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A SAINT-VENANT SHALLOW WATER MODEL FOR

OVERLAND FLOWS WITH PRECIPITATION AND RECHARGE

MEHMET ERSOY, OMAR LAKKIS, AND PHILIP TOWNSEND

Abstract. We propose a one-dimensional Saint-Venant (also known as open
channel or shallow water) equation model for overland flows including a wa-

ter input–output source term. We derive the model from the two-dimensional

Navier–Stokes equations under the shallow water assumption, with boundary
conditions including recharge via ground infiltration and runoff. We show that

the energy-consistency of the resulting Saint-Venant model is strictly depend-

ent upon the assumed level of rain- or recharge-induced friction. The proposed
model extends most extant models by adding more scope depending on friction

terms that depend on the rate of water entering or exiting the flow via recharge
and infiltration. The obtained entropy relation for our model validate it both

mathematically and physically. We compare both models computationally

based on a kinetic finite volume scheme; in particular, we provide numerical
evidence that the two models may show drastically different results, where the

model conditioned on the flow velocity provides what may not be the phys-

ically relevant solution because of the lack of the appropriate friction terms
depending on a master parameter (α). We also look at a comparison with

real-life data.
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1. Introduction

The quantitative modelling of hydrology of catchment basins and rivers holds a
central place in environmental sciences, particularly in connection with water avail-
ability, flood risks, and urban sewer systems. This is especially important today
in understanding and forecasting the impact of climate variability on the human
and natural environment. A watercourse’s recharge via precipitation, runoff or
springs, as well as its loss via ground infiltration, drainage systems, vegetation, and
evaporation, play a essential role in quantifying its dynamics. The most important
component of the hydrologic water recharge and loss are the infiltration and pre-
cipitation processes. The forecast to predict the motion of water is a difficult task
to which substantial effort has been devoted [Grace and Eagleson, 1966, Woolhiser
and Liggett, 1967, Zhang and Cundy, 1989, Esteves et al., 2000, Weill et al., 2009,
Rousseau et al., 2012].
One of the most widely used models to describe the overland motion of watercourses
is the classical one-dimensional (1D) Saint-Venant shallow water equation (SWE)
(also known as open channel equations). The classical SWE, which is a hyperbolic
system of 2 or 3 scalar conservation laws, is most commonly used in its mass-
conservative form, where the addition or subtraction of water occurs exclusively
through the boundary conditions. It is important, however, to understand also the
addition of water from the “inside” of the domain. In the three-dimensional reality
or two-dimensional configurations, the additional water comes from underground
water (aquifers, springs, water-table, etc.) or sinks and runoff phenomena (torren-
tial tributaries, surface flow, quick-flow) and direct rain; however, for d = 2 or 3,
the reduction of the d dimensional Navier–Stokes to the d − 1 dimensional SWE
makes some of these boundary terms, such as the underground springs or the soil’s
absorption, into “internal source terms” S [Gerbeau and Perthame, 2001, Marche,
2007, Ersoy, 2015]. This source term quantifies the amount of water that is added
to (S > 0) or subtracted from (S < 0) the flow; in practice this may occur with a
variety of mechanisms. Thus, according to Sochala [2008] and Delestre et al. [2012]
the source term is added to the SWE resulting in

∂th+ ∂x[hu] = S

∂t [hu] + ∂x

[
hu2 +

g h2

2

]
= − g h∂xZ − k0(u)u

(1.1)

where the unknowns h(t, x) and u(t, x) model, respectively, the height of the water
and the velocity of the water (column) at a time-space point (t, x), g the gravita-
tional acceleration (considered a constant g ≈ 9.81 m/s2), Z(x) the topography of
the river bed with slope ∂xZ(x), and k0 an empirical fluid-wall friction. The reader
interested in such questions could consult, e.g., Ponce and Simons [1977], Akan and
Yen [1981], Moussa and Bocquillon [2000], Singh [2001] as further references.
Our main goal in this paper is to derive, starting from the Navier–Stokes equations
with a permeable Navier boundary condition to account for the infiltration and
a kinematic one to consider the precipitation, a model akin to (1.1) via vertical
averaging under the shallow water assumption. The averaged model that we obtain
extends model (1.1), in that it has an additional momentum source term of the form
Su− (fR + f̄I)u, where the total recharge is

S := R− I (1.2)



A SAINT-VENANT MODEL WITH RAIN 3

with R > 0 denoting the recharge on the free surface (briefly called rain term but
accounting also for run-off and minor torrential tributaries, ultimately coming from
rainfall) and −I the recharge rate due to infiltration from water to ground (I < 0)
or recharge from the ground into the water (I > 0); in §2 we give a more detailed
discussion about R and I. The terms fRu and f̄Iu that we substract from the
momentum’s rate model the friction caused by the addition of water (with velocity
0) attaching to and being advected by the flow. For simplicity, in this paper we
assume the most basic constitutive relations for this friction: linear in R for fR and
piecwise linear in I for f̄I .
Explicitly, the new model we propose is

∂th+ ∂xq = S := R− I,

∂tq + ∂x

[
q2

h
+ g

h2

2

]
= − g h∂xZ + S

q

h
−
(
fR + f̄I + k0

( q
h

)) q
h

where q = hu,

(1.3)

which is a hyperbolic system of balance laws. We show that system (1.3) possesses
a mathematical entropy given by

E(t, x) := Ê(h(t, x), u(t, x), Z(x)) and Ê(h, u, Z) := hu2
/2 + g h2

/2 + g hZ (1.4)

which satisfies the following entropy relation for smooth solutions:

∂tE + ∂x

[(
E +

g h2

2

)
u

]
= Sψ −

(
fR + f̄I + k0(u)

)
u2 (1.5)

where

ψ(t, x) := ψ̂(h(t, x), u(t, x), Z(x)) and ψ̂(h, u, Z) :=
u2

2
+ g h+ gZ (1.6)

is the total head while the friction coefficients due to rainfall recharge and infiltra-
tion kinematics respectively, are

fR := αR, f̄I := αmax(0,−I), and k0(u) (1.7)

where α is a coefficient which one should be able to capture from empirical meas-
urements. Two important remarks are worth making:

(1) The friction terms fR and f̄I are necessary to avoid paradoxical outcomes
such as perpetual motion, their physical interpretation being, roughly speak-
ing, that incoming water, assumed to have horizontal velocity zero, must
“stick” to the flow and be transported at velocity u.

(2) Our model (1.3) generalises model (1.1), which is the special case when the
friction terms match the extra term S = fR + f̄I , meaning α = 1 and I > 0
(water enters, but does not exit, the flow from the ground).

(3) Our model (1.3) could be further generalised by assuming friction relations
more general than ours, for example, by having two separate friction coef-
ficients instead of the single α, possibly accounting for outgoing fluid. Also
the linearity of fR in R and f̄I in I < 0 could be replaced by more precise
constitutive relations, possibly obtained from empirical data.

Connected to these remarks, in our main result, discussed §3.4, we deduce that the
energetic-consistency of the model is strictly dependent upon the level of rain- or
recharge-induced friction, denoted by α; that is,

∂tE + ∂x

[(
E +

g h2

2

)
u

]
6 0 if α >

Sψ − k0(u)u2

Ru2 −min(0, I)u2

> 0 if α 6
Sψ − k0(u)u2

Ru2 −min(0, I)u2

(1.8)
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which is pertinent with the underlying physics. If the terms Su, fR, and f̄I are
dropped we recover the equations (1.1), for which we show that the above properties
are conditional on the flow velocity and may exhibit non-physical solutions.
We outline the rest of the article as follows: in §2, as our starting point we present
the Navier–Stokes equations and the boundary conditions including recharge, in-
filtration and corresponding friction terms. In §3 we derive the consequent Saint-
Venant equations with recharge and infiltration, including the friction terms. In §4
we adapt a finite volume kinetic scheme of Audusse et al. [2000] and Perthame and
Simeoni [2001] to our model and provide extensive numerical testing in §5 of the
resulting code. A C and C++ implementation of this code, written by Matthieu
Besson, Omar Lakkis and Philip Townsend, is freely available on request (an older
version is given by Besson and Lakkis [2013]).

2. Navier–Stokes equations with infiltration and recharge

Our aim is to construct a mathematical model for overland flows that is consist-
ent with the physical phenomena that can affect the motion of such water. To
this purpose, we propose a model reduction of the two-dimensional Navier–Stokes
equations leading to an extension of the standard Saint-Venant system. By con-
sidering suitably chosen boundary conditions, we take into account the addition
and removal of water, either by rainfall (e.g. from runoff onto the top of the water
course) or by ground-water infiltration of exfiltration processes (e.g via a porous
soil).
We start in §2.1 by reviewing the Navier–Stokes equations in the special geometric
setting, describing the physics with a wet boundary on the bottom of the water
course and a free surface on the top. We then introduce the boundary conditions
for each surface in §2.2 and §2.3, respectively.

2.1. Geometric set-up and the two-dimensional Navier–Stokes equations.
From a modelling point of view there is no upper bound on the time, but with
numerical and practical applications in mind, we will work with an arbitrary final
time T > 0. With reference to Fig. 1, we consider an incompressible fluid moving
in the time-space box

[0, T ]× [0, L]× R with typical point (t, x, z)

where L > 0 is the horizontal length of the domain.
(2.1.1)

The absolute height of the surface of the water course and the topography of the
bed are modelled, respectively, by the functions

H : [0, T ]× [0, L] → R
(t, x) 7→ H(t, x) ,

Z : [0, L] → R
x 7→ Z(x) ,

(2.1.2)

whose values measure with respect to a reference horizontal height 0. We define
the local height of the water by

h(t, x) := H(t, x)− Z(x). (2.1.3)

The wet region is defined as the region in which the fluid resides at each time
t ∈ [0, T ]

Ω(t) :=
{

(x, z) ∈ R2 : x ∈ (0, L) , Z(x) < z < H(t, x)
}

(2.1.4)

with its global counterpart

Ω :=
⋃

06t6T

Ω(t). (2.1.5)

We assume that the viscous flow u satisfies, on the space-time domain Ω, the
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water’s free surface:
z = H(t, x) = h(t, x) + Z(x)
F := {(t, x,H(t, x)) : t > 0, x ∈ (0, L)}

wet region Ω(t)

ground

bottom (wet boundary) z = Z(x)

B := R+ × {(x, Z(x)) : x ∈ (0, L)}

Z
(x

)
h
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,
x
)

q(t, x)
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0 Lx

z

recharge R(t, x)

infiltration I(t, x, h(t, x))

xB := (x, Z(x))

xF := (x,H(t, x))

n
Ω

(x
B

)

tΩ(xB)

n
Ω

(x
F

)
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Figure 1. Schematic setting of the model, color coded with
a water color, ground color, and flow color, where by “flow” we
mean any source of variation of the water quantity, including the
boundary fluxes (indicated with arrows, but in fact scalar quant-
ities).

two-dimensional incompressible Navier–Stokes equation

div [ρ0u
ᵀ] = 0,

∂t[ρ0u] + div [ρ0u⊗ u]− divσ [u]− ρ0F = 0
(2.1.6)

where u = (u, v) is the velocity field, ρ0 is the density of the fluid (taken to be
constant), F = (0,− g) is the external force of gravity with constant g, and σ [u]
is the total stress tensor whose matrix given by

σ [u] :=

[
−p+ 2µ∂xu µ (∂zu+ ∂xv)
µ (∂zu+ ∂xv) −p+ 2µ∂zv

]
(2.1.7)

where p is the pressure and µ > 0 the dynamic viscosity. The (algebraic) tensor
product of two vectors a⊗b is defined as abᵀ (all vectors are displayed as columns)
and the div of a covector/tensor is taken as the row-wise divergence of the associated
matrix; in coordinates this means

[divα]i =
∑
j=x,z

∂jα
j
i for i = x, z. (2.1.8)

To work with the wet region, we introduce its indicator function

Φ(t, x, z) := 1Ω(t)(x, z) = 1[Z(x)6z6H(t,x)] for all t, x, z ∈ R. (2.1.9)

with the Iverson notation

1[P ] :=

{
1 if P is true,

0 if P is false.
(2.1.10)

The function Φ is advected by the flow so its material derivative, with respect to the
flow u, must therefore be zero. Moreover, thanks to the incompressibility condition,
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Φ satisfies the following indicator transport equation

∂tΦ + ∂x[Φu] + ∂z[Φv] = 0 on Ω. (2.1.11)

2.2. The wet boundary. Crucial to our model derivation is the particular situ-
ation at the wet boundary, where the effect of infiltration plays a central role. The
wet boundary is the set of points (t, x, Z(x)), for t > 0 and 0 < x < L and for
which H(t, x)−Z(x) > 0. Since the topography is assumed to be rough it produces
friction, and due to its porosity it may absorb water from the bulk by infiltration
or inject into the bulk through recharge.
Given a set G ∈ R2 and a point x ∈ ∂G, we denote by tG(x) the unique normalized
tangential vector and by nG(x) its outward boundary normal (see Fig. 1 for G =
Ω). We take friction into account by considering the following Navier boundary
condition on the bottom B := {(t, x, Z(x)) : t > 0 and 0 < x < L}:

(σ [u] nΩ) · tΩ = −ρ0

(
k(u) + f̄I

)
u · tΩ (2.2.1)

whilst the recharge-infiltration mechanism is modelled with the following permeable
boundary condition:

u(t, x, z) · nΩ(x, z) = I(t, x) on B, (2.2.2)

The scalar k(u), which models a general kinematic friction law, is defined by

k(ξ) := (Clam + Ctur |ξ|), for all ξ ∈ R2 and some Clam, Ctur > 0. (2.2.3)

The friction coefficients Clam and Ctur correspond, respectively, to the laminar and
turbulent friction factors [Wylie and Streeter, 1978, Streeter et al., 1998, Gerbeau
and Perthame, 2001, Levermore and Sammartino, 2001, Marche, 2007].
Furthermore, we consider the following infiltration friction law

f̄I := αmax(0,−I) (2.2.4)

which models the friction caused by the water’s recharging through the ground with
average microscopic velocity-rate zero in the horizontal direction; for simplicity
we assume a piecewise linear function of I with coefficient α accounting for the
magnitude of the frictional effect. The infiltration function I models the amount
of water that leaves (I > 0) or enters (I < 0) the flow per elementary boundary
element. Notice that, although I should in principle be thought as a function of h,
u, and possibly their derivatives, particularly σ[u], as in the recognised Beavers–
Joseph–Saffman model described, for instance, by Beavers and Joseph [1967], Jäger
and Mikelić [2000], Saffman [1971], Badea et al. [2010], we ignore this in this paper
and consider the function I as a given function of space-time. We also note that the
recharge-induced friction f̄I is active only when water is entering the flow (I < 0);
it is thus zero when water infiltrates the ground (I > 0).
We define Ω’s tangential and outward unit normal vectors on B by

tΩ(x, Z(x)) =
(−1,−∂xZ(x))√

1 + |∂xZ(x)|2
and nΩ(x, Z(x)) =

(∂xZ(x),−1)√
1 + |∂xZ(x)|2

(2.2.5)

respectively, following the convention that the outward normal is the tangential
vector rotated by π/2 counterclockwise. It thus follows that (2.2.1) and (2.2.2) on
B can be rewritten, respectively, as

µ (∂xv + ∂zu)
(
1− |∂xZ|2

)
− 2µ (∂xu− ∂zv) ∂xZ(

1 + |∂xZ|2
)1/2

= ρ0

(
k(u, v) + f̄I

)
(u+ v∂xZ)

(2.2.6)
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and

v − u∂xZ(x) + I

√
1 + |∂xZ|2 = 0. (2.2.7)

2.3. The free boundary. On the free boundary, i.e z = H(t, x), we neglect all
other meteorological phenomena except for precipitation in the form of additional
water through direct rainfall and runoff. Assuming a kinematic boundary condition,
we set

u · nΩ =
∂tH −R√
1 + |∂xH|2

on F := {(t, x,H(t, x)) : t > 0 and 0 < x < L} (2.3.1)

where R(t, x) is the recharge rate due to rainfall. The unit tangential and normal
vectors tΩ and nΩ to the free surface can be explicitly computed in terms of H as

tΩ(x,H(t, x)) =
(1, ∂xH(t, x))√
1 + |∂xH(t, x)|2

and nΩ(x,H(t, x)) =
(−∂xH(t, x), 1)√
1 + |∂xH(t, x)|2

(2.3.2)
which leads to the following explicit form of the kinematic boundary condition:

∂tH + u∂xH − v = R on F . (2.3.3)

We also assume a stress condition on the free surface, given by

(σ [u] nΩ) · tΩ = −ρ0fRu · tΩ (2.3.4)

where fR = αR models the friction effect of the rain droplets on the free surface,
with α again representing the magnitude of this effect. Using the tangential and
normal vectors as above, this condition becomes

µ (∂xv + ∂zu)
(

1− |∂xH|2
)
− 2µ (∂xu− ∂zv) ∂xH√

1 + |∂xH|2
= −ρ0fR (u+ v∂xH) (2.3.5)

3. Shallow water equation with recharge via vertical averaging

We now proceed to write the Navier–Stokes equations with adapted boundary con-
ditions in non-dimensional form. Next, under an assumption on the shallowness of
the ratio of the water height to the horizontal domain (represented by small para-
meter ε), we formally make an asymptotic expansion of the Navier–Stokes system
to the hydrostatic approximation at first order. Finally, we derive the Saint-Venant
system through an integration on the water height. Our development follows an
approach established by Gerbeau and Perthame [2001], also found in Ersoy [2015].

3.1. Dimensionless Navier–Stokes equations. To derive the shallow water
model, we assume that the water height is small with respect to the horizontal
length of the domain and that vertical variations in velocity are small compared to
the horizontal ones. This is achieved by postulating a small parameter ratio

ε :=
D

L
=
V

U
� 1 (3.1.1)

where D,L, V , and U are the scales of, respectively, water height, domain length,
vertical fluid velocity, and horizontal fluid velocity. As a consequence the time scale
T is such that

T =
L

U
=
D

V
. (3.1.2)

We also choose the pressure scale to be

P := ρ0U
2. (3.1.3)
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The rationale for the choice (3.1.3) is that we are focusing on the effect of the
horizontal forces as mass per horizontal acceleration which has a force scale of

F := (DL2−1ρ0)(UT−1), (3.1.4)

and these forces are applied to vertical boundary scale to give the pressure scale

F
(
DL2−2

)−1
= DLρ0UT

−1D−1 = ρ0ULT
−1 = ρ0U

2. (3.1.5)

It is convenient to define L, U , and thus T , as finite constants with respect to
ε → 0, while D = εL and V = εU . This allows us to introduce the dimensionless
quantities of time t̃, space (x̃, z̃), pressure p̃ and velocity field (ũ, ṽ) via the following
scaling relations

t̃ :=
t

T
, p̃(t̃, x̃, z̃) :=

p(t, x, z)

P

x̃ :=
x

L
, ũ(t̃, x̃, z̃) :=

u(t, x, z)

U
,

z̃ :=
z

D
=

z

εL
ṽ(t̃, x̃, z̃) :=

v(t, x, z)

V
=
v(t, x, z)

εU
.

(3.1.6)

We also rescale the laminar and turbulent friction factors, and the infiltration and
rainfall rates:

Clam,0 :=
Clam

V
=
Clam

εU
, Ctur,0 :=

Ctur

ε
, (3.1.7)

Ĩ(t̃, x̃) :=
I(t, x)

V
, R̃(t̃, x̃) :=

R(t, x)

V
. (3.1.8)

Note that in the assumed asymptotic setting, Clam,0 and Ctur,0 are constants with
respect to ε and this implies that Clam and Ctur vanish linearly with ε→ 0. Finally,
we define the following non-dimensional numbers:

Froude’s number, Fro := U/
√

gD,
Reynolds’s number with respect to µ, Rey := ρ0UL/µ.

(3.1.9)

and consider the following asymptotic setting

Rey−1 = εµ0, (3.1.10)

where µ0 is the viscosity.
Using these dimensionless variables in the Navier–Stokes equations (2.1.6) and
(2.1.7), and reordering the terms with respect to powers of ε, the dimensionless
incompressible Navier–Stokes system reads as follows:1

div ũ = 0 (3.1.11)

∂t̃ũ+ ∂x̃
[
ũ2
]

+ ∂z̃ [ũṽ] + ∂x̃[p̃] = ∂z̃

[µ0

ε
∂z̃ũ
]

+ %3.1.14,ε, ũ (3.1.12)

∂z̃ p̃ = − 1

Fro2 + %3.1.15,ε, ũ (3.1.13)

where

%3.1.14,ε, ũ :=
2∂x̃x̃[ũ] + ∂z̃x̃[ṽ]

Rey
(3.1.14)

and

%3.1.15,ε, ũ :=
∂x̃z̃ũ+ ε2∂x̃x̃ṽ + 2∂z̃z̃ ṽ

Rey
− ε2

(
∂t̃ṽ + ∂x̃ [ũṽ] + ∂z̃

[
ṽ2
])
, (3.1.15)

1We bind all the “tilde” variables together, i.e., ũ is a function of t̃, x̃, z̃. Hence variableless
operators change accordingly, e.g., div ũ means div(x̃,z̃)(ũ, ṽ) when divu means div(x,z)(u, v).
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From the asymptotic setting (3.1.10), and assuming ũ has bounded second deriv-
atives, definitions (3.1.14) and (3.1.15) formally lead to

%3.1.14,ε, ũ, %3.1.15,ε, ũ = O(ε). (3.1.16)

On the wet boundary B, considering, along with the scaling relations (3.1.6),

DZ̃(x̃) = Z(x) (3.1.17)

the dimensionless Navier boundary condition (2.2.6) implies[
∂z̃ũ

εRey

]
B

= ε
(
Clam,0ũ+ Ctur,0ũ|ũ|+ f̄I ũ

) √1 + ε2(∂x̃Z̃)2

1− ε2(∂x̃Z̃)2

+ ε2
(
εClam,0ṽ + εCtur,0ṽ|ṽ|+ f̄I ṽ

)
∂x̃Z̃

√
1 + ε2(∂x̃Z̃)2

1− ε2(∂x̃Z̃)2

− ε

Rey

∂x̃ṽ + 2∂x̃Z̃(∂zv − ∂x̃ũ)

1− ε2(∂x̃Z̃)2

= ε
(
Clam,0ũ+ Ctur,0ũ|ũ|+ f̄I ũ

)
+ O(ε/Rey) + O(ε2)

= ε
(
k0(ũ) + f̄I

)
ũ+ O(ε2)

(3.1.18)

after noting that Rey = O(ε−1) and introducing the asymptotic friction laws

k0(ξ) := Clam,0 + Ctur,0|ξ| for ξ ∈ R

f̄I := αmax(0,−Ĩ) for α ∈ R.
(3.1.19)

on the wet boundary. The permeable boundary condition (2.2.7) reads

ṽ = ũ∂xZ − I
√

1 + ε2(∂xZ)2 = ũ∂xZ − I + O(ε2). (3.1.20)

On the free boundary F , the dimensionless free surface boundary condition (2.3.5)
becomes [

∂z̃ũ

εRey

]
F

= −εfRũ+ O(ε2), (3.1.21)

with free surface asymptotic friction law

fR = αR̃ for α ∈ R. (3.1.22)

Finally, the kinematic boundary condition (2.3.3) is unchanged.

3.2. First order approximation of the dimensionless Navier–Stokes equa-
tions. Dropping all terms of O(ε) and above in equations (3.1.11)-(3.1.21), we
deduce the hydrostatic approximation of the dimensionless Navier–Stokes system

∂xuε + ∂zvε = 0 (3.2.1)

∂tuε + ∂x
[
uε

2
]

+ ∂z[uεvε] + ∂xpε = ∂z

[µ0

ε
∂zuε

]
(3.2.2)

∂zpε = − 1

Fro2 (3.2.3)

with the following boundary conditions:[µ0

ε
∂zuε

]
(t,x,Z(x))

=
[
k0(uε)uε + f̄Iuε

]
(t,x,Z(x))

,

[vε](t,x,Z(x)) = [uε](t,x,Z(x)) ∂xZ(x)− I(t, x)
(3.2.4)

and[µ0

ε
∂zuε

]
z=H(t,x)

= − [fRuε]z=H(x) , [∂tH + uε∂xH − vε]z=H(t,x) = R. (3.2.5)

in view of equations (3.1.18), (3.1.20), (3.1.21), and (2.3.3), respectively.
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Vertically integrating both members of equation (3.2.3) over [z,H(t, x)], we obtain
the hydrostatic pressure

pε(t, x,H)− pε(t, x, z) = − 1

Fro2 (H(t, x)− z). (3.2.6)

Assuming that the pressure exerted by the rain on the free surface pε(t, x,H) = pc
for some constant pc ∈ R, this becomes

pε(t, x, z) =
1

Fro2 (H(t, x)− z) + pc. (3.2.7)

Moreover, identifying terms at order
1

ε
in (3.2.2), (3.2.4) and (3.2.5), we obtain the

motion by slices decomposition

uε(t, x, z) = u0(t, x) + O(ε) (3.2.8)

for some function u0 = u0(t, x), as a consequence of

∂z [µ0∂zuε] = O(ε), for z ∈ (Z(x), H(t, x)) (3.2.9)

with

[µ0∂zuε]|z=Z(x) = O(ε) and [µ0∂zuε]|z=H(t,x) = O(ε). (3.2.10)

Noting 〈uε(t, x)〉 as the mean speed of the fluid over the section [Z(x), H(t, x)],

〈uε(t, x)〉 =
1

h(t, x)

∫ H(t,x)

Z(x)

uε(t, x, z) d z, (3.2.11)

we are able to use the following approximations and drop the first and higher order
terms in ε:

uε(t, x, z) = 〈uε(t, x)〉+ O(ε) and
〈
uε(t, x)

2
〉

= 〈uε(t, x)〉2 + O(ε). (3.2.12)

3.3. The Saint-Venant system with recharge. Keeping in mind (3.2.12) and
integrating the indicator transport equation (2.1.11) for z ∈ [Z(x), H(t, x)], we get

0 =

∫ H(t,x)

Z(x)

∂tΦ(t, x, z) + ∂x [Φuε] + ∂z [Φvε] d z

= ∂th+ ∂xq − [∂tH + uε∂xH − vε]z=H(t,x)] + [uε∂xZ − vε]z=Z(x)

(3.3.1)

where q is the discharge defined by

q(t, x) := 〈uε(t, x)〉h(t, x). (3.3.2)

In view of the penetration condition (3.2.4) and the kinematic boundary condition
(3.2.5), we deduce the following equation:

∂th+ ∂xq = S (3.3.3)

where the source term

S := R− I (3.3.4)

measures the gain or loss of water through the rainfall and infiltration rates.
Keeping equations (3.2.7), (3.2.8), and (3.2.12) in mind and thanks to the penet-
ration condition (3.2.4) and the kinematic boundary condition (3.2.5), integrating
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the left hand side of (3.2.2) for z ∈ [Z(x), H(t, x)], we get∫ H(t,x)

Z(x)

LHS (3.2.2) d z = ∂tq + ∂x

[
q2

h
+

h2

2 Fro2

]
+

h

Fro2 ∂xZ

− [(∂tH + uε∂xH − vε)uε](t,x,H(t,x))

+ [(uε∂xZ − vε)uε](t,x,Z(x))

= ∂tq + ∂x

[
q2

h
+

h2

2 Fro2

]
+

h

Fro2 ∂xZ

−R [uε](t,x,H(t,x)) + I [uε](t,x,Z(x))

= ∂tq + ∂x

[
q2

h
+

h2

2 Fro2

]
+

h

Fro2 ∂xZ − S
q

h
.

(3.3.5)

Now, integrating the right hand side of (3.2.2) for z ∈ [Z(x), H(t, x)] using the
wet boundary condition (3.2.4) and the free surface boundary condition (3.2.5), we
obtain:∫ H(t,x)

Z(x)

RHS (3.2.2) d z =
[µ0

ε
∂zuε

]
z=H(t,x)

−
[µ0

ε
∂zuε

]
z=Z(x)

= −
(
fR + f̄I + k0

( q
h

)) q
h

(3.3.6)

where the friction factors fR, f̄I , and k0 are defined by formulas (3.1.22) and
(3.1.19), respectively.
Finally, multiplying both sides of each of (3.3.3), (3.3.5), and (3.3.6) by ρ0U

2/D ,
we obtain the following Saint-Venant system with recharge:

∂th+ ∂xq = S := R− I,

∂tq + ∂x

[
q2

h
+ g

h2

2

]
= − g h∂xZ + S

q

h
−
(
fR + f̄I + k0

( q
h

)) q
h

where q = hu.

(3.3.7)

3.4. Theorem (hyperbolicity, stability and entropy relation for the model).
Let (h, u) and q := hu satisfy the Saint-Venant system with recharge (1.3) for a

given topography Z and recall the functions E = Ê(h, u, Z) and ψ = ψ̂(h, u, Z)
defined by (1.4) and (1.6).

(a) System (1.3) is strictly hyperbolic on the set {h > 0}.
(b) For smooth (h, u), in the region where h > 0, the mean velocity u := q/h

satisfies

∂tu+ ∂xψ = −
(
fR + f̄I + k0(u)

)
u

h
(3.4.1)

where ψ := u2
/2 + g h+ gZ is the total head.

(c) For smooth (h, u), the still water steady state reads

u = S = 0 and h+ Z = h0 for some constant h0 > 0. (3.4.2)

(d) The pair of functions (E,E + g h2/2) with E := hu2
/2 + g h2

/2 + g hZ forms
a mathematical entropy/entropy–flux pair for system (1.3), in that they satisfy the
following entropy relation for smooth (h, u):

∂tE + ∂x

[(
E +

g h2

2

)
u

]
= Sψ −

(
fR + f̄I + k0(u)

)
u2. (3.4.3)

Proof. We consider each statement in turn.
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(a) The eigenvalues of the convection matrix D, the Jacobian matrix of the flux,
are

λ1(h, u) = u−
√

g h,

λ2(h, u) = u+
√

g h,
(3.4.4)

so both are real and distinct for h > 0. Therefore, system (1.3) is strictly hyperbolic
on the set {h > 0}.
(b) Rewriting the conservation of momentum (second) equation in system (1.3) in
terms of the unknowns (h, u), with u = q/h, as

∂t [hu] + ∂x

[
hu2 + g

h2

2

]
= − g h∂xZ + Su−

(
fR + f̄I + k0(u)

)
u. (3.4.5)

Applying the product rule to the first term of (3.4.5) and substituting in the con-
servation of mass equation, we get

h∂tu+ u (S − ∂x [hu]) + ∂x
[
hu2

]
+ ∂x

[
g
h2

2

]
= − g h∂xZ + Su−

(
fR + f̄I + k0(u)

)
u, (3.4.6)

from which we can cancel Su on both sides. Using the product rule again, we have
that

u∂x [hu] = ∂x
[
hu2

]
− hu∂xu (3.4.7)

which can be substituted into (3.4.6) to give

h∂tu− ∂x
[
hu2

]
+ hu∂xu+ ∂x

[
hu2

]
+ ∂x

[
g
h2

2

]
= − g h∂xZ −

(
fR + f̄I + k0(u)

)
u, (3.4.8)

enabling us to now cancel ∂x
[
hu2

]
. We note that

∂x

[
g
h2

2

]
= h∂x [g h] . (3.4.9)

Substituting this into (3.4.8) and dividing by h throughout, we get

∂tu+ u∂xu+ ∂x[g h] = − g ∂xZ −
(
fR + f̄I + k0(u)

)
u

h
. (3.4.10)

Making the further substitution

u∂xu = ∂x
[
u2
]
/2 (3.4.11)

and grouping derivatives of x, we have

∂tu+ ∂xψ(x, h, u) = −
(
fR + f̄I + k0(u)

)
u

h
(3.4.12)

where ψ(x, h, u) =
u2

2
+ g h+ gZ, as required.

(c) Setting u = 0 in equation (3.4.1), we have

∂xψ = ∂x [g h+ gZ] (3.4.13)

which is strictly constant, thereby yielding the lake-at-rest steady state.

(d) We begin by noting that (
E +

g h2

2

)
u = ψhu (3.4.14)
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and hence

∂tE + ∂x

[(
E +

g h2

2

)
u

]
= ∂tE + ∂x[ψhu]

= ∂tE + hu∂xψ + ψ∂x [hu] .

(3.4.15)

Rearranging (3.4.1) we have

hu∂xψ = −(fR + f̄I + k0 (u))u2 − hu∂tu, (3.4.16)

hence

RHS (3.4.15) = ∂tE −
(
fR + f̄I + k0(u)

)
u2 − (hu) ∂tu+ ψ∂x [hu] . (3.4.17)

Next we substitute

(hu) ∂tu = u∂t [hu]− u2∂th (3.4.18)

to give

RHS (3.4.15) = ∂tE−u∂t [hu] +u2∂th+ψ∂x [hu]−
(
fR + f̄I + k0(u)

)
u2. (3.4.19)

Recalling the definition of E in (1.4), we note that E = (ψ − g h/2)h, and hence

∂tE = ∂t

[(
ψ − g h

2

)
h

]
= h∂t

[
ψ − g h

2

]
+

(
ψ − g h

2

)
∂th

= h∂t

[
ψ − g h

2

]
+ ψ∂th−

g h

2
∂th.

(3.4.20)

Substituting (3.4.20) into (3.4.19), we have

RHS (3.4.15) = h∂t

[
ψ − g h

2

]
− g h

2
∂th− u∂t [hu] + u2∂th

+ ψ (∂th+ ∂x [hu])−
(
fR + f̄I + k0(u)

)
u2.︸ ︷︷ ︸

=Sψ−(fR+f̄I+k0(u))u2

(3.4.21)

To conclude the proof we need to show that the terms in the first line of RHS (??)3.4.21)
all cancel. Expanding the first derivative, we have

h∂tψ − h∂t
[

g h

2

]
− g h

2
∂th− u∂t [hu] + u2∂th

= h∂tψ − h∂t [g h]− u∂t [hu] + u2∂th.

(3.4.22)

The last two terms can be rewritten as

u2∂th = ∂t
[
hu2

]
− h∂t

[
u2
]

= ∂t
[
hu2

]
− 2(hu)∂tu

u∂t [hu] = ∂t
[
hu2

]
− (hu)∂tu.

(3.4.23)

Substituting and cancelling, (3.4.22) becomes

h∂tψ − h∂t [g h]− (hu)∂tu. (3.4.24)

Using the definition of ψ, we have

h∂t
[
u2/2 + g h+ gZ

]
− h∂t [g h]− (hu)∂tu

= h∂t
[
u2/2

]︸ ︷︷ ︸
=(hu)∂tu

+h∂t [g h] + h∂t [gZ]︸ ︷︷ ︸
=0

−h∂t [g h]− (hu)∂tu

= (hu)∂tu+ h∂t [g h]− h∂t [g h]− (hu)∂tu

= 0.

(3.4.25)
Thus the result is proven.

�
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3.5. Corollary (energy growth and decay).

(a) Let us assume that S < 0, i.e., that there is a net loss of water from the system.
Then model (1.3) has consistent energy decay; that is,

∂tE + ∂x

[(
E +

g h2

2

)
u
]
6 0. (3.5.1)

(b) Let us assume that S > 0, i.e. there is a net gain of water into the system.
Then:

∂tE + ∂x

[(
E +

g h2

2

)
u

]
6 0 if α >

Sψ − k0(u)u2

Ru2 −min(0, I)u2

> 0 if α 6
Sψ − k0(u)u2

Ru2 −min(0, I)u2

(3.5.2)

that is, the sign of the entropy relation (and therefore whether we have energy
growth or decay) is dependent upon the choice of friction effect α.

3.6. Entropy relation for the existing model. We emphasise that Saint-Venant
model (1.3) generalises the Saint-Venant model (1.1), in which Sq/h and the addi-
tional friction terms in the conservation of momentum equation are neglected. In
particular, for model (1.1), properties (a) and (c) in Theorem 3.4 (hyperbolicity of
the system and existence of a steady state) still hold, but the entropy relation is
altered and the energy-consistency of the system becomes conditional not on the
assumed level of friction but on the flow velocity. Using the same notations for
E and ψ, one can prove that model (1.1) instead satisfies Theorem 3.4 with the
following modifications:

(b) For smooth solutions, the mean velocity u = q/h for system (1.1) satisfies:

∂tu+ ∂xψ(x, h, u) =
−Su− k0(u)u

h
. (3.6.1)

(d) System (1.1) satisfies the following “entropy relation” for smooth solutions:

∂tE + ∂x

[(
E +

g h2

2

)
u

]
= −S

(
u2

2
− g(h+ Z)

)
− k0(u)u2. (3.6.2)

3.7. Energy growth and decay for the existing model. As we noted above,
due to the altered entropy relation, the energy-consistency of model (1.1) is condi-
tional on the velocity of the flow, such that

S

(
∂tE + ∂x

[(
E +

g h2

2

)
u

])
> 0 ⇔ u2 6 2

(
g(h+ Z)− k0(u)u2

S

)
. (3.7.1)

This indicates that admissible weak solutions only satisfy the entropy inequality

when u2 6 2

(
g(h+ Z)− k0(u)u2

S

)
, and thus the model is only conditionally well-

posed. Thus, as demonstrated in the mathematical derivation, the term Sq/h
cannot be omitted.

4. The numerical model

Our aim is to design a numerical method which can suitably model the shallow
water system, extended to include rainfall and infiltration effects. For numerical
simulation of the standard shallow water system, a range of methods have been
developed, including finite difference methods, which are simpler and easier to im-
plement but at the cost of some accuracy, to the more complex finite volumes,
which, whilst being harder to implement, capture the original equations more ex-
actly [Kröner, 1997, LeVeque, 1992, 2002, Toro, 2009]. These methods compute the
flux between discretised grid cells through approximate Riemann solvers (e.g. Roe,
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Godunov, HLL), but a drawback of such an approach is that they do not provide
all the desirable properties that we would want from our scheme.

4.1. Well balanced schemes. For the standard shallow water equations, a desir-
able property is the preservation of equilibrium states (called lake at rest), given
by

h+ Z = constant and u = 0. (4.1.1)

Since our Saint-Venant system is no longer a conservation law but a balance law,
we have the possibility of water being added to or lost from the lake, and thus this
particular equilibrium only holds in the case S = 0, i.e. R = I. We adapt this,
therefore, and instead desire that our system preserves the filling the lake state:

∂th = R and u = 0; (4.1.2)

that is, the rate at which the height of water changes is equal to the rate at which
water is added through the rainfall term. Failing to do this would mean a change
in mass of water higher or lower than the rate at which it is added, thus violating
the balance of mass property of our system.
If we wish to maintain these properties, we cannot rely on the usual finite difference
or finite volume methods, and thus a well-balanced scheme is required. Such an
approach can be found by going back to a kinetic interpretation of the system, as
detailed in Perthame and Simeoni [2001], Ersoy [2015]. It is this kinetic reformula-
tion that we will use to derive a numerical method with the properties we wish to
have; we introduce a real function χ(ω), defined rigorously below, which we use to
turn our Saint-Venant system into a kinetic equation. These kinetic solvers can be
modified to preserve the filling-the-lake state, while at the same time maintaining
their simplicity and stability properties.
One of the direct benefits of using such a approach for the Saint-Venant system is the
ability of the kinetic solver to deal with dry soil cases (that is, when h = 0), which
will be of importance in ensuring our model continues to function if infiltration
causes the water level to fall closer to zero, which might otherwise cause some
complications.

4.2. Kinetic functions. We begin with an overview of the kinetic formulation
proposed by Perthame and Simeoni [2001] and further developed by Bourdarias
et al. [2014], Ersoy [2015]. We consider a kinetic averaging weight function χ : R→
R and a kinetic density function M satisfying

χ(ω) = χ(−ω) > 0,

∫
χ(ω) dω = 1,

∫
ω2χ(ω) dω = 1, (4.2.1)

M(t, x, ξ) :=
h(t, x)

b(t, x)
χ

(
ξ − u(t, x)

b(t, x)

)
where b(t, x) :=

√
g h(t, x)

2
. (4.2.2)

These functions originate in the kinetic theory where M(t, x, ξ) accounts for the
density of particles with speed ξ at the space-time point (t, x). As far as a numerical
method goes, the goal is for the derivation of the finite-volume scheme fluxes to be
based on M , through the following property which links the macroscopic variables
with the microscopic ones.

4.3. Proposition (macroscopic-microscopic relations). Let the functions h, u
solve the shallow water system (1.3) and M as in (4.2.2). If h(t, x) > 0 at (t, x)
then the following macroscopic-microscopic relations hold∫

R

 1
ξ
ξ2

M(t, x, ξ) d ξ =

 h(t, x)
h(t, x)u(t, x)

h(t, x)u(t, x)2 + g h(t,x)2
/2

 . (4.3.1)
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For the right-hand side of the conservation of momentum equation in the Saint-
Venant system (1.3), we note that it can be rewritten as, [Bourdarias et al., 2011,
e.g.],

− g h∂xZ −
(
fR + f̄I + k0(u)

)
u+ Su = − g h

(
∂xZ +

(
fR + f̄I + k0(u)

)
u

g h

)
+ Su.

(4.3.2)
To rewrite in a divergence form, we introduce the nonlinear flux integral operator

Ŵ [h(t, ·), u(t, ·)](x) := Z(x) +

∫ x

0

[(
fR + f̄I + k0(u)

)
u

g h

]
(t, s) d s (4.3.3)

for each x ∈ (0, L) and system (1.3) becomes

∂th+ ∂x [hu] = S

∂t [hu] + ∂x

[
hu2 +

g h2

2

]
= − g h∂xŴ [h, u] + Su.

(4.3.4)

The kinetic approach allows to write the system into a single scalar equation with an
extra variable; more specifically, we set (0, T )× (0, L)×R 3 (t, x, ξ) 7→M(t, x, ξ) as
the solution of the following semilinear kinetic partial integro-differential equation

∂tM + ξ∂xM − g ∂xŴ

[
〈M〉0,

〈M〉1
〈M〉0

]
∂ξM +

SM

〈M〉0
= Q (4.3.5)

where we are using the following moment notation for m = 0, 1, . . .

〈M〉m :=

∫
R
ξmM(·, ·, ξ) d ξ. (4.3.6)

The right-hand side in (4.3.5), (t, x, ξ) 7→ Q(t, x, ξ), plays the mathematical role
of a collision term, similar, for instance, to the ones encountered in Boltzmann’s
equation. In view of Proposition 4.3 if (h, u) satisfying (1.3) is given, the pair
(M,Q) defined by (4.2.2) and (4.3.5) satisfy the collision 0-moment condition

〈Q〉m = 0 for m = 0, 1. (4.3.7)

Conversely, each pair of functions (M,Q) satisfying (4.3.5) and (4.3.7) provides a
pair (h, u) satisfying (1.3) by taking

h := 〈M〉0 and hu := 〈M〉1. (4.3.8)

4.4. Remark (how is the kinetic formulation used). In general, it is easier
to find a numerical scheme to solve equation (4.3.5) for M that has the properties
we desire, such as entropy stability, than to solve the full shallow water system
for h and u. However, in finding M , we can calculate h and hu by virtue of the
macro-microscopic relations (proposition 4.3), leading to (h, u) satisfying (and thus
solving) (4.3.4). In fact, M needs never be calculated, nor approximated, explicitly,
but only the function

M̂(ζ, ϕ) :=
√
ζχ

(
ϕ√
ζ

)
whereby M(t, x, ξ) = M̂ (h(t, x), ξ − u(t, x)) , (4.4.1)

is used to build the fluxes appearing in a finite volume method as we shall explain
in §4.5.
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4.5. Discretisation and kinetic fluxes. The kinetic equation we have for our
Saint-Venant system differs from that considered by Perthame and Simeoni [2001]

by the additional S
M

〈M〉0
term. Through solving the kinetic equation for the stand-

ard shallow water system, i.e. equation (4.3.5) with S = 0, they developed the
following kinetic scheme, itself based on the general method for developing finite
volume schemes:

Un+1
i = Uni −

∆t

∆x

(
Fni+1/2 − F

n
i−1/2

)
(4.5.1)

where

Uni =

[
hni
hni u

n
i

]
. (4.5.2)

The definition of the right and left numerical fluxes for cell ci at discrete time
n, Fni±1/2, will be described below in §4.6. We follow the same process for our
Saint-Venant system, which naturally becomes

Un+1
i = Uni −

∆t

∆x

(
Fni+1/2 − F

n
i−1/2

)
+ ∆t

[
Sni
Sni u

n
i

]
(4.5.3)

where Sni is a discretisation of the combined rain and infiltration terms. For the
choice of time-step, ∆t, we use the following condition:

∆t = CFL
∆x

max
(
|uni |+

√
2 g hni

) (4.5.4)

where CFL is the Courant stability constant which lies in (0, 1] [Perthame and
Simeoni, 2001, e.g.].

4.6. Construction of the numerical fluxes. The construction of the numerical
fluxes Fni±1/2 is based on the Nemitskii-type operator associated with M̂ given

in (4.4.1). The details may be found in Perthame and Simeoni [2001] (see also
Bourdarias et al. [2014]), but we give a quick guideline here for completeness:

Fni± 1
2

:=

∫
R
ξ

[
1
ξ

]
M∓i±1/2(ξ) d ξ (4.6.1)

where the intermediate quantities M∓i±1/2(ξ) are realised as upwinded fluxes:

M−i+1/2 := Mn
i (ξ)1[ξ>0] +Mn

i+1/2(ξ)1[ξ<0]

M+
i−1/2 := Mn

i (ξ)1[ξ<0] +Mn
i−1/2(ξ)1[ξ>0]

(4.6.2)

with

Mn
i±1/2 := Mn

i (−ξ)1[
|ξ|262 g ∆Wn

i±1/2

]
+Mn

i±1

(
∓
√
|ξ|2 − 2 g ∆Wn

i±1/2

)
1[
|ξ|2>2 g ∆Wn

i±1/2

]. (4.6.3)

where we use the Iverson notation defined in (2.1.10).
The term ∆Wn

i±1/2 is the upwinded source term, and provides the jump condition
necessary for a particle in one cell to overcome the friction and topography to move
to an adjacent cell. Numerically, we calculate this term as:

∆Wn
i+1/2 = Wi+1(tn)−Wi(tn), and ∆Wn

i−1/2 = Wn
i−1 −Wn

i (4.6.4)

where for each given cell ci = [xi−1/2, xi+1/2] and t > 0

Wn
i = Ŵ [hn, un](xi), (4.6.5)
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where Ŵ is the operator defined by (4.3.3) and, for φ = h or u, φn is the cell-wise
constant functions with φn(x) = φni for x ∈ ci. The semidiscretised kinetic density,
Mn
i , is defined by

Mn
i (ξ) :=

√
2hn

i/gχ
((
ξ − uni

)/√
g hn

i/2
)
. (4.6.6)

The discretisation we use in our scheme will be based upon the Barrenblatt kinetic
weighting function

χ(ω) = 1/2[
2 g−ω2]

+ for ω ∈ R, (4.6.7)

where [X]+ stands for the positive part ofX [Perthame and Simeoni, 2001, eq.(2.13)].

5. Numerical tests

The kinetic scheme we use for our numerical method was implemented by extend-
ing the code of Besson and Lakkis [2013] to account for the additional source term
in (4.5.3), and we present here several simple numerical tests to demonstrate the
validity and application of our Saint-Venant system and the associated numerical
method. Since the infiltration and precipitation term have almost the same math-
ematical and numerical difficulties, we will consider only the rain term, and thus
take I ≡ 0. Numerical tests with a realistic infiltration term will be considered in
a forthcoming paper.

5.1. Influence of the friction effect α. We start by studying the influence of
the rain-induced friction effect fR = αR, which is included in Equations (1.3) and
omitted in Equations (1.1). As we saw in Corollary 3.5, for S > 0 (i.e. a net gain of
water into the system), the entropy relation depends upon the value of α as follows:

∂tE + ∂x

[(
E +

g h2

2

)
u

]
6 0 if α >

Sψ − k0(u)u2

Ru2

> 0 if α 6
Sψ − k0(u)u2

Ru2

(5.1.1)

Similarly, the presence of the term fR in the conservation of momentum equation
indicates a dependence on α for the change in momentum and velocity.
We consider a rainfall-runoff process on a river with zero topography (i.e. Z(·) =
0). We prescribe periodic boundary conditions and assume an initial height and
discharge of

h(0, x) = q(0, x) = 1 ∀x ∈ [0, 10] (5.1.2)

The rainfall intensity is applied uniformly on the river as a function of time:

R(t) =

{
R0 if t ∈ [0, T ]

0 otherwise
(5.1.3)

The parameters we use are as follows:

final time T = 1
rainfall intensity R0 = 1
Courant number CFL = 0.95
meshpoints N = 1000

(5.1.4)

Using these parameter values and assuming that the spatial derivative in both the
mass and momentum equation can be neglected, our extended shallow water system
simplifies to:

∂th = 1

∂tq = (1− α)
q

h
where q = hu

(5.1.5)
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We can solve explicitly for h, q, and u (which we note now only depend on t) as
follows:

h(t) = t+ 1

q(t) = (t+ 1)1−α

u(t) =
q(t)

h(t)
=

(t+ 1)1−α

t+ 1
= (t+ 1)−α

(5.1.6)

For the entropy relation, which simplifies to

∂tE =

(
1

2
− α

)
u2 + g h where E =

hu2

2
+

g h2

2
(5.1.7)

which comprises both the kinetic energy, K = hu
2/2, and the potential energy, g h

2/2.
In our case, we are only interested in the change in kinetic energy, and thus our
entropy relation becomes

∂tK =

(
1

2
− α

)
(t+ 1)−2α

{
6 0 if α > 1/2,

> 0 if α 6 1/2.
(5.1.8)

Using these equations, we can plot how the momentum, velocity, and change in
kinetic energy depend on the friction level α, giving us a total of seven separate
regimes:

(i) α < 0: the friction effect acts with the flow; momentum, velocity, and kinetic
energy all increase.

(ii) α = 0: momentum increases as velocity stays the same; kinetic energy in-
creases at a fixed rate.

(iii) 0 < α < 1/2 : momentum increases as velocity decreases; kinetic energy
increases but the rate slows over time.

(iv) α = 1/2: momentum increases as velocity decreases; kinetic energy does not
change.

(v) 1/2 < α < 1: momentum increases as velocity decreases; kinetic energy de-
creases.

(vi) α = 1: momentum is conserved as the friction from rain balances the increase
in height; velocity and kinetic energy both decrease.

(vii) α > 1: rain friction slows the flow faster than the increase in height; mo-
mentum, velocity, and kinetic energy all decrease.

It follows that the only physically reasonable cases are the last two, when α > 1.
Note that model

5.2. Comparison with real-world data. For our second test, we consider how
our numerical scheme compares with data taken from a real-world experiment. The
experiment in question concerns a slope with a constant (but non-zero) gradient,
an initial height h0 = 0, and initial discharge q0 = 0. Rain falls onto the slope
uniformly at a constant rate within a given time interval, and we measure the
discharge at the downstream edge of the slope.
The parameters of the experiment are as follows:

domain length L = 4 m
final time T = 250 s
rainfall intensity R0 = 50 mm h−1

Courant number CFL = 0.95
meshpoints N = 1000

(5.2.1)
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α q u ∆K

(i) α < 0

(ii) α = 0

(iii) 0 < α < 1/2

(iv) α = 1/2

(v) 1/2 < α < 1

(vi) α = 1

(vii) α > 1

Figure 2. Comparing the effect of the rain-induced friction level
α on the momentum, q, velocity, u, and kinetic energy, K, we note
the change in scale for the graphs showing the kinetic energy.
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4 m

0.2 m

Figure 3. Visualisation of the flume experiment.

Figure 4. Hydrograph for the uniform slope test (experimental
data is given in blue, simulated results in red).

The topography and rain function are given by:

Z(x) = 0.2− x

20
∀x ∈ [0, L]

R(t, x) =

{
R0 if (t, x) ∈ [5, 125]× [0, 3.95]

0 otherwise

(5.2.2)

The hydrograph for the experiment, together with the computed values, is provided
below. We note that both sets of results compare well. The simulated results depict
the three characteristic regions of the test: an initial phase in which the discharge
is increasing, a second phase where the discharge stabilises following a peak up to
the time at which the rain stops falling, and a third final phase where no rain is
falling and the discharge decreases gradually over time.

5.3. Single-level and three-level cascade. For our final test, we consider a
higher intensity rainfall-runoff process on a much shallower slope, and compare
how the water flows when the gradient of the slope is constant across the full
domain, and when the gradient decreases from the upstream to downstream end.
The experiment is run three times, with the rain falling for TR = 10, 20, and 30
seconds at a constant rate across the full domain, and with rain-induced friction
level α = 0, 1, 5 for the first case of a constant slope, and α = 0, 1 for the second
case of a decreasing slope. We measure the height of the flow across the entire
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4 m 4 m 4 m

Figure 5. Topography for the three-level cascade.

domain when the rainfall stops, and also measure the height and discharge at the
downstream up to the final time.
The parameters of the experiment are given as follows:

domain length L = 12 m
final time T = 40 s
rainfall intensity R0 = 0.001 mm h−1

Courant number CFL = 0.95
meshpoints N = 1000

(5.3.1)

The topography of the slope, in metres, in each case is given by:

Z1(x) = (12− x)0.005

Z2(x) =


(12− x)0.006− 0.012 if x ∈ [0, 4]

(12− x)0.005− 0.004 if x ∈ [4, 8]

(12− x)0.004 if x ∈ [8, 12]

(5.3.2)

The simulations show that the level of assumed friction α has a notable effect on the
motion of the flow, slowing down the flow and causing the graphs of the height and
momentum to be extended over time. This effect becomes, as one might expected,
more pronounced for longer rain times. From a flood modelling perspective, an
increase in rain-induced friction while result in longer lasting floods, as well as
greater devastation due to the increase in the height profile.
Comparing the results from the single- and three-level cascade, we note that the
overall profile is reasonably similar, but the three-level cascade induces multiple
waves to be formed over time. These waves become more pronounced as α increases,
though the length of rain time doe snot appear to have any significant impact. It
can also be noted that the cascade profile does not seem to have a major effect on
the time taken for the height profile to decrease to zero.

6. Conclusions

We propose one-dimensional Saint-Venant system of equations describing the flow
of an open channel with recharge from the two-dimensional Navier–Stokes equations
coupled with appropriate boundary conditions modelling recharge via rain, runoff
and tributaries on one side and groudwater infiltration or recharge. Our new model
has additional momentum source and friction terms in comparison with earlier
models, which become special cases of our model. These friction terms are obtained
naturally by the derivation process and their presence is essential to explain how
water entering the flow picks up the velocity of the flow itself while slowing the flow
as well. The existence of these additional terms leads to a model whose energetic
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Rain time TR h at TR h q

TR = 10

TR = 20

TR = 30

TR = 10

TR = 20

TR = 30

Figure 6. Comparing the effect of the rain-induced friction level
α on the height (h) and momentum (q) for both a single and triple-
level slope.

consistency depends solely on the level of assumed rain-induced friction, denoted
by α, and whenever this term is dropped, the model is conditionally consistent with
respect to the flow velocity. For certain regimes, the conditionally consistent model
may yield non-physical solutions. We have illustrated the effect these additional
terms have on the results in several numerical tests, as well as validating the model
against existing experimental data.
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Université d’Orléans, FR, 06 2012. URL http://arxiv.org/abs/1206.4986.
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