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This paper deals with the comparison of Eulerian methods to take into account the
capillary contribution in the vicinity of a fluid–fluid interface. Eulerian methods are well-
known to produce additional vorticity close to the interface that leads to non-physical
spurious currents. Numerical equilibrium between pressure gradient and capillary force for
the static bubble test case within a VOF framework has been reached in [35] with the
height-function technique [14,35]. However, once the bubble is translated in a uniform
flow, spurious currents are maintained by slight errors induced by translation schemes. In
this work, two main points are investigated: the ability of Volume of Fluid and Level Set
methods to accurately calculate the curvature, and the magnitude of spurious currents due
to errors in the calculation of the curvature after advection in both translating and rotating
flows. The spurious currents source term is expressed from the vorticity equation and used
to discuss and compare the methods. Simulations of gas–liquid Taylor flow at low capillary
number show that the flow structure and the bubble velocity can be significantly affected
by spurious currents.

1. Introduction

Numerical simulations of industrial processes, as well as academic situations often involve two immiscible fluids. A num-
ber of computational methods have been developed over the past decade to improve the computation of multiphase flows. 
The numerical methods to simulate multiphase flows can be classified into two main groups: the “Lagrangian” methods 
and the “Eulerian” methods. In the first class of methods, the interface is generally tracked using Lagrangian markers, e.g.
Front-Tracking [49,36] or the Point-Set method [48]. The interface is located explicitly and the calculation of geometrical 
properties (normal to the interface and curvature) is highly accurate. However, the implementation of such methods in 3D 
is not straightforward and specific algorithms are needed to deal with the distribution of markers, as well as changes in 
topology. The second group consists of an implicit representation of the phases in each cell with an additional scalar field. 
The most common approaches are the Volume of Fluid (VOF) [23,28,7,17] and the Level Set (LS) methods [45,43,22,46]. 
VOF methods are generally well suited to conserve the mass of the phases and appear to be a natural choice in a finite 
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volume framework, while LS methods are known to allow better computation of the geometrical properties of the interface. 
Eulerian methods have been shown to be well suited to deal with various configurations, including a single bubble rising in 
a liquid [7], a jet or drop breaking [35,39], coalescence [46], as well as atomization with a number of inclusions of different 
sizes [19].

Within this Eulerian representation of two-phase flow, great effort has been dedicated to two main features: the 
transport of the interface and the consideration of capillary forces. When dealing with flows where capillary forces are 
preponderant, such as the simulation of Taylor flow (or slug flow) in microchannels, care needs to be taken in the com-
putation of surface tension forces. This suggests that the normal to the interface and the curvature need to be accurately 
estimated. This capillary force located on the interface can be represented in a spatially filtered way using an interface thick-
ness with the Continuum Surface Force method [8] or in a sharp way using the location of the interface at a sub-cell level, 
e.g. Ghost Fluid Method (GFM) [27] and the Sharp Surface Force (SSF) [18]. Within implicit representations of the interface, 
many methods consider the successive derivatives of the scalar field representing the interface. More recently, [14] and [35]
have shown that the construction of height functions allows a better approximation of the interface curvature. Indeed, this 
method consists of finding the position of the interface with a good accuracy by adding successive volume fractions in a 
column of fluid (see Section 3.2). Using this height function technique, [35] achieved an exact numerical balance between 
surface tension forces and pressure jump with the elimination of spurious currents in the case of a static interface. In the 
case of inviscid fluids where there is no viscous dissipation to balance the kinetic energy produced by spurious currents, 
[35] still observed a decrease in the intensity of spurious currents over time due to numerical dissipation. The numerical 
damping of spurious currents when dealing with inviscid fluids was also observed in [12] with a height-function method 
and a finite-volume compressible flow solver where the intensity of spurious currents decreased to zero after a certain 
time. This numerical dissipation was further studied in [19] and [12] with the damping of the oscillations of an inviscid 
droplet. A numerical viscosity was estimated by fitting the damping of the amplitude of the oscillations and as expected, 
the numerical dissipation decreases as the mesh is refined.

However, it was also shown in [35] that the coupling between transport schemes, surface tension force with Navier–
Stokes equations and curvature estimation still needs improvements. [15] showed that the advection step has no direct 
influence on the spurious currents with a balanced-force surface tension algorithm when the exact curvature is imposed 
on both cartesian and tetrahedral meshes. However, as it will become clear in Section 4, imposing the exact curvature al-
lows the development of spurious currents to be avoided since the spurious current source term is canceled. In cases of 
practical interest, the curvature cannot be imposed and the advection step introduces errors in the volume fraction field 
thereby leading to curvature gradients. As a consequence, the zero velocity field expected in the frame of reference moving 
with the bubble (like for the static case [35]) is not recovered when the interface is translated in a uniform flow [35,12]. 
These observations have motivated our work. Different numerical methods implemented in the same flow solver have been 
compared in terms of the magnitude of spurious currents and pressure jump evaluation on the basis of four test cases: the 
static bubble case for which a number of results are available in the literature; the translating bubble, which seems more 
related to physical flows; a bubble in a rotating flow; and the dynamics of Taylor bubble in a circular microchannel. The 
objective here is to pay attention to the coupling between the interface transport equation and the Navier–Stokes equations. 
Finally, the dynamics of Taylor bubbles in microchannels is considered because it appears to be representative of the ability 
of a particular method to deal with spurious currents since these flows are dominated by surface tension (low capillary 
number and low Weber number). As will be shown, the development of spurious currents in such flows can promote the 
development of non-physical recirculation areas and consequently, erroneous slip velocity between the bubble velocity and 
mean velocity in the liquid slug.

2. Numerical schemes

2.1. Spatial and temporal discretizations

The numerical code used for this study is the JADIM code, which has been developed to simulate dispersed two-phase 
flows and used to simulate various multiphase flows systems [7,17,2,29,41,42]. The interface is captured by an Eulerian 
description of each phase on a fixed grid with variable density and viscosity. Under the assumptions that (i) the fluids are 
Newtonian and incompressible, (ii) there is no mass transfer at the interface, (iii) the flow is isothermal and (iv) the surface 
tension is constant, the fluid flow can be described by the classical one fluid formulation of the Navier–Stokes equations:

∇ · U = 0 , (1)
∂U

∂t
+ (U · ∇) U = − 1

ρ
∇ P + 1

ρ
∇ · � + g + Fσ ,s , (2)

where � is the viscous stress tensor, g is the acceleration due to gravity, Fσ ,s is the capillary contribution whose calculation 
is described in Section 3, and ρ and μ are the local density and dynamic viscosity, respectively. The density and viscosity 
are deduced by linear interpolation from the volume fraction C of one phase in each computational cell:

ρ = Cρ1 + (1 − C)ρ2 , (3)

μ = Cμ1 + (1 − C)μ2 , (4)



where the volume fraction is C = 1 in cells filled with fluid 1, C = 0 in cells filled with fluid 2 and 0 < C < 1 in cells that 
are cut by the interface. This volume fraction is either calculated directly by solving an advection equation with the VOF 
method, or deduced from a distance function and the approximation of the Heaviside function as defined by Eq. (5) with 
the LS method:

C = H̃(φ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if φ < −ε ,

0.5

(
1 + φ

ε
+ 1

π
sin

(
πφ

ε

))
if |φ| ≤ ε ,

1 if φ > ε ,

(5)

where ε = √
2�x is half the numerical thickness of the interface.

In both cases, VOF and LS, an advection equation is needed to calculate the volume fraction and the distance function 
respectively. The advection schemes employed in this study are described in the next section.

The equations are discretized on a staggered grid using a finite volume method and all spatial derivatives are approxi-
mated using second-order centered schemes. The time scheme used to compute the advective terms in the Navier–Stokes 
equations is a third-order Runge–Kutta type scheme, while the viscous stresses are solved using a semi-implicit Crank–
Nicolson method. The incompressibility is ensured using a projection method, which consists in splitting the velocity field 
into two contributions: a rotational one, which gives a predicted velocity field calculated semi-implicitly, and a potential 
one, obtained from a pressure correction solution of a pseudo-Poisson equation, whose divergence is zero. Further details 
on the numerical algorithms concerning the spatial discretization, as well as the time advancement procedure, can be found 
in [32,10,30] while details on the interface tracking and related references are given in the following.

2.2. Advection schemes

In this section, we present the advection schemes that have been used to characterize the spurious currents in the 
different simulations carried out in this work. Whatever the method used in this work, the Eulerian description of the 
two-phase flow problem involves the advection equation of a scalar ψ :

∂ψ

∂t
+ U · ∇ψ = 0 with

{
ψ = C (volume fraction) in VOF methods,
ψ = φ (signed distance function) in LS methods.

(6)

Two different VOF schemes have been used: a geometrical one using a Piecewise Linear Interface Calculation (PLIC) and 
a second one based on Flux Corrected Transport (FCT) schemes without interface reconstruction. In addition, a Level Set 
scheme based on the same advection equation but with an additional redistancing equation to keep the level set function 
as a distance function has been used. These three methods are described below.

2.2.1. VOF-PLIC
In many VOF methods employed to capture a fluid–fluid interface, a reconstruction technique is used to control the 

thickness of the interface. In the 2-dimensional VOF-PLIC scheme used in this study, the geometrical reconstruction of the 
interface is based on the VOF Tools libraries developed by López and Hernández [31]. The normals used to determine the lin-
ear reconstruction are calculated in the same way as those calculated for the surface tension force (see Section 3). From the 
calculated normals and the given volume fraction at the beginning of the time step, the interface is then represented by a 
segment in each interfacial cell using the VOF Tool libraries [31]. With staggered grids, the volume fraction enclosed in the 
volume advected by each velocity component can be fluxed through the corresponding cell face. These volumes advected by 
the velocity components ui, j and vi, j in the x and y directions are respectively ui, j�t�y and vi, j�t�x. The interface being 
approximated by a segment in each interfacial cell, the volume fraction enclosed in these advected volumes is estimated 
with the VOF Tool libraries [31]. The advection scheme is split direction by direction [40]. This implies that despite the 
volume fraction is fluxed from one cell to another, a small gain or loss of mass can occur. This geometrical reconstruction 
of the interface with segments (or planes in 3-dimensions) allows a sharp representation of the interface.

2.2.2. VOF-FCT
In the VOF-FCT method implemented in the JADIM code, the location and thickness of the interface are both controlled 

by an accurate algorithm based on Flux-Corrected Transport schemes [51,7]. The advection equation (6) can be written as 
(with ψ = C ):

∂C

∂t
+ ∇ · (CU) = C∇ · U . (7)

Despite a divergence free velocity field used for the advection of C (∇ · U = 0), the scheme is split direction by direction 
and the velocity field is not divergence free in each direction. Thus, as the volume fraction is not equal in every sub-step, 
the scheme is not explicitly conservative. In addition, due to the shear normal to the interface, a drawback of the methods 
without interface reconstruction is the non-physical spreading of the interface over a non-negligible thickness of cells. To 
correct this excessive spreading of the interface, the velocity field is modified so that the volume fraction of all interfacial 



cells in the direction normal to the interface is advected with the velocity on the interface represented by the iso-contour 
C = 0.5. However, the modified velocity field is generally not divergence free and contributes to a gain or loss of mass of 
one of the phases. To solve this problem, an algorithm that redistributes mass in a global manner is used [7] similarly to 
what can be done in LS methods by changing the contour representing the interface [11].

While these modifications in the Flux Corrected Transport scheme significantly improve the interface advection [7], the 
interface still spreads over more than three cells in certain cases, and notably in simulations where the interface is stretched. 
In addition, for simulations of flows at Reynolds numbers close to one, several hundreds of thousands iterations are often 
required due to the slow establishment of the flow and the constraint of stability induced by the capillary force [8]. Although 
the spreading of the interface is not significant during one time step, it can become non-negligible when a large number of 
iterations are performed. To avoid this unphysical spreading of the interface that leads to the diffuse variation of physical 
properties, as well as the pressure jump at the interface, a rough cut-off algorithm has been employed when necessary. 
This consists in imposing the volume fraction C = 0 (or C = 1) if the volume fraction takes an intermediate value while the 
interface does not cross the cell, thereby neglecting structures thinner than the dimension of the cell. This results in local 
gains/losses of mass in proximity of the interface and is therefore applied before the global redistribution of mass.

The algorithm is given in 2-dimensions and the extension to 3-dimensions is straightforward:

if
(
0 < Ci, j < 1

)
if

(
C−

i−nc, j > 0 & C−
i+nc, j > 0 & C−

i, j−nc > 0 & C−
i, j+nc > 0

)
if (Ci, j > 0.5) Ci, j = 1
if (Ci, j < 0.5) Ci, j = 0

where C−
i+k, j+l = (Ci, j − 0.5) × (Ci+k, j+l − 0.5) and nc is approximately half the permitted number of cells for numerical

thickness. In our cases, nc = 1 and 2 have been tested with the test presented in Section 6. It has been found that the cut-off 
algorithm combined with the velocity extension and global mass redistribution do not significantly change the intensity of 
the spurious currents (see Appendix A for the comparison). In addition, it has been observed in pure advection tests that 
there is no spreading of the interface when using fine meshes and as a result the cut-off algorithm is not called during 
the advection step [1]. Thus, the VOF-FCT advection scheme with interface velocity extension, global mass redistribution 
and nc = 2 seems to be the best compromise between interface thickness and spurious currents and will be used in the 
following with the notation VOF-FCT. Further details on the effects of each feature of the scheme (velocity extension, mass 
redistribution and cut-off) on pure advection tests can be found in [7,1].

2.2.3. LS
The Level Set method [45,11] involves a signed distance function instead of a volume fraction in each cell that allows 

the precise computation of geometrical properties (normal and curvature) of the interface. This precision is ensured by the 
smooth transition from one phase to the other and is enhanced when the Level Set function gradient magnitude is constant 
in the domain. The distance function obeys the advection equation (6), which can be written as (with ψ = φ):

∂φ

∂t
+ ∇ · (φU) = 0 . (8)

The advection of the signed distance function φ in Eq. (8) is advanced in time with a third order Runge–Kutta scheme 
and the advective terms are discretized via a conservative WENO5 scheme [13].

In order to keep the Level Set function as close as possible to a signed distance function, a redistancing procedure is 
applied using Eq. (9) [43].

∂φ

∂τ
+ sgn(φ) (|∇φ| − 1) = 0 . (9)

This partial differential equation is solved using a WENO5 scheme [13,26] for the advective terms and a third order Runge–
Kutta scheme for the temporal discretization. The Hamiltonian fluxes are calculated with a Godunov operator.

3. Surface tension force

In capillary flows, care needs to be taken in the calculation of the capillary force Fσ ,s = −σ/ρ (∇ · n) nδI , where σ is the
surface tension, n the normal to the interface and δI is the Dirac distribution localizing the interface. The numerical method 
used to solve the interfacial force is the Continuum Surface Force (CSF) proposed by Brackbill et al. [8]. The surface force 
Fσ ,s is transformed into a volume force Fσ ,v by distributing its effects over grid points in the vicinity of the interface in a 
region that is a few cells thick:

Fσ ,v = −σ

ρ
κ∇C . (10)

The localization of the interface is available through a non-zero gradient of the volume fraction and the calculation of 
the curvature κ is detailed in the following.



Fig. 1. (a) Schematic representation of the capillary force with a Continuum Surface Force model on staggered grids. Adaptive stencil for the construction
of height functions in (b) a Volume of Fluid formulation; (c) a Level Set formulation. The dashed line represents the interface while the dash-dotted line
represents the iso-contour where the curvature is calculated in the classic continuum surface force model.

The approaches considered in this work are mostly variants of the CSF method proposed in [8] that differ in the way the 
curvature is discretized. The manner in which the capillary surface force is converted into a volume force and is spread over 
the finite volume mesh is not affected except in the Sharp Surface Force (SSF) method [18]. The CSF methods based on the 
calculation of the curvature by means of the divergence of normal vectors or height functions are differentiated by calling 
them Classic Continuum Surface Force (CCSF) and Height Function Continuum Surface Force (HFCSF). However, the Sharp 
Surface Force [18], which roughly sets the pressure jump between cells that are cut by the interface, slightly differs from 
the Continuum Surface Force in that there is no discretization of a Delta Function to estimate the surface of the interface 
that cut the interface. The SSF formulation, results in a sharp pressure jump like that obtained with the Ghost Fluid Method 
[27] or the pressure correction proposed in [36].

3.1. VOF Classic Continuum Surface Force (VOF-CCSF)

From an Eulerian representation involving a scalar function, the geometrical properties of the interface can be calculated 
from the successive derivatives of the scalar function:

nδI = −∇C , (11)

κ = −∇ ·
( ∇C

||∇C ||
)

. (12)

Since the volume fraction varies from zero to one over a thickness of two to three cells, it has been shown that a smooth-
ing procedure allows a decrease in the errors due to the discretization of the gradient and divergence operators [14,17]. 
However, [15] also showed that oversmoothing the volume fraction field leads to erroneous results and does not allow a 
bubble rising in liquid at rest to be simulated correctly. The filtering procedure used in this study has been shown to be 
able to deal with different two-phase flow problems [7,17,2] and it consists in successively applying a 3 × 3 convolution 
matrix (Kconv = [0 1/16 0 ; 1/16 3/4 1/16 ; 0 1/16 0]) in 2-dimensions to the volume fraction field. In the present 
simulations, the smoothing step involves 12 and 6 iterations to calculate the curvature and the normal (localization and ori-
entation of the force), respectively, as recommended in [17] in which the same flow solver and the same convolution matrix 
were used. In JADIM, the curvature is calculated at the center of the staggered control volume as illustrated in Fig. 1(a) and 
the divergence of the unit normal to the interface is calculated in a conservative way [6]:

Fσ ,v = −σ

ρV

∫
V

∇ ·
( ∇C

‖∇C‖
)

∇CdV (13)

≈ −σ

ρV
∇C

∫
∂ S

( ∇C

‖∇C‖
)

· ncelldS , (14)

where ρ = (ρ1 + ρ2)/2 is the mean density. Although the use of the mean density is not consistent with the pressure force 
in Eq. (2), it has been shown to stabilize simulations and decrease the intensity of spurious currents [8]. The gradient of 
volume fraction in Eq. (14) is discretized in the same way as the pressure gradient in Eq. (2).



3.2. VOF Height Function Continuum Surface Force (VOF-HFCSF)

The height function technique [14,35] allows the geometrical properties of the interface to be calculated accurately from 
its position, which is obtained by summing the volume fractions of fluid columns. The stencils are oriented along the main 
component of the normal to the interface and they are adapted in every column until a cell of volume fraction of zero is 
reached in the direction of negative gradient of volume fraction and a volume fraction of one in the positive direction (see 
Fig. 1(b)). Once the position of the interface is evaluated, the curvature is calculated from the plane curve y = f (x) via 
Eq. (15):

κ = y′′(
1 + y′ 2

)3/2
. (15)

In addition, the local density in the cell ρ is used in VOF-HFCSF since the use of ρ is not necessary for stability purposes 
with this method.

3.3. LS Classic Continuum Surface Force (LS-CCSF)

In the LS-CCSF method, the same discretization as that used in the VOF-CCSF method (Eq. (14)) is employed.

Fσ ,v = −σ

ρV
∇C

∫
∂ S

( ∇φ

‖∇φ‖
)

· ncelldS . (16)

Note that, like in VOF-HFCSF, the local density in the cell ρ is used in LS-CCSF. In CSF methods coupled to Level Set 
techniques [45], the delta Dirac function is generally approximated by the derivative of the smooth Heaviside function 
defined in Eq. (5) (δ̃I = dH̃(φ)/dφ) and is applied directly while the gradient of the Level Set function is used for calculating 
the orientation of the force (nδI = ∇φ/|∇φ|δ̃I ). Here, the curvature is derived from the divergence of the normal to the 
interface represented by the distance function (κ = ∇ · (∇φ/|∇φ|)) as it is usually done. However, the difference resides in 
the estimation of the localization and the orientation, which are both deduced from the volume fraction calculated from 
the Level Set function (Eq. (5)), i.e. nδI = −∇C , since natural equilibrium is reached with this formulation as soon as the 
curvature is uniform along the interface and both the pressure and volume fraction gradients in Eq. (18) are discretized in 
the same way. We observed in preliminary tests that this formulation (Eq. (16)) provides better results in terms of spurious 
currents, as well as better convergence rates.

3.4. LS Height Function Continuum Surface Force (LS-HFCSF)

Similarly to the VOF-HFCSF method, in an LS framework the curvature can be estimated from the position of the interface 
(Eq. (15)) instead of calculating the divergence of the normal to the interface as in the previous section. The Level Set 
method for the advection equation is the same as in the LS-CCSF method but the curvature is calculated via the position 
of the interface, which can be found by linear interpolation or more accurately using quadratic interpolations with the four 
cells surrounding the interface (see Fig. 1(c)). The procedure to locate the interface is the same as that used in [34]. In order 
to improve the stability of the quadratic interpolations near discontinuities, a minmod operator was introduced in [34] on 
the second derivatives of the Level Set function calculated on each side of the interface. The curvature is also calculated 
with Eq. (15).

3.5. LS Sharp Surface Force (LS-SSF)

In the Sharp Surface Force model [18], the surface tension force is non-zero only in the cells crossed by the interface; this 
is different to the CSF method, which imposes the Laplace pressure jump continuously along the interface. The curvature 
is calculated following the same procedure as in the LS-CCSF method. For the horizontal direction, if the control volume 
centered on the x-component of the velocity is crossed by the interface, i.e. φi−1 × φi < 0, the surface tension force is:

Fσ ,v = −(σκI )/(ρ�x) , (17)

where κI is the curvature interpolated on the interface κI = |φi |κi−1 + |φi−1|κi

|φi| + |φi−1| .

4. Origin of spurious currents, vorticity source

In simple cases, such as a static or a translating bubble or drop, the momentum conservation equation (2) reduces to:

0 = −∇ P + σκ∇C, (18)

such that, when taking the curl of Eq. (18), the curvature should satisfy:

∇κ × ∇C = 0 . (19)



Spurious currents are generated when this condition is not satisfied. In the particular case of a surface with a constant 
curvature (e.g. a spherical bubble or drop), the flow will be curl free if the computed curvature is constant. If the curvature 
is maintained constant during the simulation [18,15], the source term is zero and no spurious currents develop. As a 
consequence, the elimination of spurious currents requires the use of balanced-force algorithms [18,22,35] with consistent 
discretization of pressure and capillary forces to satisfy Eq. (18). Curvature gradients as sources of vorticity are identified 
when writing the vorticity equation from Eq. (2):

∂ω

∂t
+ (U · ∇)ω + (ω · ∇) U = μ

ρ
∇2ω − σ

ρ
∇κ × ∇C . (20)

From Eq. (20), it is seen that the surface tension force can contribute as a source term for vorticity production when 
condition (19) is not satisfied. When looking at the initial stage of the simulations, this source term (σ∇κ × ∇C ∼ σ/D3) 
induces the amplification of vorticity during the first time steps (ρ∂ω/∂t ∼ ρUσ /(D�t)) and the corresponding spurious 
currents are of intensity Uσ given by:

Uσ ,trans ∼ σ�t

ρD2
. (21)

The spurious currents therefore initially grow linearly with σ as previously observed in [18,15], as well as with the time step 
[18]. This linear evolution with the surface tension is also in agreement with the dimensional analysis of the momentum 
equation performed in [15].

When considering long time simulations, Eq. (20) shows that a steady state can be reached for the spurious currents of 
magnitude Uσ . If viscous effects are dominant, the spurious currents resulting from the vorticity source term are balanced 
by the viscous term (μ∇2ω ∼ μUσ /D3):

Uσ ,visc ∼ σ

μ
. (22)

Thus, the intensity of spurious currents can be written using a characteristic capillary number (Ca = μUσ ,visc/σ ∼ c where 
c is a constant). This is consistent with previous works [28,39,22,17,50,2,15] in which the magnitude of spurious currents 
was related empirically to σ/μ.

When inertia is dominating, the spurious currents resulting from the vorticity source term are controlled by the inertia 
term (ρ (U · ∇)ω ∼ ρU 2

σ /D2) leading to the characteristic velocity:

Uσ ,in =
√

σ

ρD
. (23)

This is the characteristic velocity used in the inviscid problem [35]. These two characteristic velocities are closely related 
since

Uσ ,visc = √
La Uσ ,in , (24)

where La = ρDσ

μ2
is the Laplace number. In the tests reported in this work, the Laplace number has been varied in the 

range 1.2 to 12 000 and the Reynolds number varies within the range [0.69 ; 600]. In this study, Uσ ,visc has been chosen 
to make the velocities dimensionless.

5. Static bubble

The first test case that we consider is the 2-dimensional static bubble [35]. A cylindrical interface is initialized in a 
continuous phase without gravity and both fluids have equal density and viscosity. The Laplace number is La = 12 000. 
Only a quarter of the bubble of radius R0 = 0.4, placed in the bottom left hand side of a square computational domain of 
length 1 is simulated. Symmetry boundary conditions are applied on the left and bottom boundaries while no-slip boundary 
conditions are applied on the top and right boundaries. The exact solution of the velocity field should remain zero in the 
whole domain and the pressure should obey the Laplace pressure jump at the interface.

The analysis of the intensity of spurious currents and pressure jumps is based on the following error norms:

– Umax is the maximum absolute velocity in the whole domain and Camax = μUmax/σ is its dimensionless form used in
the following,

– |∇κ × ∇C | is the norm of the source term in Eq. (20) and is used to characterize the vorticity production and the
associated spurious currents,

– �Ptotal is the pressure jump between the average pressure in the bubble (C ≥ 0.5) and the average pressure in the
continuous phase (C ≤ 0.5),

– �Pmax is the pressure jump between the maximum and minimum pressure in the domain.



Fig. 2. Intensity of the source term |∇κ × ∇C | in the vorticity equation (20) and velocity field (by decreasing spurious currents from (a) to (f)) for
R0/�x = 12.8 and La = 12 000.

The numerical parameters considered correspond to those used by Popinet [35] where after a transient evolution, the 
bubble shape reached a numerical equilibrium with a uniform curvature tangential to the interface, leading to an exact 
balance between surface tension and pressure forces, and the elimination of spurious currents. Once this numerical balance 
between pressure and capillary forces is reached, the velocity field is zero, the uniform curvature tangential to the interface 
keeps the same value over time and the pressure obeys the Laplace pressure jump with an accuracy that is mesh-dependent 

[35]. The time is made dimensionless with the capillary time scale t∗
σ =

√
ρD3

σ
.

The relevance of the space discretization between pressure gradient and surface tension force has firstly been tested by 
imposing the exact curvature in the whole domain for the calculation of Fσ ,v . The maximum dimensionless velocity in the 
whole domain reached Camax � 5.08 × 10−18 showing that Eq. (19) is satisfied to machine accuracy so that the source term 
in Eq. (20) is negligible and no spurious currents develop. Thus, the exact balance between the volume fraction and pressure 
gradients is verified and the spurious currents observed in the following can be attributed to the errors in the calculation 
of the curvature and more precisely, in the gradients of curvature along the interface due to the resolution of a curved 
interface on a cartesian grid.

Fig. 2 shows the velocity field and the intensity of the source term in the vorticity equation for the different methods. It 
is clearly seen that the maximum intensities of velocity and vorticity source are collocated.

Fig. 3 shows the evolution of the maximum intensity of the spurious currents with the different methods. Within a VOF 
framework, it is clearly seen that after approximately 30 t∗

σ , the height function curvature calculation allows the spurious 
currents to be decreased by approximately six orders of magnitude with the VOF-FCT-HFCSF method when compared with 
the standard curvature calculation (VOF-FCT-CCSF) and the spurious velocities are close to machine accuracy with VOF-PLIC-
HFCSF, as in [35]. The curvature calculated with the HFCSF methods is exactly located at the interface while it is the mean 
value of the curvature in the control volume crossed by the interface in CCSF methods (see Fig. 1). The error induced by 
the location of the curvature calculation promotes curvature gradients, which are source of vorticity in the vicinity of the 
interface (Eq. (20)). As expected, the Classic Continuum Surface Force method gives better results when coupled with a 
distance function than a volume fraction. Within an LS framework, Fig. 3 shows that both continuous and sharp methods 
(LS-CCSF and LS-SSF) are close in terms of the intensity of spurious currents. The similarities in the results obtained with 
the LS-CCSF and LS-SSF methods are consistent with the observations of [18] who found similar spurious velocities with 
continuous and sharp surface tension models.

In an LS context, the height function curvature calculation improves the results by more than one order of magnitude. 
However, the exact balance between pressure and capillary forces that is achieved in a VOF framework, with or without 



Fig. 3. Evolution of the maximum intensity of the spurious currents in the computational domain over time. Legend: ( ) VOF-FCT-CCSF; ( ) VOF-
FCT-HFCSF; ( ) VOF-PLIC-HFCSF; ( ) LS-CCSF; ( ) LS-HFCSF; ( ) LS-SSF; ( ) LS-CCSF without redistancing; ( ) LS-HFCSF without
redistancing; ( ) LS-SSF without redistancing.

Fig. 4. Evolution of the maximum intensity of the source term |∇κ × ∇C | in the vorticity equation (20) over time. Legend: ( ) VOF-FCT-CCSF; ( )
VOF-FCT-HFCSF; ( ) VOF-PLIC-HFCSF; ( ) LS-CCSF; ( ) LS-HFCSF; ( ) LS-SSF.

reconstruction, is not obtained with the LS-HFCSF method. Interestingly, when the redistancing step in the LS transport 
scheme is skipped, the spurious currents are significantly decreased and it is possible to obtain the exact equilibrium be-
tween pressure and capillary forces with both Sharp Surface Force (LS-SSF) and Height Function Continuum Surface Force 
(LS-HFCSF). Indeed, both methods estimate the curvature at the interpolated position of the interface and the interface os-
cillates around the position of numerical equilibrium while the velocities tend towards zero. This balance cannot be reached 
when the redistancing step is activated because the position of the interface (represented by the iso-contour φ = 0) is 
slightly moved during the redistancing step [34], thereby maintaining the spurious currents. Spurious currents are mainly 
due to the redistancing step in LS methods when the curvature is calculated on the interface (LS-SSF and LS-HFCSF). Never-
theless, the redistancing step will be used in the following as it is necessary to maintain the level set function as a distance 
function.

The temporal evolution of the intensity of vorticity source is reported in Fig. 4. A good correlation between this source 
term and the spurious velocities is observed. Indeed, the curvature gradients and therefore the vorticity source term almost 
vanish with the VOF-FCT-HFCSF method and are reduced to 10−12 with the VOF-PLIC-HFCSF. On the other hand, with the 
other methods, this vorticity source does not vanish and is balanced by viscous dissipation (see Section 4). These trends are 
similar to those observed with the maximum intensity of spurious currents.

The balance between pressure jump and surface tension forces observed with both the VOF-FCT-HFCSF and VOF-PLIC-
HFCSF methods has been verified for different Laplace numbers ranging from 120 to 12 000 and different meshes involving 
between 10 and 50 cells per bubble radius. The intensity of spurious currents slightly increases with mesh refinement 
with the VOF-PLIC-HFCSF method but the maximum spurious currents capillary number remains below 10−11 . The spatial 
convergence of the other methods has been studied and is shown in Fig. 5. As mentioned in [17], the spurious currents 



Fig. 5. Convergence with spatial resolution of maximal spurious currents velocities. Legend: ( ) VOF-FCT-CCSF; ( ) VOF-FCT-HFCSF; ( ) VOF-
PLIC-HFCSF; ( ) LS-CCSF; ( ) LS-HFCSF; ( ) LS-SSF; ( ) Conservative Level Set–Ghost Fluid [16]; ( ) Refined Level Set Grid Method [22];

( ) VOF-CELESTE [15]; ( ) Conservative Level Set-CSF (finite element and La = 100) [50]; ( ) front-tracking [36]; (· · ·) Umax/Uσ ∼ (R0/�x)−1; (—) 
Umax/Uσ ∼ (R0/�x)−2.

obtained with the VOF-FCT-CCSF method do not decrease with grid refinement. Since the number of smoothing steps that 
spreads the interface on a given number of cells has been kept constant, the physical length of smoothing is smaller so 
that the filter is less efficient when the grid spacing is decreased. [14] drew a similar conclusion about the convergence 
with mesh refinement of curvature errors computed with a convolution method at the first time step. With a smoothing 
length proportional to the mesh size (4�x in their study), the rate of convergence of curvature errors is −1 while the 
rate of convergence is 2 when the smoothing length is not mesh dependent. However, they also mentioned that the ratio 
of this constant physical length of smoothing over the grid size can become large with fine meshes in order to reach the 
same accuracy so the convolution would involve a large convolution stencil, leading to non-negligible computational cost. 
Another possibility would be to use adaptive convolution stencils depending on the ratio of the mesh size over an estimated 
curvature. Results from the literature are also shown in Fig. 5 and it is seen that the VOF method proposed in [15] in which 
the curvature is calculated with a least-square fit of second-order Taylor series expansion of the convoluted volume frac-
tion allows the spurious currents to be decreased by several order of magnitudes when compared with standard VOF-CSF 
method. Interestingly, although the curvature is calculated from a convoluted volume fraction field, the spurious currents 
show a convergence rate between one and two with mesh refinement. Spurious currents with LS-CCSF, LS-SSF and LS-HFCSF 
decrease with a rate of convergence close to 2. In addition, both LS-CCSF and LS-SSF agree well with the Conservative Level 
Set methods of the literature. The present LS-CCSF method and the CLS-CCSF method of [50] show similar spurious cur-
rent intensities, as well as similar trends. Although the Level Set function in [50] is not a distance function but a smooth 
regularized indicator function, the curvature, the localization and the normal of the surface tension force are calculated in 
a similar way as that presented in Section 3.3. A similar Conservative Level Set method is presented in [16], the Level Set 
function varies smoothly as an hyperbolic tangent across the interface and a Ghost Fluid method is used to calculate surface 
tension force. It is seen that this method allows the spurious currents to be slightly decreased when compared with LS-CCSF 
and LS-SSF methods but it also presents a lower rate of convergence. However, it is seen that the height function methods 
(with LS, VOF-FCT and VOF-PLIC) give better results in terms of parasitic currents. Finally, it is noted that the Refined Level 
Set Grid method proposed in [22] (where the grid is refined at the interface) leads to very low spurious currents, which 
are of the same order as those obtained with a front-tracking method in [36] and similar rates of convergence with grid 
refinement are found.

6. Translating bubble

The second test case consists of a uniform flow field that translates the bubble as proposed in [35]. The previous static
case allows to state whether a surface tension scheme is well-balanced or not, and whether the curvature calculation is 
accurate or not. [15] presented a test case where a bubble is advected and the exact curvature is imposed and showed 
that no spurious currents develop in agreement with Eq. (19). Here we consider the combined effects of the curvature 
calculation and the advection of the interface in order to evaluate the precision and the robustness of the coupling between 
advection schemes, Navier–Stokes solver and capillary term calculation. A uniform horizontal velocity U0 is imposed in 
the whole domain with periodic boundary conditions on lateral sides and symmetry boundary conditions on the top and 
bottom. Both fluids have equal density and viscosity. The cylindrical bubble/droplet should move with the external flow at 
the same velocity U0, the velocity field in the frame of reference moving with the bubble should ideally be zero and the 
pressure field should obey the Laplace pressure jump at the interface.



Fig. 6. Intensity of the source term |∇κ × ∇C | in the vorticity equation (20) and velocity field after the translation of a distance 1.25D in the frame of
reference moving with the bubble (by decreasing spurious currents from (a) to (f)) for R0/�x = 12.8, La = 12 000 and We = 0.4.

(u , v) (x, y) = (U0 , 0) , (25)

p(x, y) =
{ σ

R0
in the bubble,

0 outside.

(26)

In this test case, the time is made dimensionless with the characteristic advection time t0 = D/U0. Note that a similar 
test case with typical gas–liquid density and viscosity ratios is presented in Appendix B. The results obtained in terms of 
spurious currents are very similar to the tests presented here with density and viscosity ratios of unity.

The spurious velocity and the vorticity production fields obtained with the different methods are shown in Fig. 6. Simi-
larly to the static case, the maximum intensities of vorticity production and spurious velocity are collocated. It is observed 
that the maximum intensity of spurious currents in VOF-FCT-HFCSF simulation does not tend towards machine accuracy 
in this test case and is of the same order of magnitude as in the VOF-FCT-CCSF simulation. However, while the spurious 
velocities are uniformly spread around the interface in the VOF-FCT-CCSF method, the spurious currents are localized in 
space when using the height function technique for the curvature calculation. This different behavior between the different 
curvature calculation techniques is also observed with the VOF-PLIC and LS transport schemes. Therefore, the average in-
tensity of spurious currents is decreased with the height function curvature calculation whereas the maximum intensity of 
spurious currents is of the same order with both the height function and curvature calculation from the divergence of the 
unit normal to the interface for a given transport scheme.

6.1. Time evolution of spurious currents

The temporal evolution of the maximum velocity of spurious currents is reported in Fig. 7. For a given transport scheme 
(VOF-FCT, VOF-PLIC or LS), the estimation of the curvature from the height function (HFCSF) leads to similar intensities of 
spurious currents to those obtained with the calculation of the curvature from the divergence of the unit normal to the 
interface (CCSF and SSF). The spurious currents obtained with CCSF and SSF methods are in good agreement with those 
obtained in the static case. On the other hand, with the height function curvature calculation (VOF-FCT-HFCSF, VOF-PLIC-
HFCSF, LS-HFCSF), spurious currents are enhanced in this test case when compared with the static case. The accuracy of 
the height function curvature calculation is therefore highlighted since spurious currents are very sensitive to the errors in 
the shape that are introduced in the advection step, especially with the VOF-FCT and VOF-PLIC schemes. In this test, it is 



Fig. 7. Temporal evolution of the maximum spurious currents velocity in the frame of reference moving with the bubble for R0/�x = 12.8, La = 12 000, 
We = 0.4. Legend: ( ) VOF-FCT-CCSF; ( ) VOF-FCT-HFCSF; ( ) VOF-PLIC-CCSF; ( ) VOF-PLIC-HFCSF; ( ) LS-CCSF; ( ) LS-HFCSF;
( ) LS-SSF.

Fig. 8. Maximum spurious currents capillary number (a) and vorticity production (b) versus the Laplace number for R0/�x = 12.8 and We = 0.4. Legend: 
( ) VOF-FCT-CCSF; ( ) VOF-FCT-HFCSF; ( ) VOF-PLIC-CCSF; ( ) VOF-PLIC-HFCSF; ( ) LS-CCSF; ( ) LS-HFCSF; ( ) LS-SSF; ( )

VOF-PLIC-HFCSF@Gerris [35]; (—) Camax ∼ La−1/3.

seen that spurious velocities are induced by the method used to capture and advect the interface. Indeed, this flow con-
figuration shows that VOF-FCT and VOF-PLIC transport schemes generate almost similar spurious currents, with a stronger 
intensity than that obtained with an LS method, whatever the method used to calculate the curvature and the surface force 
(continuous or sharp).

6.2. Effects of the Laplace number

The effects of fluid properties on the intensity of the spurious currents have first been considered by varying the Weber 
number. Our results obtained with the VOF-PLIC-HFCSF method are close to those obtained with the Gerris collocated finite-
volume code in [35] that uses a geometrical VOF transport scheme of the interface (PLIC) and the CSF method is coupled to 
the height function curvature calculation. With most of the methods, the capillary number based on the maximum intensity 
of spurious currents does not depend strongly on the Weber number, as mentioned in [35]. Since approximately the same 
evolution is found with all the methods, we have focused on the effect of the Laplace number on the spurious currents. The 
evolution of the spurious velocities, in terms of capillary number, as a function of the Laplace number is reported in Fig. 8(a), 
which also includes results from [35]. Note that in [35], the velocities are made dimensionless with the advective velocity 
U0. To compare these results with the present study in terms of characteristic capillary number, the velocities from [35]
have been adapted (Ca[35]

max = U [35]
max/U0

√
We0/La). The trend observed in [35] (Umax/U0 ∼ La1/6) then leads to Camax ∼ La−1/3



Fig. 9. Maximum spurious currents capillary number as a function of spatial resolution for La = 12 000. Legend: ( ) VOF-FCT-CCSF; ( ) VOF-FCT-
HFCSF; ( ) VOF-PLIC-CCSF; ( ) VOF-PLIC-HFCSF; ( ) LS-CCSF; ( ) LS-HFCSF; ( ) LS-SSF; ( ) VOF-PLIC-HFCSF@Gerris [35]; (· · ·)
Umax/Usigma ∼ (R0/�x)−1; (—) Umax/Usigma ∼ (R0/�x)−2.

for a given advective Weber number We0. Our results obtained with the VOF-PLIC-HFCSF method are in good agreement 
with the results from [35], despite a slightly lower influence of the fluid properties (Camax ∼ La− 1

4 ). Whatever the transport 
scheme, VOF-PLIC, VOF-FCT or LS, the spurious currents generated with the CCSF method show almost no dependency with 
the fluid properties and are close to those obtained in the static case. The LS-SSF method also gives similar spurious current 
intensities and trends to the LS-CCSF method. However, the HFCSF method coupled with either VOF-PLIC, VOF-FCT or LS 
shows approximately the same trend, with a decrease in the spurious capillary number as the Laplace number increases 
(Camax ∼ La− 1

4 ).
From a general point of view, in the range of Laplace and Weber numbers simulated in the present work (1.2 < La <

12 000 and 0.4 < We < 30) with 12.8 cells per bubble radius, VOF-FCT-CCSF and VOF-PLIC-CCSF are almost equivalent since 
the errors in the advection are smoothed. The spurious currents generated with the VOF-PLIC-HFCSF are of the same order 
of magnitude. The height function coupled with the VOF-FCT transport scheme leads to enhanced spurious currents when 
compared with the same curvature calculation coupled with the VOF-PLIC transport scheme and this is attributed to the 
slight interface diffusion. Finally, the spurious currents obtained in an LS framework are reduced by a factor between 2 (La =
1.2 and We = 0.4) and approximately 100 (La = 12 000 and We = 30) when compared with the minimum ones obtained in 
a VOF framework. It is also interesting to point out that the intensity of the spurious currents in this test case is essentially 
driven by the transport scheme, i.e. LS schemes give better results than VOF-PLIC and finally VOF-FCT transport schemes. 
However, the trends observed when increasing the Laplace number appear to depend on the method for the curvature 
calculation, i.e. almost no dependency on the Laplace number for the curvature derived from the interface normal and a 
slight decrease with the height function curvature calculation.

Fig. 8(b) shows the maximum intensity of the vorticity source term and confirms that the vorticity production mainly 
depends on the transport scheme and the discretization. Indeed, the vorticity production in LS methods is smaller than 
in VOF methods, except with the LS-HFCSF method where strong curvature gradients, which are localized both in time 
and space, appear. As expected, the spurious currents production for a given method is constant in a first approximation 
throughout the range of Laplace numbers considered despite slight variations due to the coupling between spurious veloc-
ities, advection errors, curvature gradients and vorticity production. These observations show that the decrease in spurious 
currents as the Laplace number increases is not related to a decrease in vorticity production. Thus, the development of the 
vorticity source term into spurious currents and the balance between them depends on the Laplace number.

6.3. Convergence with spatial resolution

6.3.1. Intensity of spurious currents
The convergence with spatial resolution of the maximum velocity is shown in Fig. 9 for a given Laplace number (La =

12 000) and two different Weber numbers (We = 0.4 and We = 30). As observed in [17] for the static case, VOF-FCT-CCSF 
does not converge with spatial resolution and this is also true for the VOF-PLIC-CCSF method since both methods behave 
similarly as explained before. It is not surprising that a slight increase in spurious currents with increasing the number of 
nodes is observed since the number of smoothing iterations is kept constant and thus, the filtering procedure acts over a 
thinner region. VOF-FCT-HFCSF does not converge either when the number of nodes is increased and the trend is even worse 
with the LS-HFCSF method. VOF-PLIC-HFCSF presents almost a first order convergence rate. These different behaviors with a 



Fig. 10. Shape errors (a); curvature errors (b) as a function of spatial resolution for La = 12 000 and We = 30. Legend: ( ) VOF-FCT-CCSF; ( )
VOF-FCT-HFCSF; ( ) VOF-PLIC-CCSF; ( ) VOF-PLIC-HFCSF; ( ) LS-CCSF; ( ) LS-HFCSF; ( ) LS-SSF; LS-SSF; (· · ·) E ∼ (R0/�x)−1; (—) 
E ∼ (R0/�x)−2.

given curvature calculation and different transport schemes show the importance of the errors introduced in the advection 
step that are captured with an accurate curvature calculation, such as the height function method. Finally, LS-CCSF and 
LS-SSF present near second order convergence rates. The methods show similar trends within the range of Weber numbers 
considered. The differences reside in slightly lower rates of convergence at We = 30 and the spurious velocities obtained 
with the VOF-FCT scheme are greater than those at We = 0.4. Since there is no major difference and the calculation time 
is found to decrease when the bubble velocity increases (i.e. for high Weber numbers), all other spatial convergence studies 
have been carried out at We = 30.

6.3.2. Shape errors
It is interesting to note the consistency between the previous observations about spurious currents and the errors on the 

shape of the bubble, Emax and its curvature, E(κ)max after translation. Indeed, it is shown in Fig. 10(a) that the error on the 
shape is minimized with the LS method and is maximum with the VOF-FCT transport scheme. Despite the different shape 
errors obtained with VOF-FCT-CCSF and VOF-PLIC-CCSF methods, the errors on the calculated curvature are similar due to 
the smoothing procedure used. However, with the height function curvature calculation, spurious currents arise due to the 
advection of the interface and it is not surprising to observe an increase in the curvature errors with the VOF-FCT-HFCSF 
method when compared with the VOF-PLIC-HFCSF method, which minimizes the advection errors in a VOF framework. 
While the error on the shape decreases with grid refinement with the LS-HFCSF method, the maximum error on the cur-
vature and the vorticity source term increase, as it is the case with the maximum spurious velocity. It is observed with 
the LS-CCSF that the maximum curvature errors are enhanced when compared with LS-SSF or VOF-PLIC-HFCSF methods 
whereas the spurious currents generated are lower to those obtained with the VOF-PLIC-HFCSF method and similar to those 
obtained with the LS-SSF method. This can be due to the fact that the same accuracy is achieved in the curvature calcula-
tion for both the sharp and continuous formulations but the difference resides in the interpolation of the curvature at the 
interface in the sharp formulation. Thus, the LS-CCSF introduces a gradient of curvature normal to the interface, while the 
main contribution in the generation of spurious currents comes from the tangential gradient (see Eq. (19)). [38] conducted 
a similar mesh convergence study of curvature errors with the translation of a circle. It is interesting to note that although 
the Navier–Stokes equations were not solved in their advection test, the curvature errors did not converge either with mesh 
refinement in a VOF framework with the curvature calculated from the divergence of the unit normal to the interface, 
which is in agreement with the results presented for the VOF-FCT-CCSF and VOF-PLIC-CCSF schemes in Fig. 10(b). However, 
they did not observe convergence of the curvature errors with a Level Set function when refining the mesh, while first and 
second order convergence rates are observed with LS-CCSF and LS-SSF methods respectively. This is probably due to the 
fact that their Level Set function is used in the framework of a CLSVOF method and it has been observed that the order 
of convergence of curvature and spurious currents is around one order lower with CLSVOF methods than with LS methods 
in the case of a static bubble [33]. In addition, [38] presented a new method consisting of advecting the normals to the 
interface in order to compute normals and curvatures accurately. Close to second order convergence rate was obtained with 
translation and rotation advection tests.

In addition, the rates of convergence of the maximum curvature error for the different methods are close to those ob-
tained for the maximum spurious current intensity. Indeed, going back over the dimensional analysis presented in Section 4
using the mesh size as the characteristic length rather than the bubble diameter, the rates of convergence with spatial reso-



Fig. 11. Ratio of vorticity source term to curvature error (a) and ratio of spurious currents capillary number to vorticity source term (b) as a function of
the spatial resolution La = 12 000 and We = 30. Legend: ( ) VOF-FCT-CCSF; ( ) VOF-FCT-HFCSF; ( ) VOF-PLIC-CCSF; ( ) VOF-PLIC-HFCSF;
( ) LS-CCSF; ( ) LS-HFCSF; ( ) LS-SSF. (a) (· · ·) E ∼ (R0/�x); (—) E ∼ (R0/�x)2. (b) (· · ·) E ∼ (R0/�x)−1; (—) E ∼ (R0/�x)−2; (– – –) 
E ∼ (R0/�x)−3.

lution of the velocity, vorticity production and curvature can be related. The use of this characteristic length is justified since 
the present analysis concerns spurious flows where the derivatives in the vorticity equation (20) quantify errors over the 
mesh (discretization errors, as well as spurious velocity and vorticity fields gradients) instead of variations due to physical 
phenomena, which would be related to physical characteristic lengths (e.g. the bubble diameter). Thus, the vorticity source 
term is written as a function of the error in the curvature calculation as follows:

∇κ × ∇C ∼ E(κ)

�x2
(27)

In addition, the balance between vorticity production and the viscous term can then be written as:

μ
ωmax

�x2
∼ σ∇κ × ∇C (28)

i.e.
Camax

�x3
∼ ∇κ × ∇C (29)

Fig. 11(a) shows the ratio of vorticity production to curvature error as a function of the mesh size. Good agreement with 
Eq. (27) is observed (divergence of order 2) for all the methods. It is interesting to point out that for a given curvature error, 
the vorticity source term is minimized with standard curvature calculations when compared with height function since the 
curvature errors are localized in space and the curvature gradient is enhanced while it is spread along the interface with 
smoothed methods (CCSF). Fig. 11(b) shows the ratio of maximum spurious current intensity to the vorticity source term 
as a function of the spatial resolution. It is seen that this ratio decreases as the mesh size decreases whereas the rate of 
convergence is approximately one order lower than the one expected from Eq. (29), i.e. close to second order convergence 
instead of third order. This decrease in the rate of convergence is attributed to non-linear effects in the vorticity equation. 
As a consequence, curvature errors and maximum spurious current intensity show similar rates of convergence with spatial 
resolution (∼ |∇κ × ∇C |�x2). Finally, note that for a given vorticity production, the VOF methods minimize the spurious 
capillary number when compared with LS methods (see Fig. 11(b)) except for the LS-HFCSF method where strong oscillations 
of the curvature and the vorticity source term occur instantaneously and lead to a decreased ratio of spurious current 
intensity to vorticity source term. These observations allow us to conclude that spurious currents, vorticity production and 
curvature gradients are closely related. The sensitivity of the vorticity production to the transport scheme and the advection 
errors is enhanced with the height function curvature calculation when compared with the smoothed standard curvature 
calculation.

6.3.3. Laplace pressure jump
Another feature of the coupling between the surface tension scheme, the curvature calculation and the transport scheme 

is the accuracy in the pressure jump estimation. The decrease in spurious velocities does not necessarily lead to a better 
pressure jump calculation. Indeed, the pressure jump depends on the error on the curvature while spurious currents are 
related to its derivative since the source of vorticity resides in curvature gradients tangential to the interface. For instance, 
[17] showed that increasing the number of iterations in the filtering procedure of the volume fraction leads to a decrease 
in spurious velocities but the numerical thickness of the pressure jump increases with filtering and a compromise therefore 



Fig. 12. Normalized pressure jump. Close up of (a) the pressure in the bubble; (b) the pressure jump at the bubble rear cap. Legend: ( ) VOF-FCT-CCSF;
( ) VOF-FCT-HFCSF; ( ) VOF-PLIC-CCSF; ( ) VOF-PLIC-HFCSF; ( ) LS-CCSF; ( ) LS-HFCSF; ( ) LS-SSF.

Fig. 13. Pressure errors as a function of spatial resolution for La = 12 000 and We = 30. Legend: ( ) VOF-FCT-CCSF; ( ) VOF-FCT-HFCSF; ( )
VOF-PLIC-CCSF; ( ) VOF-PLIC-HFCSF; ( ) LS-CCSF; ( ) LS-HFCSF; ( ) LS-SSF; (· · ·) E ∼ (R0/�x)−1; (———) E ∼ (R0/�x)−2.

needs to be found to accurately calculate the Laplace pressure jump. In the present simulations, the errors in the pressure 
jump were generally insensitive to the changes in the Weber number and no explicit tendency was observed with the 
Laplace number. Fig. 12 shows the pressure profile through the bubble along the horizontal plane of symmetry. It is seen in 
Fig. 12(a) that the pressure at the center of the bubble is better calculated within an LS framework (less than 0.3% error) 
than in a VOF framework. Although the pressure at the center of the bubble with the VOF-PLIC-HFCSF method is not so far 
from the pressure estimated in the LS simulations, the pressure field has peaks around the interface, whereas it is much 
more uniform in an LS framework.

Fig. 13(a) reports the maximum pressure jump errors as a function of spatial resolution. No convergence with grid 
spacing is observed with any method. The importance of the transport scheme when using the height function curvature 
calculation is again highlighted. The VOF-PLIC transport scheme allows the maximum pressure jump errors to be signif-
icantly decreased when compared with the VOF-FCT advection scheme. However, the errors remain greater than those 
obtained with either VOF-FCT-CCSF or VOF-PLIC-CCSF methods, which are again similar. The LS methods and mainly the 
LS-CCSF method allow the maximum pressure jump errors in the domain to be minimized. Finally, the transition region 
of the pressure jump across the interface at the bubble rear cap is illustrated in Fig. 12(b) and quantified with the spatial 
convergence of the error on the total pressure jump �Ptotal/(σ/R0) in Fig. 13(b). It is seen that compared with the contin-
uous formulation of the surface tension force, the height function reduces the transition region and especially within a VOF 
framework since the smoothing procedure applied to reduce spurious currents in the CCSF methods spreads the pressure 
jump. However, it is clear that the sharp surface force is the most accurate since there is no numerical thickness of the 



Fig. 14. Intensity of the source term |∇κ × ∇C | in the vorticity equation (20) and velocity field after the translation of a distance 1.25D in the frame of
reference moving with the bubble (by decreasing spurious currents from (a) to (f)) for R0/�x = 12.8, La = 12 000 and We = 0.4.

interface. The LS-SSF method also shows a better rate of convergence (slightly less than 2) than all the other methods, 
which all converge with first order.

7. Rotating bubble

A bubble placed in a rotating flow has been used previously to characterize the efficiency of the transport scheme
[6] but not to study the efficiency of the coupling between interface advection and the surface tension force. This test 
is interesting since the displacement is not uni-directional like for the translating bubble, which moves along the mesh 
direction. Theoretically, the velocity in the frame of reference moving with the bubble should be zero, providing there are 
no spurious currents. Although the pressure in each phase is not constant due to the advective terms of the Navier–Stokes 
equations, which are not null in this case, the pressure jump at the interface still obey the Laplace law since no viscous 
shear stress is induced by the rotating flow field given by Eq. (30). The theoretical velocity and pressure fields are given 
by Eqs. (30)–(31). Images of the configuration and the spurious currents generated in such a flow after one revolution are 
illustrated in Fig. 14.

(u , v) (x, y) = ( U0 × y , −U0 × x) , (30)

p(x, y) = ρU 2
0

2

(
(x − x0)

2 + (y − y0)
2
)

+
{ σ

R0
in the bubble,

0 outside.

(31)

The evolution of the maximum intensity of spurious currents with time is reported in Fig. 15. In this test case, which is 
slightly more complex, the predominant effects of the transport scheme on the spurious currents that have been observed 
with the translating case are enhanced. Fig. 15 shows that the spurious currents are clearly controlled by the transport 
scheme. Indeed, with both curvature calculations, the use of the VOF-PLIC scheme leads to decreased spurious currents 
when compared with those obtained with the VOF-FCT scheme. This decrease is accentuated when compared with the 
translating case. Despite the smoothing procedure, spurious currents obtained with the VOF-PLIC-CCSF are reduced when 
compared with the VOF-FCT-CCSF method. This means that the shape errors introduced by the advection step are captured 
in the curvature calculation and overcome the errors associated with smoothed curvature calculations. Nevertheless, the 
spurious currents obtained with the VOF-PLIC transport schemes remain approximately 3 to 4 times greater than those 



Fig. 15. Temporal evolution of the maximum velocity of spurious currents in the frame of reference moving with the bubble for R0/�x = 12.8, La = 12 000
and We = 30. Legend: ( ) VOF-FCT-CCSF; ( ) VOF-FCT-HFCSF; ( ) VOF-PLIC-CCSF; ( ) VOF-PLIC-HFCSF; ( ) LS-CCSF; ( ) LS-HFCSF;
( ) LS-SSF.

Fig. 16. Dimensionless maximum velocity of spurious currents as a function of spatial resolution for La = 12 000 and We = 30. Legend: ( ) VOF-FCT-
CCSF; ( ) VOF-FCT-HFCSF; ( ) VOF-PLIC-CCSF; ( ) VOF-PLIC-HFCSF; ( ) LS-CCSF; ( ) LS-HFCSF; ( ) LS-SSF; (· · ·) Umax/Usigma ∼
(R0/�x)−1; (———) Umax/Usigma ∼ (R0/�x)−2.

obtained within an LS framework where both continuous methods (LS-HFCSF and LS-CCSF) and the sharp method (LS-SSF) 
give identical spurious velocities.

Similarly to what happens in the translating case, the maximum and mean velocities generally do not depend on the 
Weber number. The trends observed for the evolution of the intensity of spurious currents with the Laplace number are also 
qualitatively similar to those in the translating case. However, they are more homogeneous than in the translating case, and 
the velocity scales approximately as Camax ∼ La−1/4 for most of the methods, except LS-CCSF and LS-SSF (Camax ∼ La−1/6).

7.1. Convergence with spatial resolution

The convergence of the different methods with spatial resolution is presented in Fig. 16, which shows the capillary 
number based on the maximum velocity as a function of the grid resolution. As previously observed with the translating 
case, with the VOF-FCT-HFCSF scheme, the intensity of spurious currents is maximum and increases with mesh resolution. 
Within a VOF-FCT framework, i.e. without interface reconstruction, the intensity of spurious currents is lower with the 
CCSF model than with the HFCSF scheme but the same trend with mesh refinement is observed. Similarly, the intensity of 
spurious currents increases as the mesh is refined with the VOF-PLIC-CCSF. At low resolution, the same intensity of spurious 
currents is found with the VOF-PLIC-HFCSF method but it decreases with mesh resolution. However, the rate of convergence 
is approximately one third, which is smaller than in the translating case (close to one). Concerning the LS transport scheme 
that minimizes spurious currents, while the LS-CCSF and LS-SSF methods showed a rate of convergence about 1.5 in the 
translating case, the magnitude of the spurious currents decreases in this flow configuration as long as the number of cells 



Fig. 17. Range of maximum spurious capillary number generated with the different methods for 1.2 ≤ La ≤ 12 000; 0.4 ≤ We ≤ 30 and 6.4 ≤ R0/�x ≤ 51.2. 
For each method, the static, translating and rotating cases are reported from left to right. The symbols represent the average values of spurious velocities
obtained within the range of fluid properties and spatial resolution covered and the error bar corresponds to the minimum and maximum values of
spurious velocities obtained.

Table 1
Summary of the main characteristics of the transport schemes and calculations of the surface tension force used for the static, translating and rotating test
cases. The rates of convergence with spatial resolution, as well as the dependencies on the Laplace number, have been simplified to make the comparison
easier and stress only the major differences. In order to allow an easy comparison between the methods at a common resolution of 12.8 cells per bubble
radius, the spatial resolution is expressed with a modified dimensionless bubble radius R∗

0/�x = R0/(12.8�x). The coefficient of the scaling laws therefore 
corresponds to the spurious current intensity for R0/�x = 12.8 and La = 1.

Method – spurious currents magnifier Camax static case Camax translating case Camax rotating case

VOF-FCT-CCSF – curvature calculation 10−3 1 × 10−3
(

R∗
0

�x

)0.4

2 × 10−2 La− 1
4

(
R∗

0

�x

)0.4

VOF-FCT-HFCSF – advection errors 1.4 × 10−8
(

R∗
0

�x

)−1.6

2 × 10−2 La− 1
4

(
R∗

0

�x

)0.4

6 × 10−2 La− 1
4

(
R∗

0

�x

)0.4

VOF-PLIC-CCSF – curvature calculation see VOF-FCT-CCSF 7 × 10−4
(

R∗
0

�x

)0.2

7 × 10−3 La− 1
4

(
R∗

0

�x

)0.2

VOF-PLIC-HFCSF – advection errors 10−12 5 × 10−3 La− 1
4

(
R∗

0

�x

)−0.7

5 × 10−3 La− 1
4

(
R∗

0

�x

)−0.3

LS-CCSF – curvature calculation and redistancing step 6.1 × 10−5
(

R∗
0

�x

)−1.8

4 × 10−5
(

R∗
0

�x

)−1.4

5 × 10−4 La− 1
6

LS-HFCSF – redistancing step and advection errors 3.6 × 10−6
(

R∗
0

�x

)−1.3

3 × 10−4 La− 1
4

(
R∗

0

�x

)1.4

10−3 La− 1
4

(
R∗

0

�x

)0.8

LS-SSF – redistancing step 5.7 × 10−5
(

R∗
0

�x

)−2.1

5 × 10−5
(

R∗
0

�x

)−1.7

5 × 10−4 La− 1
6

per bubble radius is lower than 13 but then stabilizes when refining the mesh further. The LS-HFCSF method shows the 
same trend as in the translating case and exhibits no convergence with spatial resolution.

Concerning the pressure errors and their convergence with grid refinement, the observations do not differ from the 
translating case, except that the differences between VOF-FCT and VOF-PLIC transport schemes are again enhanced. As it 
has been observed with the spurious velocities, the rate of convergence for the pressure jump decreases in this test case 
when compared with the translating one. The LS-CCSF method allows the maximum pressure jump error to be minimized 
but none of the methods converge with spatial resolution. The errors obtained with the VOF-FCT-HFCSF and LS-HFCSF 
methods increase with decreasing the cell size. It is interesting to note a difference with the translating case; although the 
Sharp Surface Force formulation still imposes a sharp pressure jump, this method does not appear to be superior to the 
VOF-PLIC-HFCSF, LS-CCSF or LS-HFCSF methods, which give the best results in this rotating flow regarding the total average 
pressure jump. Finally, the LS-CCSF method seems to be a good compromise between spurious current intensity and pressure 
jump calculation. The VOF-PLIC-HFCSF method also shows good results concerning the pressure jump estimation that are 
close to those obtained with the LS-CCSF method.

8. Summary of static, translating and rotating cases

A summary of the range of spurious currents observed in this study for the different methods and test cases is reported
in Fig. 17 and in Table 1 through approximate correlations with the Laplace number and spatial resolution. The superiority of 



Fig. 18. Ratio of maximum spurious current intensity in the translating (a) and rotating (b) cases over spurious current intensity in the static case. Legend:
( ) VOF-FCT-CCSF; ( ) VOF-FCT-HFCSF; ( ) VOF-PLIC-CCSF; ( ) VOF-PLIC-HFCSF; ( ) LS-CCSF; ( ) LS-HFCSF; ( ) LS-SSF.

VOF-PLIC-HFCSF and VOF-FCT-HFCSF methods in the static case show that the accurate curvature calculation achieved with 
the height function method is of main importance. Figs. 18(a)–(b) show the ratio of maximum spurious current intensity in 
dynamic cases over that obtained in the static case. This ratio is close to one for all the CCSF methods, as well as the SSF 
method. This indicates that for these methods, the errors in the curvature calculation after advection in these cases are of 
the same order of magnitude than those obtained in a static case. With these methods, although the transport scheme can 
play a non-negligible role in the generation of spurious currents, these observations indicate that the main spurious currents 
magnifiers are the curvature calculation (and the redistancing step in LS methods) rather than the transport scheme. On 
the other hand, with the VOF-PLIC-HFCSF and VOF-FCT-HFCSF methods, and to a lesser extent with LS-HFCSF, the spurious 
currents are clearly magnified by the transport errors. Indeed, the difference between the static and dynamic cases highlights 
the strong interaction between interface advection and the spurious currents with an accurate curvature calculation like the 
height function. From a general point of view, the dynamic cases show that the curvature errors are dominated by advection 
errors rather than inaccurate curvature calculation and the LS methods minimize the spurious currents.

9. Taylor bubble dynamics

The present section deals with the numerical simulation of Taylor flow in microchannels, which is of practical interest
since it is encountered in many applications – e.g. lab-on-a-chip devices, flow boiling, film coating, micro chemical reactors, 
etc. The motion of Taylor bubbles in microchannels is investigated with particular attention to the effects of the scalar field 
representing the interface and the transport scheme (VOF-FCT and LS) with a given surface tension scheme (CCSF). The 
LS-CCSF, which appears to be a good compromise between spurious currents generation, convergence with grid refinement 
and pressure calculation, is compared with the method initially implemented in JADIM. This flow configuration appears to be 
very sensitive to spurious currents since the capillary forces are often dominant (usually Ca << 1 and We << 1). In addition, 
the flow tends towards a stationary solution in the frame of reference moving with the bubble and spurious currents can 
appear when the flow is developing. The case considered here is an axisymmetrical tube with periodic boundary conditions 
in order to simulate a bubble train in a channel filled with a liquid. The dimensionless radius of the channel is R∗ = 1
and the length is L∗

x = 8. A pressure gradient is imposed across periodic boundary conditions to induce the motion of the 
fluids initially at rest. The Laplace number is La = 280 and the capillary and Reynolds numbers vary with the imposed 
pressure gradient. For Ca ≥ 0.05, the Laplace number has been reduced to La = 2.8 so that the Reynolds number remains 
lower than 10 in the present simulations. In order to correctly resolve the flow, the mesh needs to be fine enough close to 
the walls in order to capture the thin liquid film between the bubble and the channel wall. Furthermore, the bubble caps 
also need to be well resolved in order to accurately estimate the pressure jump at the rear and front caps of the bubble. 
The characteristics of the meshes that have been tested are summarized in Table 2 and the time step constraint due to 
capillary forces is indicated by making it dimensionless with the time needed for a bubble (with Ca ∼ 0.005) to cross the 
domain. This dimensionless capillary time step constraint then corresponds approximately to the number of iterations that 
are necessary to complete one cycle in the periodic domain. The capillary time step constraint is based on the minimum 
cell size containing the interface instead of the minimum cell size in the whole domain.

As long as the bubble velocity is lower than the maximum velocity in the slug, as observed at low capillary numbers, the 
flow in the liquid slug should be composed of a recirculation loop and a film flow. When the bubble velocity is close to the 
mean flow velocity in the slug, the recirculation loop occupies a major part of the channel and the film is very thin [47,3]. 



Table 2
Different meshes used and corresponding numerical parameters.

Mesh Nx × N y �y j+1/�y j �ymin (L∗
x/U B )/�tcap,min

M1 128 × 32 0.9 3.967 × 10−3 739 400
M2 128 × 64 0.94 1.242 × 10−3 2 473 000

Fig. 19. Streamlines and vorticity field in Taylor flow in a microchannel. From top to bottom: Ca = [0.002; 0.005; 0.025]; left: VOF-FCT-CCSF, mesh 128 × 32;
right: LS-CCSF, mesh 128 × 32. The vorticity field of the equivalent single phase flow of mean velocity UTP has been subtracted.

Although this structure is observed qualitatively in all the LS-CCSF and the VOF-FCT-CCSF simulations for Ca ≥ 0.01, at 
lower capillary numbers, the VOF-FCT-CCSF simulations present an additional liquid recirculation loop in the vicinity of the 
bubble nose as can be seen in Fig. 19. This phenomenon is enhanced when the number of smoothing iterations is decreased. 
Decreasing the capillary number, i.e. increasing the surface tension effects when compared to viscous forces, also enhances 
this phenomenon. These additional local recirculation loops are attributed to spurious currents since the vorticity generated 
numerically looks very similar to the spurious currents generated in the translating bubble case. The additional recirculation 
loop that is present in VOF-FCT-CCSF simulations decreases in size when increasing the capillary number and vanishes for 
a capillary number Ca ∼ 0.02, which is in agreement with previous observations and characterization of spurious currents 
made with the VOF-FCT-CCSF method developed in JADIM [17,2]. With both an accurate curvature calculation based on 
height function and an accurate VOF-PLIC transport scheme, the correct flow structure was captured in [4] at low capillary 
numbers, down to Ca = 0.005, with the Gerris code. [24] performed similar simulations of Taylor flow with a CCSF method 
coupled with a VOF scheme with an artificial compression term to keep a sharp interface in a VOF without geometrical 
reconstruction framework. Although the authors consider that their resulting velocity field is in qualitative good agreement 
with the simulations of [4], the erroneous additional recirculation loop presented in Fig. 19 can also be observed in [24].

Although [20] were not able to conclude on the effects of spurious currents on the study of free bubble rise, these effects 
on the local velocity field in Taylor flow are clearly illustrated here. Fig. 20 shows the effects of spurious currents on the slip 
velocity between the bubble and the mean velocity in the slug W = (U B −UTP)/U B , where UTP = UGS +ULS is the sum of the 
gas and liquid superficial velocities. The aptitude of a method to correctly estimate this dimensionless velocity is evaluated 



Fig. 20. (a) Dimensionless slip velocity W versus the capillary number CaB . Legend: (�) VOF-FCT-CCSF; (◦) LS-CCSF; (dash-dotted line) Bretherton’s law 
[9]; (straight line) Aussillous and Quéré correlation [5]. (b) Pressure drop at the front and rear caps of the bubble. Legend: (�) VOF-FCT-CCSF; (◦) LS-CCSF;
(dash-dotted line) Bretherton’s law [9]; (straight line) results from Hazel and Heil [21].

by comparing the values obtained with the correlation proposed by Aussillous and Quéré [5] who extended Bretherton’s 
theoretical lubrication analysis [9] to higher capillary numbers. As it was qualitatively observed with the local velocity 
field in Fig. 19, the difference between VOF-FCT-CCSF and LS-CCSF simulations is enhanced when the capillary number 
decreases. Fig. 20 shows that the LS method allows the bubble slip velocity to be accurately predicted in a wide range 
of capillary numbers, while the VOF-FCT-CCSF method overestimates the slip velocity and thus, the liquid film thickness 
since they are directly related due to the zero velocity in the liquid film surrounding the bubble. However, with both the 
VOF-FCT-CCSF and LS methods, the pressure drop at the front and rear caps of the bubble estimated from our simulations 
is in good agreement with the results from [21] who simulated the propagation of a semi-infinite bubble by solving the 
free surface Stokes equations with a finite-element method. The difference between both methods at the lowest capillary 
number simulated, which is the most sensitive to spurious currents, is only 2.4% while the difference in the slip velocity 
is about 30%. An advantage of the LS method is that no smoothing needs to be introduced to reduce spurious currents, 
whereas 12 × 6 smoothing iterations were employed for the computation of the curvature and orientation/spreading of the 
capillary force, respectively, in VOF-FCT-CCSF method as recommended in [17]. As a result, the pressure drop is sharper in 
the LS simulations than in the VOF-FCT-CCSF simulations.

It has generally been shown in the static, translating and rotating bubble cases that the intensity of the spurious currents 
obtained with the VOF-FCT-CCSF method does not decrease with spatial resolution. As a result, it is not surprising to see 
that the non-physical recirculation loop is not reduced with mesh size, as shown in Fig. 21 for Ca = 0.005. In fact, the 
vorticity intensity generated at the front cap of the bubble actually increases when the mesh is refined in the VOF-FCT-CCSF 
simulations.

The errors obtained on the dimensionless slip velocity in comparison with Aussillous and Quéré correlation are given 
in Table 3. It is shown that the error for a capillary number Ca ∼ 0.005 is significant with the VOF-FCT-CCSF simulations 
and does not decrease significantly with mesh refinement. However, the results obtained with an LS-CCSF formulation are 
satisfactory even with the coarsest mesh and are in very good agreement with the correlation of Ref. [5] when the number 
of grid points is increased.

10. Conclusion

The generation of spurious currents and their effects on the velocity field in multiphase microfluidics has been inves-
tigated through the analysis of several numerical methods. A comparison of numerical methods comprising the transport 
scheme (VOF-FCT, VOF-PLIC and LS), the surface tension scheme (continuum or sharp surface force) and the curvature calcu-
lation (height function or divergence of the normal to the interface) with the same flow solver has been carried out. It can 
be concluded that the height function curvature calculation is very accurate and is particularly interesting for the case of 
static bubbles and near-static bubble or oscillating bubbles [22,19]. However, since the errors generated during the advection 
step are captured while they are smoothed with the convolution method, the height function method needs to be coupled 
with an accurate transport scheme, as it has been shown for the translating and rotating cases in this study. Otherwise, 
the classic CSF formulation with a smoothing of the volume fraction gives better results in terms of maximum spurious 
current intensity. Although the exact balance between pressure and capillary forces reached with the VOF-HFCSF methods 
is not achieved due to the redistancing step when using the Level Set formulation, it has been shown that the spurious 



Fig. 21. Streamlines and vorticity field in Taylor flow in a microchannel (Ca = 0.005). Top left: VOF-FCT-CCSF, mesh 128 × 32; top right: LS-CCSF, mesh
128 × 32; bottom left: VOF-FCT-CCSF, mesh 128 × 64; bottom right: LS-CCSF, mesh 128 × 64. The vorticity field of the equivalent single phase flow of mean
velocity UTP has been subtracted.

Table 3
Error on the dimensionless slip velocity for a capillary number Ca ∼ 0.005.

Mesh E(W ) (VOF-FCT-CCSF) E(W ) (LS-CCSF)

M1 20.44% 1.88%
M2 18.71% 0.31%

currents are decreased in dynamic cases. Similarly to the VOF-HFCSF methods, the sharp surface force that interpolates the 
position of the interface and the height function technique require accurate transport and redistancing schemes since they 
also precisely capture the slight errors created in these steps. Finally, it is shown that these test cases are well suited to the 
characterization of spurious currents in Taylor flow. The spurious currents generated in VOF-FCT simulations are shown to 
significantly modify the structure of the flow by producing an additional recirculation zone. The LS-CSF method is shown to 
be able to estimate the bubble slip velocity and the pressure drop across the bubble with good accuracy in a wide range of 
capillary numbers. In addition, since only one bubble is simulated, the global mass redistribution used in this study allows 
mass conservation problems to be avoided. However, cases involving several bubbles (or drops) still require additional work 
to resolve this mass conservation problem that occurs in classic Level Set implementations [44] since the mass redistribu-
tion algorithm used in this study ensures mass conservation in a global way but does not ensure mass conservation for each 
bubble (or drop). Two possible solutions may be considered in future work: the improvement of the transport scheme in 
a VOF framework coupled with the height function curvature calculation; and the coupling between VOF and LS methods 
[44]. Note that the time step convergence study has not been carried out in this paper since [18,17] showed that the time 
step has only minor effects on the spurious current intensity. In addition, it has been observed with the simulation of Taylor 
bubbles that reducing the time step leads to similar results to those obtained with the maximum time step allowed by the 
capillary time step constraint. Another topic that should be considered for the simulation of Taylor flows is the (semi-)im-
plicitation of the surface tension force [25,37]. Indeed, the capillary time step as derived in [8] is very restrictive and the 
implicitation of the surface tension force would allow larger time steps to be used (up to twenty times the usual capillary 
time step constraint according to [25]), which would be of great benefit in order to reduce the computational time required 
for numerical simulations of surface tension driven flows.
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Table A.4
Effects of the different additional algorithms of the VOF-FCT advection scheme on the spurious currents for various resolutions and for We = 30 and
La = 12 000.

R0/�x CCSF HFCSF

12.8 25.6 51.2 12.8 25.6 51.2

VOF-FCT 8.0082 10−4 9.8943 10−4 17.472 10−4 2.3122 10−3 2.8614 10−3 5.4721 10−3

VOF-FCT-m 8.0315 10−4 9.9383 10−4 17.472 10−4 2.2229 10−3 2.9478 10−3 5.4721 10−3

VOF-FCT-mv 9.5200 10−4 11.789 10−4 25.186 10−4 2.9512 10−3 4.8953 10−3 8.6221 10−3

VOF-FCT-mve1 20.187 10−4 17.653 10−4 26.362 10−4 2.8528 10−3 4.5232 10−3 9.0993 10−3

VOF-FCT-mve2 9.5828 10−4 11.789 10−4 24.518 10−4 2.9582 10−3 4.8954 10−3 7.8929 10−3

Table B.5
Effects of the density ratio on the spurious currents for various resolutions and for We = 30 and La = 12 000.

Resolution R0/�x = 12.8 R0/�x = 25.6 R0/�x = 51.2

Density ratio ρin
ρout

= 1 ρin
ρout

= 10−3 ρin
ρout

= 1 ρin
ρout

= 10−3 ρin
ρout

= 1 ρin
ρout

= 10−3

VOF-FCT-CCSF 9.5828 10−4 1.6154 10−3 1.1789 10−3 1.6221 10−3 2.4518 10−3 3.8511 10−3

VOF-FCT-HFCSF 2.9528 10−3 2.3206 10−3 4.8954 10−3 4.0643 10−3 7.8929 10−3 7.6236 10−3

VOF-PLIC-CCSF 3.8577 10−4 2.5059 10−3 5.2429 10−4 3.4615 10−3 9.7386 10−4 2.7035 10−3

VOF-PLIC-HFCSF 4.6083 10−4 8.2090 10−4 3.0367 10−4 5.3819 10−4 1.7344 10−4 3.0386 10−4

LS-CCSF 3.5244 10−5 7.5675 10−5 1.3627 10−5 5.8297 10−5 4.2967 10−6 2.9892 10−5

LS-HFCSF 6.2806 10−6 9.0388 10−6 2.3038 10−5 3.9670 10−5 8.1242 10−5 2.5181 10−4

LS-SSF 2.5800 10−5 3.8245 10−5 6.9204 10−6 1.6313 10−5 1.8107 10−6 5.3447 10−6

Appendix A. Choice of VOF-FCT scheme

Table A.4 shows the effects of the different features of the VOF-FCT scheme (mass redistribution, velocity extension and 
cut-off algorithm) on the spurious currents generated in the translating test case presented in Section 6. The Laplace number 
is La = 12 000 and the Weber number is We = 30 and different spatial resolutions are used. The variants of the VOF-FCT 
scheme and their notations in Table A.4 are the following:

– VOF-FCT-0: original direction-split VOF-FCT scheme [51],
– VOF-FCT-1: VOF-FCT scheme [51] with mass redistribution [7],
– VOF-FCT-2: VOF-FCT scheme [51] with mass redistribution and velocity extension [7],
– VOF-FCT-3: VOF-FCT scheme [51] with mass redistribution and velocity extension, and cut-off algorithm with nc = 1

(see Section 2.2.2),
– VOF-FCT-4: VOF-FCT scheme [51] with mass redistribution, velocity extension, and cut-off algorithm with nc = 2 (see

Section 2.2.2).

It is observed that the mass redistribution has no effect on the intensity of spurious currents whereas the velocity extension 
tends to slightly increase their intensity although it remains acceptable since the ratio is less than 1.5. Finally, it is seen 
that with the strict cut-off algorithm allowing only an interface thickness of one cell, the spurious current intensity can be 
around twice that obtained without this cut-off whereas the permissive cut-off allowing an interface thickness of two to 
three cells does not influence parasitic currents. Indeed, this cut-off algorithm is used only occasionally and is generally not 
used when the mesh is refined. Finally, it was shown in [1] with pure advection tests (circle in a shear flow for instance) 
that this cut-off algorithm with nc = 2 improves the performance of the advection step and since the effects on the spurious 
currents are not significant, this is the scheme that has be chosen in this study.

Appendix B. Effects of density ratio

This test case is based on the translating case introduced in Section 6 with the difference that a gas–liquid system is 
considered, i.e. the density and the viscosity in the bubble (ρin , μin) are 103 times lower than in the surrounding liquid 
(ρout , μout). The Laplace number of the continuous phase is La = 12 000 and the Weber number is We = 30. The geometry 
and the meshes used are the same as in Section 6. Table B.5 shows the effects of the density ratio on spurious currents for 
the various methods used throughout this study and for three spatial resolutions. It is seen that the amplitude of spurious 
currents is nearly constant for both density ratios ρin/ρout = 1 and ρin/ρout = 10−3 although the spurious current intensity 
is generally slightly smaller when the density ratio is unity, except for the VOF-FCT-HFCSF method. The largest difference 
appears with the VOF-PLIC-CCSF method where the spurious current intensity is 6.5 times higher with a density ratio of 
10−3 than that obtained with a density ratio of 1 with the coarsest grid. The same difference is observed with the LS-CCSF 
method when using the finest grid. However, the differences remain less than one order of magnitude while the density 
ratio varies over three orders of magnitude which justifies the relevance of studying density and viscosity ratios of unity. In 
addition, it is noted that the rate of convergence is lower with the density ratio ρin/ρout = 10−3 than that obtained with 



ρin/ρout = 1. Indeed, as it is observed in Figs. 9(a) and (b), the rate of convergence of spurious currents seems to decrease 
slightly, especially with the LS-CCSF and LS-SSF schemes, when the Laplace number is increased. In this case, the Laplace 
number is one thousand times greater in the bubble (La = 1.2 × 106) than that in the surrounding liquid (La = 12 000). 
This is a first explanation of the lowest rate of convergence observed as the Laplace numbers differ inside and outside the 
bubble.
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