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Introduction and results

For stationary α-mixing sequences in the sense of Rosenblatt (see [START_REF] Rosenblatt | central limit theorem and a strong mixing condition[END_REF]) a Fuk-Nagaev type inequality has been proved by Rio (see Theorem 6.2 in [START_REF] Rio | Théorie asymptotique des processus aléatoires faiblement dépendants[END_REF]). This deviation inequality is very powerful and gives for instance sharp upper bounds for the deviation of partial sums when the strong mixing coefficients decrease at a polynomial rate. In particular for a bounded observable f of a strictly stationary Markov chain (Y i ) i∈Z with strong mixing coefficients of order O(n 1-p ) for p ≥ 2, Rio's inequality gives: for any x > 0 and any r ≥ 1, (1.1)

P max 1≤k≤n k i=1 (f (Y i ) -π(f )) ≥ x ≤ C n x p + n r/2 x r + (n log n) r/2 x r 1 p=2 ,
where C depends on f ∞ , on p and on r. However, many stationary processes are not strong mixing in the sense of Rosenblatt. This is the case, for instance, of the iterates of an ergodic measure-preserving transformation. In the recent paper [START_REF] Dedecker | A deviation bound for α-dependent sequences with applications to intermittent maps[END_REF], the authors proved that, using a weaker version of the α-mixing coefficients, it is still possible to get the same upper bound as (1.1) but for bounded variation observables and with the restriction r ∈ (2(p -1), 2p). This last restriction does not affect the asymptotic behavior of the probability of large deviations (that is when x = ny in (1.1) with y fixed) but gives a restriction for the moderate deviation behavior.

The aim of this paper is to obtain upper bounds of the type (1.1) for stationary Markov chains, when the mixing property of the chain is defined through a subclass of bounded observables B, but without restriction on r. In that case, the deviation inequality (see our Theorem 1.4) will be valid for any observable f ∈ B. Maybe the same kind of inequalities can be proved in a more general (but non α-mixing) context than the Markovian setting, but the proof we give here uses the Markovian property in a crucial way.

Let us now present more precisely the assumptions on the Markov chains and the main results of the paper. Let (Y i ) i∈Z be a homogeneous Markov chain on a state space X , with transition operator K, admitting a stationary probability measure π. Let • be a norm on a vector space B of functions from X to R. We always require that the constant function equal to 1 belongs to B. This norm will be used to express mixing conditions on the Markov chain.

We will need this norm to behave well with respect to products, and to be controlled by the sup norm, as expressed in the next definition.

Definition 1.1. We say that • is a Banach algebra norm on bounded functions if, for all f and g in B, one has f ∞ ≤ f and f g ≤ f g . Remark 1.2. If a norm • satisfies f ∞ ≤ C f and f g ≤ C f g for some constant C, then it is equivalent to a Banach algebra norm on bounded functions, namely f ′ = C f .

The main mixing condition we require is that the iterates of functions in B under the Markov chain converge polynomially to their average. This is expressed in terms of the following two conditions. Definition 1.3. Let p > 1. We say that the condition H 1 (p) is satisfied if there exists a positive constant C 1 such that, for any function f ∈ B and any n ≥ 1,

H 1 (p) π |K n (f ) -π(f )| ≤ C 1 f n p-1 .
We say that the condition H 2 is satisfied if the space B is invariant under K, i.e., there exists a positive constant C 2 such that, for any function f in B,

H 2 K n (f ) ≤ C 2 f .
When both conditions are satisfied, we say that the chain converges polynomially to equilibrium for the norm • with exponent p, and we denote this condition by H(p).

Heuristically, partial sums of bounded functions of such a polynomially mixing chain behave like sums of independent random variables with a weak moment of order p. Indeed, if one considers a Harris recurrent Markov chain for which the excursion time away from an atom has a weak moment of order p, then the successive excursions are independent and have a weak moment of order p, and the mixing rate behaves like in the definition above. Hence, one expects that one should prove, under H(p), results that are similar to results for sums of i.i.d. random variables with a weak moment of order p.

In particular, let us consider the question of moderate deviations bounds

P max 1≤k≤n k i=1 (f (Y i ) -π(f )) ≥ xn α ,
where f belongs to B, x > 0. In analogy with the i.i.d. case, one expects that, if p ≥ 2, then for any α ∈ (1/2, 1] there should exist positive constants C depending only on p and on f , and v(x) depending only on x, such that (1.2) lim sup

n→∞ n αp-1 P max 1≤k≤n k i=1 (f (Y i ) -π(f )) ≥ xn α ≤ Cv(x) .
Our main result ensures that this estimate indeed holds, with bounds that are very similar to the case of the sum of i.i.d. random variables. We also deal with the case p < 2, obtaining similar estimates.

Theorem 1.4. Let (Y i ) i∈Z be a stationary Markov chain with state space X , transition operator K and stationary measure π. Assume that there exists p > 1 such that H 1 (p) holds, for a Banach algebra norm on bounded functions.

(1) If p > 2 and we assume in addition that H 2 is satisfied then, for any f ∈ B and any x > 0,

(1.3) P max 1≤k≤n k i=1 (f (Y i ) -π(f )) ≥ x ≤ κnx -p + κ exp(-κ -1 x 2 /n) ,
where κ is a positive constant depending only on p, f , C 1 , C 2 . (2) If p = 2 and we assume in addition that H 2 is satisfied then, for any f ∈ B, any

x > 0 and any r ∈ (2, 4),

(1.4)

P max 1≤k≤n k i=1 (f (Y i ) -π(f )) ≥ x ≤ κnx -2 + κ(n log n) r/2 x -r ,
where κ is a positive constant depending only on f , C 1 , C 2 and r.

(3) If 1 < p < 2 then, for any f ∈ B and any x > 0,

(1.5) P max 1≤k≤n k i=1 (f (Y i ) -π(f )) ≥ x ≤ κnx -p ,
where κ is a positive constant depending only on p, f and C 1 .

As a consequence of this theorem, we obtain that, if p > 1, then (1.2) holds with v(x) = x -p for any α > 1/2 such that 1/p ≤ α ≤ 1 provided that H(p) holds.

Remark 1.5. In (1.3), the exponential term κ exp(-κ -1 x 2 /n) is negligible in the regime x > n α , for any α > 1/2. Hence, the dominating term is κnx -p , as expected. However, when x is of the order of n 1/2 , then κnx -p tends to 0, while the probability on the left of (1.3) typically does not, thanks to the central limit theorem. Thus, there has to be a remainder term, given here in exponential form κ exp(-κ -1 x 2 /n). For any r > 0, this is for instance bounded by C κ,r n r /x 2r .

Remark 1.6. In (1.4), the scaling in x 2 /n log n in the error term is the right one: in this setting there is sometimes a central limit theorem with anomalous scaling √ n log n (see for instance [START_REF] Gouëzel | Central limit theorem and stable laws for intermittent maps[END_REF]), meaning that the probability on the left of (1.4) does not tend to 0 when x is of the order of √ n log n. While (1.3) is completely satisfactory, we expect that the error term in (1.4) can be improved, from (n log n) r/2 x -r with r ∈ (2, 4) to (n log n) r/2 x -r for any r > 2, or even to exp(-κ -1 x 2 /(n log n)). However, we are not able to prove such a result.

Let us discuss the relevance of the assumption H(p) in different contexts. Some possible Banach algebra norms on bounded functions that appear in natural examples of Markov chains are the following:

(1) f = f ∞ .
(2) X = R and f is the total variation norm of the bounded variation function f , i.e., the sum of f ∞ and the total variation of the measure df , i.e., f

= f ∞ + |df |. (3) If (X , d
) is a metric space, then one can consider the Lipschitz norm

f = f ∞ + f Lip where f Lip := sup y =z∈X |f (y) -f (z)| d(y, z) , or Hölder norms. (4) X = R and f = f ∞ + f ′ L r (λ)
for r ≥ 1, when f is absolutely continuous and f ′ is its almost sure derivative. One can also consider more general Sobolev spaces, in dimension 1 or higher.

Here is a more detailed discussion of some corresponding examples:

(1) When H 1 (p) is satisfied with f = f ∞ , then the chain is said to be strong mixing in the sense of Rosenblatt with polynomial rate of convergence n p-1 , and we write in this case

α n = sup k≥n sup f ∞ ≤1 π |K k (f ) -π(f )| ≤ C 1 n p-1 .
Note that for this norm, H 2 is trivially satisfied. In this situation, one can apply the Fuk-Nagaev type inequality [Rio00, Theorem 6.1] (with q = cx for suitably small c). If p ≥ 2, this gives the inequality (1.1). Hence, (1.2) follows (although the error term is worse than in (1.3)). (2) A lot of Markov chains, even very simple, are known not to be strong mixing whereas they satisfy the condition H(p) for other classes of functions. For instance,

X n = ∞ i=0 ξ n-i 2 i+1 ,
where (ξ i ) is an i.i.d. sequence of r.v.'s ∼ B(1/2) is a Markov chain which is not strong mixing. Its invariant measure is the Lebesgue measure on [0, 1] and its transition Markov operator is given by

K(f )(x) = 1 2 f x 2 + f x + 1 2 .
It can been shown that it satisfies the condition H(p) for any p when we consider X = R and the total variation norm

f = f BV = f ∞ + |df |.
When H(p) is satisfied with the total variation norm (i.e., B is the set of functions of bounded variation), one does not have at our disposal a Fuk-Nagaev type inequality as in the strong mixing case. If p > 2, an application of the deviation inequality of [DM16, Proposition 5.1] gives that for any x > 0 and any r ∈ (2(p -1), 2p),

P max 1≤k≤n k i=1 (f (Y i ) -π(f )) ≥ x ≤ C n x p + n r/2 x r + (n log n) r/2 x r 1 p=2 ,
where C is a positive constant depending on p, f , C 1 and C 2 but not on n nor on x. So, provided that p < 1/(1α), one can take 2p > r > 2(αp-1) 2α-1 and it follows that (1.2) is satisfied with v(x) = x -p . Our main theorem above shows that this restriction of α is not necessary, by removing the restriction r ∈ (2(p -1), 2p) for p > 2. Our proof follows the same lines as that in [START_REF] Dedecker | A deviation bound for α-dependent sequences with applications to intermittent maps[END_REF], but we can get a better bound by taking advantage of the Markovian setting. (3) Several dynamical examples satisfy the assumption H(p) when • is the Lipschitz norm or the Hölder norm. Indeed, there is a combinatorial model, called Young tower, that can be used to model wide classes of systems and for which the assumption H(p) is directly related to return time estimates to the basis of the tower (this is explicitly written, for instance, in (4.3) of [DM15]). We refer the interested readers for instance to the introduction of [START_REF] Gouëzel | Moment bounds and concentration inequalities for slowly mixing dynamical systems[END_REF], where motivations, examples and definitions are given. Our theorem applies to such examples, and improves the previous upper bounds of the literature such as [START_REF] Melbourne | Large and moderate deviations for slowly mixing dynamical systems[END_REF] who obtained, when α ∈ (1/2, 1) and p ≥ 2, a rate of order (ln n) 1-p n (p-1)(2α-1) instead of n αp-1 in (1.2). Using specific properties of such systems established in [START_REF] Gouëzel | Moment bounds and concentration inequalities for slowly mixing dynamical systems[END_REF], we are also able to extend Theorem 1.4 to more general functionals than additive functionals, see Theorem 2.1 in Section 2.

In addition, concerning the exponent of n, the bound (1.2) is optimal as we shall show in Section 4. More precisely, we shall give there three different examples for which the deviation probabilities of Theorem 1.4 are lower bounded by c nx -p for some c > 0 and x in an appropriate bandwidth. These three examples are: a discrete Markov chain on N for which H(p) is satisfied for the sup norm, a class of Young towers with polynomial tails of the return times for which H(p) is satisfied for a natural Lipschitz norm, and a Harris recurrent Markov chain with state space [0, 1] for which H(p) is satisfied for both the sup norm and the total variation norm. For each example, the accurate lower bound is given in Proposition 4.1, 4.3 and 4.4 respectively. Before this, Section 2 is devoted to the extension of Theorem 1.4 to more general functionals in the specific setting of Young towers. The proof of Theorem 1.4 is given in Section 3.

Concentration for maps that can be modeled by Young towers

In this section, we extend in the specific setting of Young towers Theorem 1.4 to more general functionals. As we will not need specifics of Young towers, we refer the reader to [START_REF] Gouëzel | Moment bounds and concentration inequalities for slowly mixing dynamical systems[END_REF] for the precise definitions, recalling below only what we need for the current argument. A Young tower is a dynamical system T preserving a probability measure π, on a metric space Z, together with a subset Z 0 (the basis of the tower) for which the successive returns to Z 0 create some form of decorrelation. Thus, an important feature of the Young tower is the return time τ from Z 0 to itself, and in particular its integrability properties.

Starting from any z ∈ Z, there is a canonical way to choose at random a point among the preimages of z under T . This defines a Markov chain Y n for which π is stationary, and which is dual to the dynamics (in the sense that Y 0 , . . . , Y n-1 is distributed like T n-1 z, . . . , z when z is picked according to π). The decorrelation properties of this Markov chain are related to the return time function τ . Namely, if τ has a weak moment of order p > 1, then the Markov chain satisfies H(p) for this p.

Proving quantitative estimates for the Markov chain or the dynamics is equivalent. In this section, we will for simplicity formulate the results for the dynamics, as the estimates of [START_REF] Gouëzel | Moment bounds and concentration inequalities for slowly mixing dynamical systems[END_REF] we will use are formulated in this context.

The class of functionals for which we will prove moderate deviations is the class of separately Lipschitz functions: these are the functions K = K(z 0 , . . . , z n-1 ) such that, for all i ∈ [0, n -1], there exists a constant L i (the Lipschitz constant of K for the i-th variable) with |K(z 0 , . . . , z i-1 , z i , z i+1 , . . . , z n-1 ) -K(z 0 , . . . , z i-1 , z ′ i , z i+1 , . . . , z n-1 )| ≤ L i d(z i , z ′ i ) for all points z 0 , . . . , z n-1 , z ′ i . We will write EK for the average of K with respect to the natural measure along trajectories coming from the dynamics, i.e., EK = K(z, T z, . . . , T n-1 z) dπ(z).

The article [START_REF] Gouëzel | Moment bounds and concentration inequalities for slowly mixing dynamical systems[END_REF] proves optimal moment estimates for K -EK. We can prove moderate deviations for this quantity, extending in this context the results of Theorem 1.4 to more general functionals than additive functionals.

Theorem 2.1. Consider a Young tower T : Z → Z, for which the return time τ to the basis has a weak moment of order p > 1. Let K be a separately Lipschitz function, with Lipschitz constants L i . Then

• If p > 2, then for all x > 0 one has

(2.1) π{z : |K(z, . . . , T n-1 z) -EK| > x} ≤ κ n-1 i=0 L p i x p + κ exp -κ -1 x 2 L 2 i .
• If p = 2, then for all x > 0

(2.2) π{z : |K(z, . . . , T n-1 z) -EK| > x} ≤ κ n-1 i=0 L 2 i x 2 + κ exp -κ -1 x 2 L 2 i • (1 + log( L i ) -log( L 2 i ) 1/2 ) .
• If p < 2, then for all x > 0 one has

(2.3) π{z : |K(z, . . . , T n-1 z) -EK| > x} ≤ κ n-1 i=0 L p i x p .
In all these statements, κ is a positive constant that does not depend on K nor n.

The case p < 2 is already proved in [GM14, Theorem 1.9] and is included only for completeness. The logarithms in the p = 2 case are not surprising: this expression is homogeneous in the L i (i.e., if one multiplies all the L i by a constant then the contribution of the logarithms does not vary), and it reduces to a multiple of log n when all the L i are equal to 1. The same expression appears in the moment control when p = 2 in [GM14, Theorem 1.9].

To prove this theorem, we use the following deviation inequality for martingales, [Fuk73, Corollary 3'] (in which we keep separately the term corresponding to excess probabilities, as in his Corollary 3).

Proposition 2.2. Let d 1 , . . . , d k be a martingale difference sequence with respect to the non-decreasing σ-fields F 0 , . . . , F k . Let p ≥ 2. Set β = p/(p + 2) and c * p = (1β) 2 /(2e p ). Then, for all x > 0, 

P max 1≤j≤k j i=1 d i ≥ x ≤ k i=1 P(|d i | ≥ βx) + 2 β p x p k i=1 E(|d i | p 1 |d i |≤βx | F i-1 ) ∞ + 2 exp -c * p x 2 E(d 2 i | F i-1 ) ∞ . As k i=j d i = k i=1 d i -j-1 i=1 d k ,
d i ≥ x ≤ k i=1 P(|d i | ≥ βx) + 2 p+1 βp x p n 1 E(|d i | p 1 |d i |≤ βx | F i+1 ) ∞ + 4 exp -c * p x 2 E(d 2 i | F i+1 ) ∞ .
We will use the following consequence for reverse martingales having a conditional weak moment of order p, as follows (the same corollary holds as well for martingales). This is a finer version of [Fuk73, Corollary 3'], replacing the strong norm there with a weak norm.

Corollary 2.4. Let d 1 , . . . , d k be a reverse martingale difference sequence w.r.t. the nonincreasing σ-fields F 1 , . . . , F k+1 (so

E(d i | F i+1 ) = 0 and d i is F i -measurable). Let p ≥ 2.
Assume that, for all i, d i has a conditional weak moment of order p bounded by a constant M i , i.e., P(

|d i | ≥ x | F i+1 ) ≤ M p i /x p .
Then there exists a constant C p only depending on p such that, for all x > 0,

P max 1≤j≤k j i=1 d i ≥ x ≤ C p x p k i=1 M p i + 4 exp -C -1 p x 2 E(d 2 i | F i+1 ) ∞ .
Proof. We apply Corollary 2.3 with any q > p, for instance q = p + 1. Since P(|d i | ≥ βx) ≤ M p i /( βx) p , the first term in the upper bound of this lemma is bounded as desired. The last term is also bounded as desired. It remains to handle the terms involving

x -q E(|d i | q 1 |d i |≤ βx | F i+1 ) ∞ . We have x -q E(|d i | q 1 |d i |≤ βx | F i+1 ) ≤ x -q q βx u=0 u q-1 P(|d i | ≥ u | F i+1 ) du ≤ x -q qM p i βx u=0 u q-1 u -p du = x -q qM p i ( βx) q-p q -p ≤ CM p i /x p .
Summing these terms over i gives a bound as in the statement of the corollary.

We can now start the proof of Theorem 2.1. Assume that τ has a weak moment of order p ≥ 2. Starting from a separately Lipschitz function K, Chazottes and Gouëzel consider in [START_REF] Chazottes | Optimal concentration inequalities for dynamical systems[END_REF] a sequence (d k ) k≥0 of reverse martingale differences with respect to the filtration F k of functions depending only on coordinates x k , x k+1 , . . . , given by

d k = E(K | F k ) -E(K | F k+1 ) . Page 869 in [CG12], it is proved that, if p > 2, then E(d 2 k | F k+1 ) ≤ j≤k c (0) k-j L 2 j ,
where c

k denotes a generic summable sequence that does not depend on K nor n. Therefore, (2.4)

k E(d 2 k | F k+1 ) ∞ ≤ C L 2 j . Moreover, if p = 2, [GM14, Section 4.2] shows that (2.5) k E(d 2 k | F k+1 ) ∞ ≤ C L 2 i • 1 + log L i -log L 2 i 1/2 .

Now we use the following modification of [CG12, Lemma 6.2]

Lemma 2.5. For all t > 0 and all integer k,

P |d k | ≥ t | F k+1 ≤ Ct -p k j=0 L p j c (0) k-j + Ct -p sup h>0 h -1 k j=k-h+1 L j p .
Proof. We just follow the lines of the proof of Lemma 6.2 in [START_REF] Chazottes | Optimal concentration inequalities for dynamical systems[END_REF] up to (6.1). Note that this paper requires the condition p > 2 (for the validity of (4.8) there), but Lemma 4.2 in [START_REF] Gouëzel | Moment bounds and concentration inequalities for slowly mixing dynamical systems[END_REF] replaces this inequality for p = 2.

For the first sum we have as in [START_REF] Chazottes | Optimal concentration inequalities for dynamical systems[END_REF] A 1 (zα)≥t/2

g(z α ) ≤ Ct -p j≤k L p j c (0) k-j .
On the other hand, if h denotes the smallest ℓ such that k j=k-ℓ+1 L j ≥ t/2, then

A 2 (zα)≥t/2 g(z α ) ≤ Cπ(τ ≥ h) ≤ Ch -p ≤ Ct -p sup h>0 h -1 k j=k-h+1 L j p .
Proof of Theorem 2.1 when p ≥ 2. We apply Lemma 2.4 to d k , with

(2.6) M p k = C k j=0 L p j c (0) k-j + C sup h>0 h -1 k j=k-h+1 L j p thanks to Lemma 2.5. As c (0)
k is summable, the sum over k of the first term is bounded by C ′ L p j . An application of the Hardy-Littlewood maximal inequality in ℓ p gives

k≥0 sup h>0 h -1 k j=k-h+1 L j p ≤ C j L p j .
Hence, the sum over k of the second term in (2.6) is also bounded by C j L p j . This shows that the first term in Corollary 2.4 gives rise to a bound C L p i /x p . Finally, the second term in Lemma 2.4 gives rise to the exponential error term in the statement of the theorem, thanks to (2.4) when p > 2 and to (2.5) when p = 2.

Remark 2.6. Assume that p > 2 and for any i, L i ≤ 1. In this case, integrating Inequality (2.1) leads to

K -EK 2(p-1) π,2(p-1) ≪ n p-1 .
However, in the case of general L i , we do not recover for this moment the bound C( L 2 i ) p-1 proved in [GM14, Theorem 1.9] (consider for instance the case L 0 = 1 and

L 1 = . . . = L n-1 = 1/ √ n).
This moment bound, combined with Markov inequality, gives

π{|K -EK| > x} ≤ κ L 2 i p-1
x 2p-2 . For the case where all L i are of the order of 1, this bound is worse than the bound of Theorem 2.1. However, surprisingly, it can be better when the L i vary a lot, for instance when L 0 = 1 and L 1 = . . . = L n-1 = 1/ √ n, and x = n 1/4 .

Upper bounds for moderate deviations

In this section, we prove Theorem 1.4. Cases (3) and (2) follow more or less readily from existing inequalities in the literature, while Case (1) is really new. 

γ(k) = E(f (Y k ) | Y 0 ) -π(f ) 1 , for k ≥ 0.
[DM07, Proposition 4] together with stationarity implies that for any integer q in [1, n], and any x ≥ M q,

P max 1≤k≤n k i=1 (f (Y i ) -π(f )) ≥ 4x ≤ 4nM x 2 q-1 i=0 γ(i) + 2n xq 2q i=q+1 γ(i) .
Note that if x ≥ nM/2 the bound is trivial since the probability is equal to zero. It is also trivial if x ≤ M √ 2n. Therefore we can always assume that M ≤ x ≤ nM and select q = [x/M ]. Combined with the fact that, by H 1 (p),

γ(k) ≤ C 1 f (k + 1) 1-p , this gives P max 1≤k≤n k i=1 (f (Y i ) -π(f )) ≥ 4x ≤ 4nM p-1 C 1 f 2 -p + 2 p M p-1 C 1 f nx -p .
This ends the proof of Item (3).

3.2.

A deviation inequality. For r > 2, the Rosenthal inequality for sums of centered i.i.d. random variables Z i is the inequality

(3.1) E N i=1 Z i r ≪ N E(|Z 1 | r ) + N r/2 E(Z 2 1 ) r/2 ,
where the implied constant only depends on r. What makes this inequality extremely useful is that the dominating coefficient N r/2 is multiplied by an L 2 -norm, which is usually mild to control, while the larger L r -norm only has a coefficient N . We will use repeatedly a Rosenthal-like inequality for weakly dependent sequences, due to Merlevède and Peligrad, in the following form which is well suited for the applications to moderate deviations we have in mind. Note that, in the following statement, all conditional expectations are of the form E(f (Z i ) | G 0 ) for some i ≥ 2: this means that suitable mixing conditions can be used to control such terms. The other two terms are of Rosenthal-type as in the i.i.d. case, and can thus be controlled using minimal knowledge on Z 1 . Theorem 3.1. Let Z i be a strictly stationary sequence of random variables, adapted to a filtration G i . Write S i = i 1 Z k . Consider a real number r > 2. Then, for all N and all x,

P(max i≤N |S i | ≥ x) ≪ N x E(Z 2 | G 0 ) 1 + N x r E(|Z 1 | r ) + N r/2 x r E(Z 2 1 ) r/2 + N x r N k=1 1 k 1+2δ/r k i=2 E(Z 2 i | G 0 ) -E(Z 2 i ) r/2 δ r/(2δ)
, where δ = min(1, 1/(r -2)) ∈ (0, 1]. The implied multiplicative constant in the inequality only depends on r.

Proof.

Let M i = Z i -E(Z i | G i-2 ). Then (3.2) max i≤N |S i | ≤ max 2≤2j≤N j i=1 M 2i + max 1≤2j-1≤N j i=1 M 2i-1 + N i=1 |E(Z i | G i-2 )|.
If the maximum of the partial sums S i is at least x, one of these three terms is at least x/3. First, by Markov inequality and stationarity,

P N i=1 |E(Z i | G i-2 )| ≥ x/3 ≤ 3 x N E(Z 2 | G 0 ) 1 ,
giving a term compatible with the statement of the theorem. The two other terms in (3.2) are controlled similarly, let us consider for instance the even indices. We use first Markov inequality with the exponent r, and then the Rosenthal-like inequality [MP13, Theorem 6], giving

P max 2≤2j≤N j i=1 M 2i ≥ x 3 ≤ C N x r   M 1 r r + N/2 k=1 1 k 1+2δ/r E k i=1 M 2i 2 | G 0 δ r/2 r/(2δ)   . Since M 1 r r ≤ 2 r E(|Z 1 | r )
, the resulting term is compatible with the statement of the theorem. As M 2i is a sequence of martingale differences with respect to G 2i , we have

E k i=1 M 2i 2 | G 0 = k i=1 E(M 2 2i | G 0 ) ≤ k i=1 E(Z 2 2i | G 0 ).
Therefore, by stationarity,

E k i=1 M 2i 2 | G 0 r/2 ≤ k i=1 E(Z 2 2i | G 0 ) -E(Z 2 2i ) r/2 + kE(Z 2 1 ).
We plug this estimate into the previous equation. The first term gives a contribution as in the statement of the theorem. On the other hand, the contribution of the second term kE(Z 2 1 ) is

C N x r E(Z 2 1 ) δ•r/(2δ) • N/2 k=1 1 k 1+2δ/r k δ r/(2δ) ≤ C N x r E(Z 2 1 ) r/2 C ′ N r/2-1 = C ′′ N r/2 x r E(Z 2 1 ) r/2 ,
again one of the terms in the statement of the theorem.

Remark 3.2. Using different Rosenthal inequalities, one can obtain slightly different statements. For instance, using the classical Rosenthal inequality of Burkholder for martingales, one obtains a statement analogous to Theorem 3.1, where the last term in the upper bound is replaced by

(3.3) N r/2 x r E(Z 2 2 | G 0 ) -E(Z 2 2 )
r/2 r/2 . This statement uses the decorrelation less strongly than Theorem 3.1: For large i, the quantity

E(Z 2 i | G 0 ) -E(Z 2 i ) r/2 is likely much smaller than E(Z 2 2 | G 0 ) -E(Z 2 
2 ) r/2 . Indeed, it turns out that, for the application below, Theorem 3.1 will succeed while an estimate using (3.3) fails (compare for instance (3.10) below to what would be obtained using (3.3)).

3.3. Proof of items (1) and (2) in Theorem 1.4. Item (2) in Theorem 1.4 follows from an application of [DM16, Proposition 5.1] (while the result there applies directly to bounded variation functions, the proof works in the full generality of Theorem 1.4). However, as we shall see it also follows from our proof as a special case.

The strategy of the proof is to apply the Rosenthal bounds of Theorem 3.1 to different parts of max 1≤k≤n k i=1 (f (Y i )π(f )) . To illustrate why this strategy might work, let us recall a way to prove moderate deviations bounds for sums of centered i.i.d. random variables Z i in L p . Consider an integer n and a real number x > 0.

Let X i = Z i 1 |Z i |>n 1/p - E(Z i 1 |Z i |>n 1/p ) and X ′ i = Z i -X i .
Then Rosenthal inequality (3.1) (for sums of independent random variables) with the exponent p applied to X i gives E(| X i | p ) ≪ n, while Rosenthal inequality with some exponent r > p applied to

X ′ i gives E(| X ′ i | r ) ≪ n r/2
. Combining these two inequalities, we deduce the moderate deviations bound

P n i=1 Z i ≥ x ≪ n x p + n r/2 x r .
We will follow the same strategy in our context: split the sum to be estimated in two different parts, and apply a Rosenthal inequality (in our case, Theorem 3.1) to each part, with suitable exponents. Instead of truncating, the splitting will be done by constructing blocks, and separating a conditional average (which is small in L 1 , but large in L p , as X i above) from the dominating term.

Here is a high level version of the (rather technical) proof to follow. First, we write j f (Y j )π(f ) as a sum B i , where B i is a sum of f along a block of length n 1/p . Then, we write B i as

(B i -E(B i | G B i-2 )) + E(B i | G B i-2 ), where G B i is the natural filtration along which B i is measurable. Then E(B i | G B i-2 ) is small in L 1 , but possibly large in L ∞ . We control the probability of moderate deviations of E(B i | G B i-2
) by grouping these variables into blocks of size ≍ x, then applying Theorem 3.1: all the terms in the upper bound of this theorem can be controlled, in a straightforward albeit tedious way, by using the assumption H 1 (p). Then, to control the probability of moderate deviations of

(B i -E(B i | G B i-2
)), we consider separately the sums along even and odd indices, use that each such sum is a martingale, and apply an exponential inequality for martingales (here, Freedman inequality). It follows that, to control the probability of moderate deviations, it suffices to control the deviations of the conditional quadratic averages. To handle these, we group them again into blocks of size ≍ x and apply again Theorem 3.1. All the terms in the upper bound of this theorem can also be controlled directly from H 1 (p).

Below are the details of the proof.

Proof of items (1) and (2) in Theorem 1.4. We will use the following notations throughout the proof. Let 

f (0) = f -π(f ) and M = f ∞ and F k = σ(Y i , i ≤ k) and E k (•) = E(• | F k ) and E (0) k (•) = E(• | F k ) -E(•).
(f (Y i ) -π(f )) ≥ 8x .
Indeed, if one proves the theorem for this quantity, then the original result follows by letting x ′ = x/8, as polynomial bounds involving x ′ or x are equivalent. From this point on, we concentrate on bounding (3.4). We first notice that since max 1≤k≤n

k i=1 f (Y i ) -π(f ) ∞ ≤ 2 f ∞ n, we can assume that (3.5) x ≤ 4 -1 f ∞ n ,
otherwise the probability under consideration equals zero. In addition, we can also assume that

(3.6) x ≥ 2 f ∞ n 1/p ,
otherwise what we have to prove is trivial as soon as κ is greater or equal to (16 f ∞ ) p . So from now on, we assume the two restrictions above on x.

The strategy to prove the desired inequalities is in two steps. First, we split the sum into blocks of size

t = [n 1/p ]
as this is the characteristic size when dealing with mixing bounds of exponent p. Then, we write these blocks as sums of a martingale difference and a remainder. For each of these two terms, we will prove the desired estimate on the deviation probability using Theorem 3.1 with a suitable exponent r. While the different sizes of blocks and the filtrations we will introduce all depend on n, we suppress n from the notations for brevity. Let

B i = it j=(i-1)t+1 f (0) (Y j ) and X i = E(B i | F (i-2)t ) .
Let n t = [n/t] be the number of size t blocks. The following inequality is then valid:

max 1≤k≤n k i=1 (f (Y i ) -π(f ) ≤ 2t f ∞ + max 1≤j≤nt j i=1 (B i -X i ) + max 1≤j≤nt j i=1 X i . Since 2t f ∞ ≤ 2n 1/p f ∞ ≤ x, it follows that P max 1≤k≤n k i=1 (f (Y i ) -π(f ) ≥ 8x ≤ P max 1≤j≤nt j i=1 (B i -X i ) ≥ 3x + P max 1≤j≤nt j i=1 X i ≥ 4x .
(3.7)

We will control separately these two terms.

First step: controlling P max 1≤j≤nt j i=1 X i ≥ 4x . Consider some r ∈ (2(p -1), 2p). We will show that

(3.8) P max 1≤j≤nt j i=1 X i ≥ 4x ≤ κnx -p if p > 2 κ nx -2 + (n log n) r/2 x -r if p = 2 ,
where κ is a positive constant depending only on p, r, f , C 1 and C 2 but not on x nor n.

With this aim, we first let

u = x 2 f ∞ n 1/p ,
and we notice that, by (3.6), u ≥ 1. We will regroup the X i into blocks of length u, which corresponds to blocks of size tu ≍ x for Y j : this is the time scale where the sum over a block can not exceed x. By (3.5), (3.9)

n t ≥ n 2t ≥ n 2n 1/p ≥ 4x 2n 1/p f ∞ ≥ 4u . Define U i = iu j=(i-1)u+1 X j .
It is measurable with respect to

G U i = σ(Y i , ℓ ≤ itu -2t) thanks to the conditional expec- tation in the definition of X i . Since X i ∞ ≤ 2 f ∞ t, we have max 1≤j≤nt j i=1 X i ≤ 2 f ∞ tu + max 1≤j≤[nt/u] j i=1 U i . Since 2 f ∞ tu ≤ x, it follows that P max 1≤j≤nt j i=1 X i ≥ 4x ≤ P max 1≤j≤[nt/u] j i=1 U i ≥ 3x ,
which we will control using Theorem 3.1 applied to Z i = U i and G i = G U i and N = [n t /u] and the exponent r. We should thus show that all the terms in the upper bound of this theorem are controlled as in (3.8).

By using H 1 (p),

E(U 2 | G U 0 ) 1 ≤ 2u i=u+1 it j=(i-1)t+1 E(f (0) (Y j ) | F 0 ) 1 ≤ C 1 f (0) ut (ut) p-1 . Note now that ut ≥ x(8 f ∞ ) -1 . Therefore, [n t /u] x E(U 2 | G U 0 ) 1 ≤ C 1 f (0) n t /u x ut (ut) p-1 ≤ C 1 f (0) 8 f ∞ p-1 nx -p .
This handles the first term in the upper bound of Theorem 3.1.

To control the term involving E(|U 1 | r ), we recall that U 1 is a sum of u random variables X i , all bounded in sup norm by 2 f ∞ t. Any precise inequality for the r norm of a sum will do here. We use for instance [Rio00, Theorem 2.5] with p = r/2. It gives

E(|U 1 | r ) ≤ (ur) r/2 u i=1 X 1 ∞ E 0 (X i ) r/2 r/2 . Moreover, E 0 (X i ) r/2 ≤ it j=(i-1)t+1 E 0 (E (i-2)t f (0) (Y j )) r/2 = it j=(i-1)t+1 E (i-2)t∧0 f (0) (Y j ) r/2 ≤ it j=(i-1)t+1 E (i-2)t∧0 f (0) (Y j ) r/2-1 ∞ • E (i-2)t∧0 f (0) (Y j ) 1 1/(r/2) .
The first sup norm is bounded by 2 f ∞ ≤ 2 f , while the L 1 norm is bounded by C 1 f (0) /(t∨(i-1)t) p-1 thanks to H 1 (p). Hence, E 0 (X i ) r/2 ≤ Ct t (p-1)/(r/2) 1 (1∨(i-1)) (p-1)/(r/2) , for some constant C. As r > 2(p -1), we get a bound

E(|U 1 | r ) ≤ Cu r/2 u i=1 t • t t (p-1)/(r/2) 1 (1 ∨ (i -1)) (p-1)/(r/2) r/2 ≤ C ′ (t 2 u) r/2 t (p-1) • u r/2-(p-1) .
Taking into account that ut ≤ x/(2 f ∞ ) and n t = [n/t], we derive

[n t /u] x r E(|U 1 | r ) ≤ κnx -p .
This handles the second term in the upper bound of Theorem 3.1.

Let us now control the term involving E(U 2 1 ). We have

E U 2 1 = u j=1 u ℓ=1 E(X j X ℓ ) = u j=1 u ℓ=1 jt k=(j-1)t+1 ℓt m=(ℓ-1)t+1 E E (j-2)t (f (0) (Y k )) • E (ℓ-2)t (f (0) (Y m ))
.

Each such term is equal to E E (j-2)t∧(ℓ-2)t (f (0) (Y k )) • E (j-2)t∧(ℓ-2)t (f (0) (Y m ))
. We bound one of the factors (corresponding to the minimal j or ℓ) by 2 f ∞ , and use H 1 (p) to bound the other one in terms of the gap size, which is at least (|ℓ -j| + 1)t. Hence,

E U 2 1 ≤ 2 f ∞ u j=1 u ℓ=1 t 2 C 1 f t p-1 (|j -ℓ| + 1) p-1 ≤ κut 2 × 1 t p-1 1 + (log n)1 p=2
as p ≥ 2, where κ is a positive constant. This yields

[n t /u] r/2 E(U 2 1 ) r/2 ≤ κ r/2 n tu ut 2 × 1 t p-1 r/2 1 + (log n) r/2 1 p=2 ≤ κ r/2 nt 2 × 1 t p r/2
1 + (log n) r/2 1 p=2 ≤ 2 rp/2 κ r/2 n r/p 1 + (log n) r/2 1 p=2 .

Using (3.6), we note that as r ≥ p we have x r-p ≥ 2 r-p f r-p ∞ n r/p-1 . Hence,

[n t /u] r/2 x r E(U 2 1 ) r/2 ≤ 2 rp/2 κ r/2 2 p-r f p-r ∞ n x p + (n log n) r/2 x r 1 p=2 .
This handles the third term in the upper bound of Theorem 3.1.

We analyze now the last term in the upper bound of Theorem 3.1. With this aim, we notice that G U 0 = F -2t . Therefore, for any i ≥ 2,

E U 2 i | G U 0 -E U 2 i r/2 ≤ iu j=(i-1)u+1 iu ℓ=(i-1)u+1 E X j X ℓ | F -2t -E X j X ℓ r/2 ≤ 2 iu+2 j=(i-1)u+3 iu+2 ℓ=j E (0) 0 X j X ℓ r/2 . Fix j ∈ [(i -1)u + 3, iu + 2] and ℓ ∈ [j, iu + 2]. Then X j X ℓ is a sum of t 2 terms of the form E (j-2)t (f (0) (Y k )) • E (ℓ-2)t (f (0) (Y m )) for k ∈ [(j -1)t + 1, jt] and m ∈ [(ℓ -1)t + 1, ℓt]. For each such term, writing k ′ = k -(j -2)t and m ′ = m -(j -2)t, we have E (0) 0 E (j-2)t (f (0) (Y k )) • E (ℓ-2)t (f (0) (Y m )) r/2 = K (j-2)t (K k ′ f (0) ) • (K m ′ f (0) ) -π (K k ′ f (0) ) • (K m ′ f (0) ) π,r/2 . Therefore E (0) 0 E (j-2)t (f (0) (Y k )) • E (ℓ-2)t (f (0) (Y m )) r/2 r/2 ≤ (8 f 2 ∞ ) r/2-1 K (j-2)t (K k ′ f (0) ) • (K m ′ f (0) ) -π (K k ′ f (0) ) • (K m ′ f (0) ) π,1
.

Both functions K k ′ (f (0) ) and K m ′ (f (0) ) belong to B, with a norm bounded by C 2 f (0) thanks to the condition H 2 . As • is a Banach algebra norm, their product also belongs to B. Applying the condition H 1 (p) to this product, we deduce that

K (j-2)t (K k ′ f (0) ) • (K m ′ f (0) ) -π (K k ′ f (0) ) • (K m ′ f (0) ) π,1 ≤ C 3 ((j -2)t) p-1 , for some constant C 3 . Combining these inequalities yields E (0) 0 X j X ℓ r/2 ≤ t 2 C 4 ((j -2)t) (p-1)/(r/2) .
Therefore, we get that for any i ≥ 2,

E U 2 i | G 0 -E U 2 i r/2 ≤ C 5 (ut) 2 (iut) 2(p-1)/r .
As r > 2(p -1), this implies that

k i=2 E U 2 i | G 0 -E U 2 i r/2 ≤ C 6 (ut) 2 (ut) 2(p-1)/r k 1-2(p-1)/r . Hence [n t /u]   [nt/u] k=1 1 k 1+2δ/r k i=2 E U 2 i | G U 0 -E U 2 i r/2 δ   r/(2δ) ≤ C r/2 6 (ut) r (ut) p-1 n t u   [nt/u] k=1 1 k 1+2δ/r k 1-2(p-1)/r δ   r/(2δ) .
As r < 2p, the sum over k is uniformly bounded, independently of n or x. Taking into account that ut ≤ x/(2 f ∞ ), we get that there exists a positive constant κ such that (3.10)

[n t /u] x r   [nt/u] k=1 1 k 1+2δ/r k i=2 E U 2 i | G U 0 -E(U 2 i ) r/2 δ   r/(2δ) ≤ κnx -p .
This handles the last term in the upper bound of Theorem 3.1. Altogether, this proves (3.8) and concludes the proof of the first step.

Second step: controlling P max 1≤j≤nt j i=1 B i -X i ≥ 4x . We will prove

(3.11) P max 1≤k≤nt k i=1 (B i -X i ) ≥ 3x ≤ κnx -p + κ exp(-κ -1 x 2 /n) if p > 2 κnx -2 + κ exp(-κ -1 x 2 /(n log n)) if p = 2 ,
where κ is a positive constant depending only on p, f , C 1 and C 2 but not on x nor n. Starting from (3.7), this upper bound combined with (3.8) will end the proof of Items 1 and 2 of the theorem.

To prove (3.11), we start by setting

d i = B i -X i and G B i = F it
, and we write the following decomposition:

(3.12) P max 1≤k≤nt k i=1 (B i -X i ) ≥ 3x ≤ P max 1≤2k≤nt k i=1 d 2i ≥ 3x/2 + P max 1≤2k-1≤nt k i=1 d 2i-1 ≥ 3x/2 .
Note that (d 2i ) i∈Z (resp. (d 2i-1 ) i∈Z ) is a strictly stationary sequence of martingale differences with respect to the non decreasing filtration

(G B 2i ) i∈Z (resp. (G B 2i-1 ) i∈Z ). Therefore, since d 2i ∞ ≤ 2t f ∞ ≤ 2 f ∞ n 1/p by [Fre75, Proposition 2.1], for any y > 0, (3.13) P max 2≤2k≤nt k i=1 d 2i ≥ 3x/2 ≤ 2 exp -9x 2 16y + 2 exp -9x 16 f ∞ n 1/p + P [nt/2] i=1 E d 2 2i | G B 2(i-1) ≥ y . Note now that E d 2 2i | G B 2(i-1) ≤ E B 2 2i | G B 2(i-1)
. Moreover, by stationarity, we infer that

[nt/2] i=1 E(B 2 2i ) ≤ 2n f ∞ t-1 k=0 E 0 (f (0) (Y k ) 1 .
Therefore, by H 1 (p), there exists a positive constant κ depending only on p, f and C 1 such that

[nt/2] i=1 E(B 2 2i ) ≤ κn(1 + (log n)1 p=2 )) . Selecting y =    max 2κn, 16xn 1/p f ∞ if p > 2 max 2κn log n, 16x(n log n) 1/2 f ∞ if p = 2 ,
and starting from (3.13), we get that, for any r ≥ 1,

(3.14) P max 2≤2k≤nt k i=1 d 2i ≥ 3x/2 ≤ c n x p + c exp -c ′ x 2 n + n log n1 p=2 + P [nt/2] i=1 E B 2 2i | G B 2(i-1) -E(B 2 2i ) ≥ y/2 ,
where c and c ′ are positive constants.

Let us prove now that (3.15)

P [nt/2] i=1 E B 2 2i | G B 2(i-1) E(B 2 2i ) ≥ y/2 ≤ cnx -p ,
where c is a positive constant depending only on p, f , C 1 and C 2 but not on x nor n.

A similar bound will hold for odd indices. Hence, starting from (3.12) and considering the inequality (3.14), this upper bound will lead to (3.11) and then will end the proof of Items 1 and 2 of the theorem. It remains then to prove (3.15). With this aim, we do again blocks of size u with as before

u = x 2 f ∞ n 1/p . Let W i = E B 2 2i | G B 2(i-1) -E(B 2 2i ) , V i = iu k=(i-1)u+1 W k and G V i = G B 2(iu-1) = F 2(iu-1)t . Setting n u = [n t /2] u
(note that, by (3.9), n u ≥ 1), we have

[nt/2] i=1 E B 2 2i | G B 2(i-1) -E(B 2 2i ) = [nt/2] i=1 W i ≤ nu i=1 V i + 8ut 2 f 2 ∞ . Note that 8ut 2 f 2 ∞ ≤ 4xn 1/p f ∞ ≤ y/4 . Therefore P [nt/2] i=1 E B 2 2i | G B 2(i-1) -E(B 2 2i ) ≥ y/2 ≤ P nu i=1 V i ≥ y/4 .
To prove (3.15), it suffices to show that (3.16)

P nu i=1 V i ≥ y/4 ≤ cnx -p .
We will show this inequality by applying Theorem 3.1 to Z i = V i and G i = G V i and N = n u and some fixed r ∈ (2p -2, 2p). We should thus show that all the terms in the upper bound of this theorem are controlled as in (3.16).

We start with the first term involving

E(V 2 | G V 0 ) 1 . Since y ≥ 16xn 1/p f ∞ , we have n u y E(V 2 | G V 0 ) 1 ≤ n u xn 1/p f ∞ 2u k=u+1 E(W k | F -2t ) 1 ≤ n u xn 1/p f ∞ 2u k=u+1 E(B 2 2k | F -2t ) -E(B 2 2k ) 1 ≤ 2n u xn 1/p f ∞ 2u k=u+1 2kt 2kt ℓ=j E (0) (f (0) (Y j )f (0) (Y ℓ ) | F -2t ) 1 .
Using H(p), we infer that there exists a positive constant c depending on C 1 , C 2 and f (0) , such that this quantity is bounded by

c n xn 1/p tu f ∞ ut 2 1 (ut) p-1 ≤ c n x f ∞ 1 (ut) p-1 ≤ 8 p-1 c f p-2 ∞ nx -p ,
thanks to the inequality ut ≥ x(8 f ∞ ) -1 . This handles the first term in the upper bound of Theorem 3.1.

We turn to the second term, involving E(|V 1 | r ). By stationarity and [Rio00, Theorem 2.5], we have

E(|V 1 | r ) 2/r = u k=1 W k 2 r ≤ ur u-1 k=0 W 0 E(W k | F -2t ) r/2 ≤ ur W 2 0 r/2 + ur W 0 ∞ u-1 k=1 E(W k | F -2t ) r/2 ≤ ur W 2 0 r/2 + ur • 16t 2 f 2 ∞ u-1 k=1 E(W k | F -2t ) r/2 .
Using H(p), we infer that there exists a positive constant c 4 depending on C 1 , C 2 , f and r such that as r > 2(p -1). On the other hand, using again H(p), we get that there exists a positive constant c 5 such that for any k ≥ 1,

W 2 0 r/2 = W 0 2 r = E 0 B 2 2 -E(B 2 2 ) 2 r ≤ 2t j=t+1 2t i=t+1 E (0) 0 (f (0) (Y j )f (0) (Y i )) r 2 ≤ c 4 t 2 1 t (p-1)/r 2 ≤ c 4 u u 2(p-1)/r • t 4 t 2(p-1)/r ,
E(W k | F -2t ) r/2 ≤ 2kt j=(2k-1)t+1 2kt i=(2k-1)t+1 E (0) -2t (f (0) (Y j )f (0) (Y i ))) r/2 ≤ c 5 t 2 1 (kt) 2(p-1)/r .
The sum of these quantities over k from 1 to u -1 is bounded by c 6 t 2 t 2(p-1)/r • u u 2(p-1)/r , as r > 2(p -1). We infer that there exists a positive constant c 7 such that

n u E(|V 1 | r ) ≤ c 7 n u (u 2 t 4 ) r/2 1 (ut) p-1 ≤ c 7 nt r (ut) .
Hence, using the fact that y ≥ 16xn 1/p f ∞ and ut ≤ x(2 f ∞ ) -1 and t ≤ n 1/p , we get that

n u y r E(|V 1 | r ) ≤ 8 -r c 7 (2 f ∞ ) p-2r n
x p . This handles the second term in the upper bound of Theorem 3.1.

We turn to the third term, involving E(V 2 1 ). By stationarity, we have

E(V 2 1 ) = 2u k=u+1 W k 2 2 = u W 1 2 2 + 2 u-1 k=1 u-k ℓ=1 cov W 0 , W ℓ .
But, by using H(p), we infer that there exists a positive constant c 1 such that

W 1 2 = E (0) 0 (B 2 2 ) 2 ≤ 2t j=t+1 2t ℓ=t+1 E (0) 0 (f (0) (Y j )f (0) (Y ℓ )) 2 ≤ c 1 t 2 t (p-1)/2 .
On the other hand, using again H(p), we get that there exists a positive constant c 2 such that for any ℓ ≥ 1,

cov W 0 , W ℓ ≤ B 2 0 ∞ E -2t (B 2 2ℓ ) -E(B 2 2ℓ ) 1 ≤ (8t f ) 2 2ℓt j=(2ℓ-1)t+1 2ℓt i=(2ℓ-1)t+1 E (0) 0 (f (0) (Y j )f (0) (Y i )) 1 ≤ c 2 t 4 (ℓt) p-1 .
So, overall, there exists a positive constant c 3 such that

E(V 2 1 ) ≤ c 3 u t 4 t p-1 1 + (log n)1 p=2 . This upper bound implies that n u E(V 2 1 ) r/2 ≤ (2 p c 3 ) r/2 n 2r/p 1 + (log n) r/2 1 p=2 . Next using the fact that y ≥ 16xn 1/p f ∞ if p > 2 and y ≥ 16x(n log n) 1/2 f ∞ if p = 2, we get n r/2 u y r E(V 2 1 ) r/2 ≤ (2 p c 3 ) r/2 n r/p 16 r x r f r ∞ . By (3.6) and since r ≥ p, we have x r-p ≥ (2 f ∞ ) r-p n r/p-1 . Therefore, n r/2 u y r E(V 2 1 ) r/2 ≤ (2 p-6 c 3 ) r/2 (2 f ∞ ) p-2r n x p .
This handles the third term in the upper bound of Theorem 3.1.

Finally, we turn to the last term, involving

E(V 2 i | G V 0 ) -E(V 2 i ) r/2 . For any i ≥ 2, we have E(V 2 i | G V 0 )-E(V 2 i ) r/2 ≤ iu ℓ=(i-1)u+1 iu m=(i-1)u+1 E (0) -2t (W ℓ W m ) r/2 ≤ iu ℓ=(i-1)u+1 iu m=(i-1)u+1 E (0) -2t E B 2 2ℓ | G B 2(ℓ-1) • E B 2 2m | B 2(m-1) r/2 + 2 iu ℓ=(i-1)u+1 iu m=(i-1)u+1 E(B 2 2ℓ ) • E (0) -2t (B 2 2m ) r/2 ,
where this expansion is obtained from the definition

W i = E B 2 2i | G B 2(i-1) -E(B 2 2i
) by expanding the product W ℓ W m , using the fact that E (0) -2t is linear and vanishes on the constant

E(B 2 2ℓ ) • E(B 2 2m ). For any m ≥ ℓ ≥ 1, E (0) -2t E B 2 2ℓ | G B 2(ℓ-1) • E B 2 2m | G B 2(m-1) r/2 = E (0) -2t E B 2 2ℓ | G B 2(ℓ-1) • E B 2 2m | G B 2(ℓ-1) r/2 ≤ 2ℓt a,a ′ =(2ℓ-1)t+1 2mt b,b ′ =(2m-1)t+1 E (0) -2t E 2(ℓ-1)t f (0) (Y a )f (0) (Y a ′ ) × E 2(ℓ-1)t f (0) (Y b )f (0) (Y b ′ ) r/2 ≤ 2t 2 sup a ′ ,b ′ ≥0 2(ℓ+1)t a=(2ℓ+1)t+1 2(m+1)t b=(2m+1)t+1 E (0) 0 E 2ℓt f (0) (Y a )f (0) (Y a+a ′ ) × E 2ℓt f (0) (Y b )f (0) (Y b+b ′ ) r/2
, where we have used stationarity. But

E 2ℓt f (0) (Y a )f (0) (Y a+a ′ ) = E 2ℓt (f (0) K a ′ f (0) )(Y a ) = (K a-2ℓt (f (0) K a ′ f (0) ))(Y 2ℓt ) .
Hence,

E 0 E 2ℓt f (0) (Y a )f (0) (Y a+a ′ ) • E 2ℓt f (0) (Y b )f (0) (Y b+b ′ ) = K 2ℓt K a-2ℓt (f (0) K a ′ f (0) ) • K b-2ℓt (f (0) K b ′ f (0) ) (Y 0 ) .
Therefore, thanks to H(p), we infer that there exists a positive constant c 8 such that for any m ≥ ℓ ≥ (i -1)u + 1,

E (0) -2t E B 2 2ℓ | G B 2(ℓ-1) • E B 2 2m | G B 2(m-1) r/2 ≤ c 8 t 4 ((i -1)tu) 2(p-1)/r .
On the other hand, using again H(p), we infer that there exists a positive constant c 9 such that for any ℓ, m ≥ (i -1)u + 1,

E(B 2 2ℓ ) • E (0) -2t (B 2 2m ) r/2 ≤ c 9 t 2 • t 2 ((i -1)tu) 2(p-1)/r .
So, overall, as r > 2(p -1), there exists a positive constant c 10 such that

k i=1 E(V 2 i | G V 0 ) -E(V 2 i ) r/2 ≤ c 10 u 2 t 4 (tu) 2(p-1)/r k k 2(p-1)/r .
Therefore, as in addition r < 2p, there exists a positive constant c 11 such that

nu k=1 1 k 1+2δ/r k i=1 E(V 2 i | G V 0 ) -E(V 2 i ) r/2 δ r/(2δ) ≤ c 11 (ut 2 ) r (tu) p-1 .
Using, the fact that y ≥ 16xn 1/p f ∞ , ut ≤ x(2 f ∞ ) -1 and t ≤ n 1/p , this implies that

n u y r nu k=1 1 k 1+2δ/r k i=1 E(V 2 i | G V 0 ) -E(V 2 i ) r/2 δ r/(2δ) ≤ 8 -r c 11 (2 f ∞ ) p-2r n x p .
This handles the last term in the upper bound of Theorem 3.1. Altogether, this proves (3.16). This concludes the second step, and therefore the proof of Items 1 and 2 of the theorem.

Lower bounds in moderate deviations: three examples

In this section, we exhibit several examples of Markov chains satisfying H(p) (for different norms) for which one can prove a lower bound for the deviation probability of some particular observables. This shows that the upper bounds given in Theorem 1.4 cannot be essentially improved.

4.1. Discrete Markov chains. Let p > 1. We consider a simple renewal type Markov chain on N, jumping from 0 to n > 0 with probability p 0,n := 1/(ζ(p + 1)n p+1 ) and from n > 0 to n -1 with probability 1. This Markov chain has an invariant probability measure π given by π{n} = i≥n d/i p+1 for n > 0 and π{0} = π{1}, where d > 0 is chosen so that π is of mass 1.

This Markov chain satisfies H(p) for the norm f = f ∞ . Indeed, in this case,

π sup f ∞ ≤1 |K n (f ) -π(f )| ≤ C 1 j≥n k≥j+1 p 0,k ≤ C 2 n 1-p
(see [Dav73] or Chapter 30 in [START_REF] Bradley | Introduction to strong mixing conditions[END_REF] for more details). Define a function f by f (n) = π{0} -1 n=0 . Its average under π vanishes.

Proposition 4.1. Let (Y i ) i∈N be a stationary Markov chain with transition kernel described above, for some p > 1. There exists κ > 0 such that, for any n ∈ N * and any x ∈ [κn 1/p , κ -1 n],

P n-1 i=0 f (Y i ) ≥ x ≥ κ -1 n x p .
This paragraph is devoted to the proof of this proposition. Since we are looking for lower bound, it suffices to consider trajectories starting from 0. Denote by τ 0 , τ 1 , . . . the lengths of the successive excursions outside of 0. This is a sequence of i.i.d. random variables with a weak moment of order p, namely:

P(τ 0 > n | Y 0 = 0) = i≥n 1/(ζ(p + 1)i p+1
). We first consider the case p > 2, and indicate then the modifications to be done when p = 2 and when p ∈ (1, 2).

First, we study the probability that the lengths of excursions differ much from their average. Lemma 4.2. Assume p > 2. There exists C 1 > 0 such that, for any n ≥ 1 and any x ≥ n 1/p , one has

P n-1 i=0 τ i ≥ nE(τ ) + x ≥ C -1 1 n x p . Proof. Write τi = τ i -E(τ i ). There exists σ 2 > 0 such that n-1 i=0 τi / √ n converges to N (0, σ 2 ). It follows that, for x ∈ [n 1/p , n 1/2 ],
the left hand side in the statement of the lemma converges to a quantity which is bounded from below by P(N (0, σ 2 ) ≥ 1) > 0, while the right hand side is bounded from above by C -1 1 . Taking C 1 large enough, the conclusion of the lemma follows in this range of x.

Let us now assume x ≥ √ n. For i < n, let

A i = {τ i ≥ 3x} ∩ i-1 j=0 τj ≤ x ∩ n-1 j=i+1 τj ≤ x .
This decomposition is the intersection of three independent sets. The first one has probability at least c/x p as τ has polynomial tails of order p, while the measure of the other ones is bounded from below thanks to the central limit theorem for τ , as we assume x ≥ √ n.

Hence, for some constant c 1 , we obtain

P(A i ) ≥ c 1 /x p . Moreover, A i ∩ A j is contained in {τ i ≥ 3x} ∩ {τ j ≥ 3x}
. By independence, this set has probability at most c 2 /x 2p for some c 2 > 0.

On the set A i , one has n-1 i=0 τ i ≥ nE(τ ) + x by construction. To conclude, we should bound from below the measure of this set. We have

P A i ≥ n-1 i=0 P(A i ) - n-1 i =j=0 P(A i ∩ A j ) ≥ c 1 n x p -c 2 n 2 x 2p .
If n is large enough, one has c 2 n 2 /x 2p ≤ c 1 n/(2x p ) when x ≥ √ n. Therefore, we get P( A i ) ≥ (c 1 /2)n/x p , proving the desired result. As the estimate is trivial for bounded n, the result follows.

Proof of Proposition 4.1 for p > 2. Fix some n ∈ N. Let N denote the number of visits to 0 of the Markov chain Y i starting from 0 strictly before time n. Then, given the definition of f , one has

n-1 i=0 f (Y i ) = nπ{0} -N.
Therefore, for any x ≥ 0,

n-1 i=0 f (Y i ) ≥ x = {N ≤ nπ{0} -x} =    [nπ{0}-x]-1 j=0 τ j ≥ n    . Let m = [nπ{0} -x].
It is positive when x ≤ κ -1 n, if κ is large enough. We write n as mE(τ ) + y for some y. As E(τ ) = 1/π{0} by Kac formula, we have

y = n -[nπ{0} -x]/π{0} ≥ x/π{0}.
If x ≥ κn 1/p with large enough κ, then y ≥ n 1/p . Hence, we can apply Lemma 4.2 to obtain

P 0 n-1 i=0 f (Y i ) ≥ x ≥ C -1 1 m y p ≥ C -1 2 n x p .
We obtain the same lower bound for the random walk started from π, with an additional multiplicative factor π{0}.

Proof of Proposition 4.1 for p = 2. In this case, n-1 j=0 τj / √ n log n converges to a gaussian (see for instance [Fel66]). Following the proof of Lemma 4.2, one deduces first that this lemma holds trivially for any x ∈ [n 1/p , √ n log n], and also that it holds for any x ≥ √ n log n. It follows then from the same proof as in the p > 2 case that the proposition holds for all x ∈ [κn 1/p , κ -1 n].

Proof of Proposition 4.1 for p < 2. In this case, n-1 j=0 τj /n 1/p converges to a stable law (which is totally asymmetric of index p, see [Fel66]). Hence, Lemma 4.2 holds for any x ≥ n 1/p . It follows then from the same proof as in the p > 2 case that the proposition holds for all x ∈ [κn 1/p , κ -1 n].

4.2. Young towers. Consider now a Young tower T : Z → Z with invariant measure π for which the return time τ to the basis Z 0 of the tower satisfies π{τ = n} ∼ c/n p+1 on Z 0 , for some p > 1. In perfect analogy with the previous paragraph, we define a function f by f = π(Z 0 ) -1 Z 0 . Its average under π vanishes. The corresponding Markov chain satisfies H(p) for the Hölder norm on the tower, see for instance [START_REF] Gouëzel | Moment bounds and concentration inequalities for slowly mixing dynamical systems[END_REF] and references therein.

Starting from Y 0 distributed according to π, we can consider Y 0 , T (Y 0 ), . . . , T n-1 (Y 0 ), or the dual Markov chain Y 0 , . . . , Y n-1 . Then Y 0 , . . . , Y n-1 is distributed as T n-1 (Y 0 ), . . . , Y 0 , as explained at the beginning of Section 2. It follows that moderate deviations controls for one process or the other are equivalent. We will state the lower bound statement for the Markov chain, but we will prove it using the dynamical time direction. Proposition 4.3. In this context, assume p > 2. There exists κ > 0 such that, for any n ∈ N * and any x ∈ [κn 1/p , κ -1 n],

P n-1 i=0 f (Y i ) ≥ x ≥ κ -1 n x p .
Proof. We work using the dynamical time direction. Starting from a point in the basis Z 0 of the tower, let τ 0 , τ 1 , . . . denote the lengths of the successive excursions out of Z 0 . The proof will be the same as for Proposition 4.1 (notice that the statement is exactly the same).

The only difference is that the successive returns to the basis are not independent, which means that the proof of Lemma 4.2 has to be amended. We only give the proof for p > 2, as the other cases are virtually identical. Let T 0 : Z 0 → Z 0 be the map induced by T on the basis. It preserves the probability π 0 induced by π on Z 0 . By definition, T 0 is a Gibbs-Markov map with onto branches, i.e., there is a partition α 0 of Z 0 into positive measure subsets, such that T 0 maps bijectively each a ∈ α 0 to Z 0 , with the following bounded distortion property. A length k cylinder is a set of the form [a 0 , . . . , a k-1 ] = i<k T -i 0 a i for some a 0 , . . . , a k-1 ∈ α 0 . Then there exists a constant C such that, for any k > 0, for any length k cylinder A and for any measurable set B,

(4.1) C -1 π 0 (A)π 0 (B) ≤ π 0 (A ∩ T -k 0 B) ≤ Cπ 0 (A)π 0 (B).
(See for instance the last line in Section 1 of [START_REF]Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps[END_REF].) This estimate readily extends if A is a union of length k cylinders.

We can now prove the analogue of Lemma 4.2 in our situation. Let τi = τ i -E(τ i ). Define

A i = {τ i ≥ 3x} ∩ i-1 j=0 τj ≤ x ∩ n-1 j=i+1 τj ≤ x = A 1 i ∩ A 2 i ∩ A 3 i .
We should show that, if x ≥ √ n, then π 0 (A i ) ≥ c 1 /x p for some c 1 > 0 independent of i or n, and that π 0 (A i ∩ A j ) ≤ c 2 /x 2p for i < j. Then, the proof of Lemma 4.2 applies. In this lemma, the inequality P(A i ) ≥ c 1 /x p follows from independence and the fact that P(A 2 i ) ≥ c and P(A 3 i ) ≥ c and P(A 1 i ) ≥ c/x p . In our context, these three inequalities still hold (the first two ones follow from the fact that the Birkhoff sums of τ satisfy the central limit theorem or converge to a stable law, see [START_REF] Aaronson | A local limit theorem for stationary processes in the domain of attraction of a normal distribution[END_REF] and [START_REF]Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps[END_REF], and the last one from the assumptions on the tails of τ ), but independence fails. It will be replaced by (4.1). Let us give the details. Recall that τi = τ (T i 0 z)π(τ ) := τ (T i 0 z). Define

B 1 = {y : τ (y) ≥ 3x} , B 2 = y : i-1 j=0 τ (T j 0 y) ≤ x and B 3 = y : n-1-(i+1) j=0 τ (T j 0 y) ≤ x .
We have

A 1 i = T -i 0 (B 1 ), A 2 i = B 2 and A 3 i = T -(i+1) 0 B 3 . Therefore, π 0 (A i ) = π 0 B 2 ∩ T -i 0 (B 1 ∩ T -1 0 (B 3 )) . Applying inequality (4.1) with k = i, A = B 2 and B = B 1 ∩ T -1 0 (B 3 ) (which is possible since B 2 is a union of length i cylinders since τ is constant on elements of α 0 ), we get π 0 (A i ) ≥ C -1 π 0 (B 2 )π 0 (B 1 ∩ T -1 0 (B 3 )).
Next, applying again (4.1) this time with k = 1, A = B 1 and B = B 3 (which is possible since B 1 is a union of length 1 cylinders), we have

π 0 (B 1 ∩ T -1 0 (B 3 )) ≥ C -1 π 0 (B 1 )π 0 (B 3 ). So overall, π 0 (A i ) ≥ C -2 π 0 (A 2 i )π 0 (A 1 i )π 0 (A 3 i )
. This inequality replaces the independence assumption and implies that π 0 (A i ) ≥ c 1 /x p . The inequality π 0 (A i ∩ A j ) ≤ c 2 /x 2p is proved in the same way, using the upper bound in (4.1). We define now a strictly stationary Markov chain by specifying its transition probabilities K(x, A) as follows:

Harris

K(x, A) = (1 -x)δ x (A) + xν(A)
, where δ x denotes the Dirac measure. Then π is the unique invariant probability measure of the chain with transition probabilities K(x, •). Let (Y i ) i∈Z be the stationary Markov chain on [0, 1] with transition probabilities K(x, •) and law π. For γ > 0, we set

c a,γ = a a + γ , X i = f γ (Y i ) -E(f γ (Y i )) := Y γ i -c a,γ and S n = n-1 i=0 X i .
Denote by

β n := 1 2 π sup f ∞ ≤1 |K n (f ) -π(f )| ,
and set T (x) = 1x. According to Lemma 2 in Doukhan, Massart and Rio (1994),

β n ≤ 3 E π (T [n/2] ) .
Note now that for any b > -1,

1 0 (1 -x) k x b dx = k -(b+1) k 0 (1 -x/k) k x b dx . Since for any x ∈ [0, 1], log(1 -x) ≤ -x, it follows that (4.2) 1 0 (1 -x) k x b dx ≤ k -(b+1) k 0 e -x x b dx ≤ k -(b+1) Γ(b + 1) , implying that E π (T k ) ≤ aΓ(a)k -a . Therefore sup f ∞ ≤1 π |K n (f ) -π(f )| ≤ 2β n ≤ Cn -a ,
which shows that the condition H 1 (p) is satisfied for the two norms f ∞ and f BV . For the norm f ∞ , the condition H 2 is trivially satisfied with C 2 = 1. Hence, Theorem 1.4 applies to (f γ (Y i )) i∈Z . We shall verify that the condition H 2 also holds for the norm f BV = f ∞ +|df | at the end of this section. Concerning the lower bound, the following proposition holds: Proposition 4.4. Let (Y i ) i∈N be a stationary Markov chain with transition kernel described above. Assume p > 1 and γ > 0. There exists κ > 0 such that, for any n ∈ N * and any x ∈ [κn 1/p , κ -1 n],

P max 1≤k≤n k-1 i=0 (Y γ i -E(Y γ i )) ≥ x ≥ κ -1 n x p .
Proof. We first define a sequence (T k ) k≥0 of stopping time as follows:

T 0 = inf{i > 0 : Y i = Y i-1 } and T k = inf{i > T k-1 : Y i = Y i-1 } for k > 0 . Let τ k = T k+1 -T k . The r.v.'s (Y T k , τ k ) k≥0 are i.i.d., Y T k has law ν and the conditional distribution of τ k given Y T k = y is the geometric distribution G(1-y).
We have in particular that τ 0 is integrable. The key inequality for proving the lower bound is the following one:

(4.3) P max 0≤k≤n-1 τ k |X T k | ≥ 24x ≤ 9P max 1≤k≤[nE(τ 1 )]+1 |S k | ≥ x + 3P(T n ≥ 2[nE(τ 1 )] + 1) .
Before proving it, let us show how it will entail the lower bound.

Using the fact the r.v.'s (Y T k , τ k ) k≥0 are i.i.d., Y T k has law ν and the conditional distribution of τ k given Y T k = y is the geometric distribution G(1-y), straightforward computations imply that for x ≥ κn 1/p with κ large enough, (4.4)

P max 0≤k≤n-1 τ k |X T k | ≥ 24x ≥ C p,γ n x p , where C p,γ = 1 4 c a,γ η 48 p pΓ(p) , with η = 1 -(c a,γ /2) 1/γ .
On the other hand,

P(T n ≥ 2[nE(τ 1 )] + 1) ≤ P T 0 + n-1 i=0 (τ i -E(τ i )) ≥ [nE(τ 1 )] .
Since E(τ 1 ) ≥ 1, this gives

P(T n ≥ 2[nE(τ 1 )] + 1) ≤ P T 0 ≥ n/2 + P n-1 i=0 (τ i -E(τ i )) ≥ n/2 . Since P T 0 ≥ n/2 ≤ 1 0 (1 -x) n/2 dπ(x), according to (4.2) P T 0 ≥ n/2 ≤ 2 a an -a Γ(a) .
Assume from now that p ≥ 2. Since the (τ k ) k≥0 are i.i.d., the Fuk-Nagaev inequality for independent random variables (see for instance Theorem B.3 in [START_REF] Rio | Théorie asymptotique des processus aléatoires faiblement dépendants[END_REF] and its proof) gives that, for any u > 0 and any v

2 n (u) ≥ n-1 i=0 E((τ i ∧ u) 2 ), (4.5) P n-1 i=0 (τ i -E(τ i )) ≥ n/2 ≤ nP(τ 1 ≥ u) + exp - n 4u log 1 + nu 2v 2 n (u)
.

We shall apply this inequality with the following choice of u:

u = n 8(p -1)
.

The selection of v 2 n (u) will be different if p > 2 or if p = 2. Assume first that p > 2. In this case, we take v 2 n (u) = nE(τ 2 1 ). Since Y T k has law ν and the conditional distribution of τ k given Y T k = y is the geometric distribution G(1y), simple computations give

E(τ 2 1 ) = p 2 (p -1)(p -2) := c p and then v 2 n (u) = c p n .
On another hand, if p = 2, we first note that

E((τ 1 ∧ u) 2 ) = E(τ 2 1 1 τ 1 ≤u ) + u 2 P(τ 1 ≥ u) ≤ [u-1] ℓ=0 (2ℓ + 1)P(τ 1 ≥ ℓ) + u 2 P(τ 1 ≥ u) . Now (4.2) implies that P(τ 1 ≥ ℓ) ≤ 2ℓ -2 . Therefore, if n ≥ 8, E((τ 1 ∧ u) 2 ) ≤ log(u) + 5 ≤ 3 log(n) .
So, in case p = 2, we take v 2 n (u) = 3n log n. If p > 2, then (4.5) together with the fact that, by (4.2), P(τ 1 ≥ ℓ) ≤ pΓ(p)ℓ -p imply that (4.6)

P n-1 i=0 (τ i -E(τ i )) ≥ n/2 ≤ pΓ(p) × (8(p -1)) p n -p+1 + (16(p -1)c p ) 2(p-1) n -2(p-1) .
So, overall, starting from (4.3) and taking account (4.4) and (4.6), we get that for κ large enough

P max 1≤k≤[nE(τ 1 )]+1 |S k | ≥ x ≥ 9 -1 pΓ(p) 4 -1 c a,γ η 48 p nx -p -6(8(p -1)) p n -p+1
-3 -1 (16(p -1)c p ) 2(p-1) n -2(p-1) .

Since n -p ≤ (xκ) -p and E(τ 1 ) = p p-1 ≤ 2, it follows that for κ large enough

P max 1≤k≤2n+1 |S k | ≥ x ≥ 2n κx p ,
giving the lower bound when p > 2.

We turn now to the case when p = 2, we derive this time

P n-1 i=0 (τ i -E(τ i )) ≥ n/2 ≤ 2 × 8 2 n -1 + (3 × 16) 2 (log n) 2 n -2 .
Proceeding as before, the lower bound follows. We end the proof by considering the case 1 < p < 2. Let u be a positive real and set τi = (τ i ∧ u). Note that Next, by Markov inequality, we get that for any u > 0, P n-1 i=0 (τ i -E(τ i )) ≥ n/2 ≤ 4n -1 E((τ 1 ∧ u) 2 ) + nP(τ 1 ≥ u) ≤ 4n -1 E(τ 2 1 1 τ 1 ≤u ) + 4n -1 u 2 P(τ 1 ≥ u) + nP(τ 1 ≥ u) . We have

E(τ 2 1 1 τ 1 ≤u ) ≤ 2 u 0 tP(τ 1 ≥ t) dt ≤ 1 + 2pΓ(p) u 1 t [t] p dt ≤ 1 + 2 p+1 pΓ(p) 2 -p u 2-p .
Therefore, choosing u = n, we get overall that, in the case 1 < p < 2, P n-1 i=0 (τ i -E(τ i )) ≥ n/2 ≤ 4n -1 + n 1-p pΓ(p) 5 + 2 p+3 2p .

Proceeding as before, the lower bound follows.

To end the proof of the lower bound, it remains to prove inequality (4.3). With this aim, setting Z 0 = T 0 X 0 and Z k = τ k-1 X T k-1 for k ≥ 1 we note that max (Z k ) k≥0 being a sequence of independent random variables, Etemadi's inequality entails that |S k | ≥ x + P(T n ≥ 2[nE(τ 1 )] + 1) .

P max 0≤k≤n k i=0 Z i ≥ 12x ≤ 3P n i=0 Z i ≥ 4x .

Note now that

n i=0 Z i = T 0 -1 k=0 X 0 + n i=1 (T i -T i-1 )X T i-1 = T 0 -1 k=0 X k + n i=1 T i -1 j=T i-1 X j =
To complete this section, it remains to show that the transition operator K of the Markov chain satisfies condition H 2 for the semi norm |df |. With this aim, we first note that

K(f )(x) = (1 -x)f (x) + xν(f ) .
So iterating, we get for any positive integer n,

K n f (x) = (1 -x) n f (x) + n-1 k=0 x(1 -x) k ν(K n-1-k (f )) .
Therefore, we infer that 

K n f (x) = (1 -x) n (f (x) -ν(f )) + ν(K n-1 (f )) + n-1 k=1 (1 -x) n-k ν(K k-1 (f )) -ν(K k (f )) .

It follows that

|K k-1 (g 0 )(x) -K k (g 0 )(x)| dν(x) = 1 0 |(δ x K k-1 -δ x K k )(g 0 )| dν(x) ≤ |df | 1 0 |δ x K k-1 -δ x K k | dν(x) .
(4.8)

From (4.7) and (4.8), to complete the proof of the fact that K satisfies H 2 , it remains to show that (4.9)

k≥1 1 0 |δ x K k-1 -δ x K k | dν(x) < ∞ .
Set T (x) = 1x. According to the computations leading to the first inequality on page 76 of [DMR94], we have, for any integer k ≥ 2

|δ x K k-1 -δ x K k | ≤ 2(T (x)) k-1 + k-1 i=1
(1 -T (x))(T (x)) i-1 |νK k-1-i -νK k-i | , implying that (4.10)

1 0 |δ x K k-1 -δ x K k | dν(x) ≤ 2E ν (T k-1 ) + k-1 i=1 E ν ((1 -T )T i-1 )|νK k-1-i -νK k-i | .
But, by taking into account (4.2), we get (1x) i-1 x a+1 dx ≤ (i -1) -(a+2) (a + 1)Γ(a + 2) .

We need now to give an upper bound of |νK j -νK j+1 | for any non negative integer j. With this aim, we first notice that

K j (f ) -K j+1 (f ) = sK j (f ) -sν(K j (f ))
where s(x) = x. Therefore setting µ = s(x) ν(s) ν, we have νK j -νK j+1 = ν(s) µK j -νK j .

Taking into account the relation (9.11) in [START_REF] Rio | Théorie asymptotique des processus aléatoires faiblement dépendants[END_REF], this gives (4.13) (ν(s)) -1 (νK j -νK j+1 ) = j ℓ=1 a ℓ νQ j-ℓ + µQ j -νQ j .

where Q(x, A) = K(x, A)s(x)ν(A) = T (x)δ x (A) and a ℓ = µK ℓ-1 (s) -νK ℓ-1 (s) .

If we can prove that for any positive integer ℓ, a ℓ is non negative, the relation (4.13) will imply that the signed measures νK j -νK j+1 of null mass can be rewritten as the differences of two positive measures with finite mass (the second one being equal to νQ j ), and therefore we will have (4.14) |νK j -νK j+1 | ≤ 2ν(s)νQ j (1) = 2ν(s)E ν (T j ) .

Hence, starting from (4.10) and taking into account (4.11), (4.12) and (4.14), we will get that for any integer k ≥ 2, (4.15)

1 0 |δ x K k-1 -δ x K k | dν(x) ≤ C a 1 k a+1 + k-1 i=1 1 i a+2 × 1 (k -i) a+1 ≤ Ca 1 k a+1 ,
provided that one can prove that, for any positive integer ℓ, a ℓ is non negative. This can been proved by using (4.13) and the arguments developed in the proof of Lemma 9.3 in [START_REF] Rio | Théorie asymptotique des processus aléatoires faiblement dépendants[END_REF]. We complete the proof by noticing that (4.15) implies (4.9) since a > 0.
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3. 1 .

 1 Proof of Item (3) in Theorem 1.4. Item (3) follows directly from an application of Proposition 4 in [DM07]. Indeed, let M = f ∞ and

  Fix x > 0 and an integer n. It suffices to estimate (

  Markov chains with state space [0, 1]. Let a = p -1 with p > 1. Let λ denote the Lebesgue measure on [0, 1]. Define the probability laws ν and π by ν = (1 + a)x a λ and π = ax a-1 λ .

  iu) + -E((τ iu) + )) -E(τ i )) ≥ n/2 ≤ P (τ i -E(τ i )) ≥ n/2 + n-1 i=0 P(τ i ≥ u) .

0≤k≤n- 1 τ

 1 k |X T k | ≤ max 0≤k≤n |Z k | . But for any k ≥ 1, Z k = k i=0 Z i -k-1 i=0 Z i . Therefore max 0≤k≤n |Z k | ≤ 2 max 0≤k≤n k i=0 Z i .The above considerations imply thatP max 0≤k≤n-1 τ k |X T k | ≥ 24x ≤ P max 0≤k≤n k i=0 Z i ≥ 12x .

Z

  i ≥ 4x ≤ P [nE(τ 1 )]-1 i=0 X i ≥ 2x + P |S Tn -S [nE(τ 1 )] | ≥ 2x .Inequality (4.3) follows from all the considerations above, together with the fact thatP |S Tn -S [nE(τ 1 )] | ≥ 2x ≤ 2P max 1≤k≤[nE(τ 1 )]+1

  (4.7) |dK n (f )| ≤ 3|df | + n-1 k=1 |ν(K k-1 (f ))ν(K k (f ))| .Setting g 0 = ff (0), note now that, for any positive integer k,|ν(K k-1 (f ))ν(K k (f ))| = |ν(K k-1 (g 0 ))ν(K k (g 0 ))| . Therefore n-1 k=1 |ν(K k-1 (f ))ν(K k (f ))| ≤ 1 (g 0 )(x) -K k (g 0 )(x)| dν(x) . But sup x∈[0,1] |g 0 (x)| ≤ |df |. Hence 1 0

  x) k x a dx ≤ k -(a+1) (a + 1)Γ(a + 1)and, for any integer i ≥ 2, (4.12) E ν ((1 -T )T i-1 ) = (1 + a) 1 0

  a similar result follows for reverse martingale difference sequences, by applying the previous result to the martingale d k-i :Corollary 2.3. Let d 1 , . . . , d k be a reverse martingale difference sequence w.r.t. the nonincreasing σ-fields F 1 , . . . , F k+1 (so E(d i | F i+1 ) = 0 and d i is F i -measurable). Let p ≥ 2.

	Set β = p/(p + 2) and c * p = (1 -β) 2 /(8e p ). Then, for all x > 0,
		j
	P max 1≤j≤k	i=1