accident, and 

this is the very point of difference between the resil-

ience study and the traditional risk study. The pro-

cess-based view calls for a temporal change of sys-

tem state instead of the cause-effect analysis, and 

this proves to be a challenge in modeling. In this pa-

per, the revised DBN is used to represent the time-

sliced system performance. 

(ii) When we deal with subjective assessment, un-

certainty is a major concern. There are many math-

ematical tools to treat the issue; this paper employs 

the Bayesian network as the reasoning engine due to 

the human-intensive, loosely coupled and autono-

mous nature of the application domain. As the 

knowledge of individuals is usually confined to lo-

cal causal relationship, the DBN can mechanically 

extend the reasoning to longer spans of time and 

broader interlace of factors. 

(iii) There are some limitations in the presented 

work. For the utmost, the knowledge is finally rep-

resented by CPTs and state transition matrices. 

However, when the states (or outcomes) of the vari-

ables increase, the size of CPTs will grow exponen-

tially and usually, we have to resort to some rule-

based reasoning or merging to reduce the size of 

CPTs. This will hinder the practical assessment set-

up, and improvement to this problem will be of in-

terests for future work. 



(iv) Despite the aforementioned limitations, the pre-

sented work provides a useful method of ex ante as-

sessment for system resilience with respect to a giv-

en disruptive scenario. The quantitative results can 

facilitate choices of system design. For instance, a 

possible improvement is to enhance the capability 

maturity of the ship-side and shore-side operators, 

such that the joint tactics can be reached with less 

time and more compatibility.  

 

ACKNOWLEDGEMENT 
The research is supported by Key Project in the Na-

tional Science & Technology Pillar Program (Grant 

No. 2015BAG20B05), and by National Natural Sci-

ence Foundation of China (Grant No. 51479158). 

REFERENCES 

Bruneau, M. & Chang, S.E. 2003. A framework to quantitative 

ly assess and enhance the science the seismic resilience of 

communities. Earthq Spectra, 19(4):733–52. 

Creaco, E. & Fortunato, A. 2014. Comparison between entropy 

and resilience as indirect measures of reliability in the 

framework of water distribution network design. Procedia 

Engineering, 70: 379–88. 

Ferrario, E. & Zio, E. 2014. Goal Tree Success Tree–Dynamic 

Master Logic Diagram and Monte Carlo simulation for the 

safety and resilience assessment of a multistate system of 

systems. Engineering Structures, 59(2): 411-433. 

Francis, R. & Bekera, B. 2014. A metric and frameworks for 

resilience analysis of engineered and infrastructure systems. 

Reliability Engineering and System Safety, 121: 90-103.  
Gao, J. & Barzel, B. 2016. Universal resilience patterns in 

complex networks. Nature, 530: 307–312. 

Henry, D. & Ramirez-Marquez, J.E. 2012. Generic metrics and 

quantitative approaches for system resilience as a function of 

time. Reliability Engineering and System Safety, 99, 114–

22. 

Hofer, E. & Kloos, M. 2004. Dynamic event trees for probabil 

istic safety analysis. GRS, Garsching, Germany. 

John, A. & Yang, Z. 2016. A risk assessment approach to im-

prove the resilience of a seaport system using Bayesian net-

works. Ocean Engineering, 111: 136–147. 

Kaplan, S. & Haimes, Y.Y. 2001. Fitting hierarchical holo-

graphic modeling into the theory of scenario structuring and 

a resulting refinement of the quantitative definition of risk. 

Risk Analysis, 21(5):807–815. 

Karanki, D.R. & Kim, T.W. 2015. A dynamic event tree in-

formed approach to probabilistic accident sequence model-

ing: Dynamics and variabilities in medium LOCA. Reliabil-

ity Engineering and System Safety, 142: 78–91. 
Khakzad, N. 2015. Application of dynamic Bayesian network 

to risk analysis of domino effects in chemical infrastructures. 

Reliability Engineering and System Safety, 138: 263–272. 

Mercurio, D. & Podofillini, L. 2009. Identification and classi-

fication of dynamic event tree scenarios via possibilistic 

clustering: application to a steam generator tube rupture 

event. Accident Analysis & Prevention, 41(6): 1180-1191. 

Murphy, K.P. 2002. Dynamic Bayesian Networks: Represen- 

tation, Inference and Learning. PhD Dissertation of Univer-

sity of California, Berkeley. 

Praetorius, G. & Hollnagel, E. 2015. Modelling vessel traffic 

service to understand resilience in everyday operations. Re-

liability Engineering and System Safety, 141: 10-21. 

Zio, E. 2016. Challenges in the vulnerability and risk analysis 

of critical infrastructures. Reliability Engineering and Sys-

tem Safety, 2016, 152: 137-150.  

Zobel, C.W. & Khansa, L. 2014. Characterizing multi-event 

disaster resilience. Computers & Operations Research, 

42:83–94. 

 

 

 

 

 

 

         

 


