
HAL Id: hal-01347256
https://hal.science/hal-01347256

Submitted on 20 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GuessXQ, an inference Web-engine for querying XML
documents

Daniela da Cruz, Flavio Xavier Ferreira, Pedro Rangel Henriques, Alda Lopes
Gancarski, Bruno Defude

To cite this version:
Daniela da Cruz, Flavio Xavier Ferreira, Pedro Rangel Henriques, Alda Lopes Gancarski, Bruno
Defude. GuessXQ, an inference Web-engine for querying XML documents. INForum 2009 : Simpósio
de Informática, Sep 2009, Lisbonne, Portugal. pp.322 - 325. �hal-01347256�

https://hal.science/hal-01347256
https://hal.archives-ouvertes.fr


GuessXQ, an inference Web-engine for querying
XML documents

Daniela da Cruz1,3, Flávio Xavier Ferreira1,2,4, Pedro Rangel Henriques1,5,
Alda Lopes Gancarski2,6, and Bruno Defude2,7

1 University of Minho, Department of Computer Science, CCTC,
Campus de Gualtar, Braga, Portugal

2 Institut TELECOM, TELECOM & Manangement SudParis, CNRS SAMOVAR
9 rue Charles Fourier, 91011 Évry, France

3 danieladacruz@di.uminho.pt
4 flavioxavier@di.uminho.pt

5 prh@di.uminho.pt
6 Alda.Gancarski@it-sudparis.eu
7 Bruno.Defude@it-sudparis.eu

Abstract. To search for specific elements in a marked up document
we have, at least, two options: XPath and XQuery. However, the learn-
ing curve of these two dialects is high, requiring a considerable level of
knowledge. In this context, the traditional Query-by-example methodol-
ogy (for Relational Databases) can be an important contribute to make
easier this learning process, freeing the user from knowing the specific
query languages details or even the document structure.
In this paper, we describe how we implement Query-by-example in a
Web-application for information retrieval from a collection of structured
documents, the GuessXQ system. In essence, we built an engine capable of
deduce, from a specific example, the respective XQuery statement. After
inferring the generic statement, the engine applies it to all documents in
the collection to perform the desired retrieval.
A suitable interface allows the end-user to mark over a sample document,
picked up from the collection, the path he wants to select.

1 Introduction

In Structural Document Retrieval [3] the creation of a query that yields valid
results strongly depends on the user-friendliness of the search engine interface.
As structured queries are powerful but complex to write (the user must have
a deep knowledge of the query language as well as the document schema),
some specialised editors have been developed to ease this task (XMLSpy[2], Edi-
tiX8,oXygen9).

“Example is always more efficacious than precept.” This statement, by Sa-
muel Johnson, led HCI10 researchers to suggest a new interaction paradigm called
8 http//www.editix.com
9 http//www.oxygenxml.com

10 Human-Computer Interaction.



Query-by-example (QBE). Born in the context of database querying [5], typical
QBE systems are based on the “fill in the blanks” approach. QBE is based on
the concept that the user formulates his query by filling in the appropriate
skeleton tables the fields and/or restrictions on fields (the relational selection
concept) he intends to search for. We adapt this approach to XML search by
allowing to select and restrict entire paths (XML elements) directly on a sample
document. There are some other works [1,4,6] which adapt the relational QBE
model by showing the XML Schema Definition (XSD) tree instead of the table
skeleton. Our system, not only displays the XML Schema tree representation to
the user, but also an sample document from the collection. Elements selection
and restriction is, then, directly done in the sample document, giving the user a
complete indication about the information he is searching for.

From the selected paths, our engine, called GuessXQ, infers the complete
query. After building the query, it is applied to all documents of the same type
(schema) in the specified collection. The results are shown in a user-friendly Web
interface used to select the referred path. The next section presents the GuessXQ
system, followed by our conclusions.

2 GuessXQ system

The architecture of our QBE system, the GuessXQ engine, is presented in Fig-
ure 1. As depicted, the system is composed by the several modules.

The Repository is a collection of XML files grouped by their schema (XSD).
This Repository, in a simple way, is composed by three tables: XMLdocs, XSDfamilies
and Relations. The XMLdocs table stores the name of the XML document and
its location; the XSDfamilies table stores the name of each XSD and its loca-
tion; and at last, the Relations table relates each XML document with the XSD
family where it belongs.

The Repository access interface allows the other modules to access the
repository in a systematic and simple way. It allows the other modules to select a
Schema, a collection of documents, a single document or a path in the document.
This module is composed by a set of fetch methods for retrieving documents from
the repository. This module works as an abstraction layer over the repository,
allowing the system to change the repository paradigm in the future without a
major architecture modification.

The Interface module is a GUI responsible for the interaction between the
user and the system, allowing the user to set the “example” for the QBE engine.
The user starts by choosing a document type (XSD) from the repository. Then,
a document belonging to this family is suggested to him. By now, the sample
document is selected to be of average size, and to contain the major number of
elements/attributes. However, the user can change it, choosing a more significant
one from the query perspective (i.e., an XML document that allows to perform
more complex or complete queries).

Query specification includes the selection of components (elements or at-
tributes) and the possibility to restrict them to the respective value in the sample



XML & 
XSD

Repositoy

Repository Access 
Interface

Retrieval
Module 

Output
Module

XQuery Inference 
Engine Module

Interface
Module

User

XSD & XML 
example file

Selected nodes

XML files

Results

XQuery

Fig. 1. GuessXQ architecture

document. For example, in Figure 2, the user specifies a query selecting elements
(in yellow) and content values (in blue). This selection mechanism is aided by
a table that maps each component or value with its corresponding XPath ex-
pression. After query specification, the interface module sends to the XQuery
Inference Engine module the list of selected nodes and also the referred table,
for query generation.

The XQuery Inference Engine module has the task of inferring the XQuery
query, using the information sent by the Interface module.

The Retrieval module is responsible for the query execution. The query
is executed in each document belonging to the selected schema, and the results
are passed into the next module.

The Output module shows the query results, obtained in the previous
module.

3 Conclusion and future work

The system we present is dedicated to XML structural retrieval without the
need for the user to know XQuery and the XML documents precise structure.
The system is based in a user-friendly QBE interface for specifying information
needs. In a first step, the user visualises the set of existing XML Schema in
the repository in the form of trees (alternatively graphs) and chooses the desired
documents collection. After choosing the schema, a sample XML document from
the corresponding collection is displayed. Having the schema tree view together
with the sample document helps the user to better identify the document parts



Fig. 2. Selection mechanism

he needs. The user specifies the interesting elements or textual parts by just
selecting them in the sample document view in an easy way.

As future work, we intend to perform some improvements, like a more pow-
erful/intelligent selection algorithm to choose a better sample document.

References

1. D. Braga and A. Campi. Xqbe: A graphical environment to query xml data. World
Wide Web, 8(3):287–316, 2005.

2. L. Kim. The XMLSPY Handbook. John Wiley & Sons, Inc., New York, NY, USA,
2002.

3. X. Lu. Document retrieval: A structural approach. Inf. Process. Manage., 26(2):209–
218, 1990.

4. S. Newman and Z. M. Ozsoyoglu. A tree-structured query interface for querying
semi-structured data. Scientific and Statistical Database Management, International
Conference on, 0:127, 2004.

5. R. Ramakrishnan and J. Gehrke. Database Management Systems, chapter 6. 2007.
6. J. H. G. Xiang Li and J. F. Brinkley. XGI: A Graphical Interface for XQuery Cre-

ation. In American Medical Informatics Association Anual Symposium proceedings,
volume 2007, pages 453–457, November 2007.


