
HAL Id: hal-01347157
https://hal.science/hal-01347157

Submitted on 25 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How far is far enough? Towards an adaptive and ”
site-centric ” modelling integrating co-visibility

constraints for optimal land use
Valerio Signorelli, Thomas Leduc, Guillaume Chauvat

To cite this version:
Valerio Signorelli, Thomas Leduc, Guillaume Chauvat. How far is far enough? Towards an adap-
tive and ” site-centric ” modelling integrating co-visibility constraints for optimal land use. Spatial
Accuracy 2016, Jul 2016, Montpellier, France. pp.233-240. �hal-01347157�

https://hal.science/hal-01347157
https://hal.archives-ouvertes.fr


  

1 

How far is far enough? Towards an adaptive and “site-centric” modelling 

integrating co-visibility constraints for optimal land use 

Valerio Signorelli*1, Thomas Leduc1, Guillaume Chauvat2 

1 UMR AAU – CRENAU, Ecole Nationale Supérieure d’Architecture de Nantes, France 
2 Cittànova, Nantes, France 

*Corresponding author: valerio.signorelli@crenau.archi.fr 

 

In this article, we propose a renewed site-centric solution that allows us to characterize a 

specific region of interest by defining the extent of the surroundings that influence sunlight 

exposure. The proposed method is a mix of an adaptive refinement and a visual-based clipping 

technique. This method has been implemented in the SketchUp context and applied to three 

sites located next to the French historical thermal town of Aix-les-Bains. 

I   INTRODUCTION 

Urban planning policies aim at defining the conditions of human settlements. Coherence and 

convergence of public action rely on the spatial continuity of its field of application for 

common issues. That is why French planning regulations tend to follow a concerted process 

led on several municipalities. They operate through planning regulations which are the 

expression of a political answer to issues emerging from territorial analyses. These analyses 

reveal the complexity of the territory by describing the local implications of the relations 

between cultural, physical and anthropological phenomena. Terrain features, settlement 

patterns, vegetation and infrastructures do not only influence environmental parameters, such 

as the amount of solar energy potential and daylight availability, in existing and planned urban 

fabric, but they also define the way in which inhabitants perceive their environment. 

For this reason, urban planning practices should consider at the same time, and alongside urban 

regulations, perceptual, environmental and climate features in available and potential 

construction sites. Within this context solar exposure takes on great importance in terms of 

energy efficiency, quality of public and private spaces, and physical-perceptual enhancement 

of the local ecosystem. 

The availability of high resolution terrain and buildings models, the improvement in 

computation capability, and the development of 2.5D modelling simulation tools, based on 

image processing computation have provided, in the last decades, essential means for obtaining 

effective solar analysis from territorial to city scale (Prévot et al., 2011; Morello et al., 2010; 

Morello & Ratti, 2009; Floriani & Magillo, 2003; Tandy, 1967). However, simulations 

conducted on large and detailed raster grid models, the format commonly used by public 

agencies to deliver these basic data, are still costly operations, due to the amount of data 

needed, and tools based on image processing approaches do not permit yet an effective 

integration with vector-based solutions used in urban planning practices. 
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In large and complex topographic areas the influences of the various territorial features, even 

far from the actual position of the chosen sites, should be carefully considered. That is to say, 

by considering just the immediate surrounding of a site we can over- or under- estimate the 

solar contribution in terms of energy and sunlight. But which are the features to consider? 

Which is the level of detail they should provide? And how can we ensure an accurate 

simulation model able to provide reliable results in a reasonable amount of time? In other 

words, how far is far enough? 

The aim of this explorative research is to propose a site-centric simplification method, based 

on 3D visibility analysis, in order to obtain a vector-based terrain model easier to handle, faster 

to compute. The entire process is integrated, as a series of extensions, for a well-known CAAD 

system, Trimble SketchUp. Three case studies, illustrating different levels of topographic 

constraints, will be used. Potentialities and limitations of the method will be highlighted in the 

discussion and further investigation will be proposed. 

II   METHOD 

Pre-processing 

The spatial datasets are provided by the IGN1, a national French institute in charge of the 

management and updating of geodesic and leveling networks, aerial photographs, and 

geospatial data. More precisely the aforementioned datasets are part of the French Large Scale 

Reference system (RGE): Digital Elevation Model or DEM (RGE® ALTI 5 m) in raster 

format for the representation of the landform (supposedly free of vegetation, buildings, etc.), 

and 3D vector models of significant spatial features such as footprints of individual buildings, 

forest cover, etc. (BD TOPO® 3D). 

The needed pre-processing operations has been made using the Geospatial Data Abstraction 

Library GDAL/OGR (GDAL, 2016). Specifically the merging of the geospatial data, obtained 

through “gdal_merge.py” command line tool in the context of raster-based tiles or “ogr2ogr -

update -append” command line tool in the context of vector-based layers; the clipping of data 

sources to some specified bounding box by using “gdalwarp” in the context of raster-based 

tiles or “ogr2ogr -clipsrc” in the context of vector-based layers.  

To generate 3D vector contour files from the input raster DEM, the “gdal_contour.py” 

command line has been used and the resulting polylines have been simplified using the 

“ogr2ogr -simplify” tool. The simplified contour polylines are then reused to build the various 

Terrain Models presented hereafter. 

A two-step process: adaptive refinement and visual-based clipping techniques 

The objective, after the conversion of the raster-grid model in a vector-based model, is to 

refine the virtual model of the terrain with an acceptable trade-off between the amount of data, 

and thus computation time, and data accuracy. Several terrain configurations have been 

produced and compared. However, only three of them will be detailed in this presentation. 

                                                           
1 The Institut national de l’information géographique et forestière (National Institute of Geographic and 
Forestry Information, IGN), is a French public state establishment to produce and maintain geographical 
information for France. 
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The “reference” Terrain model (M1) has the same planimetric resolution (5 meters) for the 

whole region, as provided by the original IGN dataset. In this first model there is no difference 

between studied parcels and the surrounding landscape, and the entire complexity of the terrain 

is represented. A side effect of this model is that even the areas that do not influence the 

chosen sites are precisely modelled. The “mixed” Terrain model (M2), combines the high 

resolution model of the three selected sites, with the low resolution model of the rest of the 

whole region. The third model is the “local” Terrain model (M3), where just the selected site 

and their immediate surroundings are considered. The mixed Terrain model (M2) is therefore 

some sort of intermediary between two extreme solutions. On the one hand, the "local" Terrain 

model (M3) does not take into account far distances’ masks. On the other hand, the "reference" 

Terrain model (M1) is unnecessarily precise all over the wide region. 

The three models have been developed using the contour lines obtained during the 

preprocessing phase, and then imported as SHP file (through a tool developed by one of the 

authors) in SketchUp. Through the existing tool “Sandbox From Contours”, the contour lines 

have been converted into a Terrain Model (Triangulated Irregular Network or TIN). Lastly, the 

building footprints have been imported as SHP file, drape on the terrain surface and extruded 

using the elevation values given as attributes. 

The adaptive refinement of the Terrain models consists in the spatial union of two different 

sets of contours lines layers, with distinct spatial resolutions. Connections between this two 

datasets are automatically handled by the SketchUp “Sandbox from Contours” tool. The three 

images presented in Fig. 1 show a) the boundaries of the immediate surroundings of the 

studied site (the red polygon was obtained as a 300 m radius buffer) b) the spatial union of the 

two contours lines datasets, with different resolutions, and c) a 3D sketch of the result in 

SketchUp. 

 
Figure 1: The refinement technique used to adapt the resolution of the Terrain model. The contour lines 

outside the red polygon of the studied site, have been replaced by lower resolution contour lines. 

In order to further reduce the amount of data to be processed, a visibility-based clipping 

technique is used, considering that the hidden parts of landscape, from a given position, will 

not influence the studied area in terms of solar exposure. 

A 3-step method has been implemented in SketchUp. First of all, we placed, over the three 

selected areas, a point grid with a fixed step equal to the resolution of the terrain obtained by 

IGN. For each of the sampling nodes, a 3D viewshed is computed using our extension based 

on the native ray casting engine of SketchUp. Finally, the spatial union of all these viewsheds 

is assessed and, to avoid any interpolation effect in all concavities during the TIN building 

phase, the convex hull of the resulting spatial union is delineated (see Fig. 2). The convex hull 

is then reused to clip the coarse-grained contour lines, and therefore (potentially) divide by two 

the area of the region to be taken into account. 
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Figure 2: The visual-based clipping technique shows the amount of contour lines, and therefore of 

terrain, that will not be taken into account in the simulation phase. 

Post-processing 

The three terrain models developed (M1, M2, and M3) have been used in the solar simulation and 

the obtained outcomes compared. Two indicators have been considered in order to test the 

reliability of our simplification method: the beam (direct) solar irradiation values (Wh/m²) and the 

daylight duration (min.). Both indicators consider a standard clear sky model and do not take into 

account sky or model reflections. We decided to conduct the simulation on December, 21st as the 

day with the lowest sun angles of the year, thus lowest amount of irradiation and daylight. 

The measure of irradiation per unit area, depends obviously on the Terrain model itself. More 

precisely, it depends on its own direction towards the various sun positions, insofar as irradiation 

understood as the sum of instantaneous density of solar radiation incident on the surface over the 

given time period is the scalar product of the normal to the face by the sunlight direction). 

III   USE CASE 

The region of interest, of about 386.5 km² (a 20 km-width square), is located in the French 

Alps, on the shores of the wide Lac du Bourget. In its south part, it embeds a 8 km wide valley 

oriented north-south which spreads between two mountain ranges (Le Mont du Chat and Les 

Bauges) peaking at around 1.5 km over the sea level. In the northern part, on the contrary, the 

valley broadens and the surrounding ridges sink down (see Fig. 3). 
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Figure 3: The region of interest with the 3 studied sites (Ontex on the NW side, Pugny-Chatenod on the 

East side, and Tresserve close to the Lac du Bourget). 

This region covers a specific inter-communality (the Communauté d’Agglomération du Lac du 

Bourget: Grand Lac) consisting of 17 municipalities. Planning regulations mostly tend to 

concentrate urban development around the administrative center of municipalities. This aims to 

allow planning optimization, spaces preservation for natural and agricultural purposes. On this 

constrained territory, land pressure requires a global project which can be embodied by many 

strategic locations. We propose to evaluate the sun exposure on those strategic parcels, in the 

existing fabric or on its boundaries. 

In order to select relevant parcels, we assessed the expected impact of terrain on 

municipalities’ center by evaluating the highest aspect ratio (H/W) to the closest relevant 

ridges (see Table 1). 

 

Municipality Aspect ratio Municipality Aspect ratio 

Tresserve 0.865 Bourdeau 0.274 

Grésy-sur-Aix 0.579 Viviers-du-Lac 0.252 

Méry 0.445 Aix-les-Bains 0.228 

Drumettaz-Clarafond 0.433 Voglans 0.220 

Le Montcel 0.430 Saint-Offenge 0.208 

Mouxy 0.316 Brison-Saint-Innocent 0.184 

Pugny-Chatenod 0.305 Ontex 0.147 

Trévignin 0.295 La Chapelle-du-Mont-du-Chat 0.088 

Le Bourget-du-Lac 0.284   

Table 1. Characterization of the impact of closest ridges for each municipality center. 

Instead of La Chapelle-du-Mont-du-Chat, whose administrative center is constrained by the 

topography, we chose parcels in Ontex, on the slope of Le Mont du Chat (see Table 2, Fig. 4). 

We also chose locations on Tresserve’s hill and in hillside Pugny-Chatenod. Those different 

locations all embody development opportunities inside the existing urban fabric. 
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 Ontex site Pugny-Chatenod site Tresserve site 

Reference TIN M11 M12 M13 

Mixed TIN M21 M22 M23 

Local TIN M31 M32 M33 

Table 2. Various nomenclatures (models names) in use. 

 
Figure 4: Zoom in the three sites (from left to right: Ontex, Pugny-Chatenod, and Tresserve). The close 

horizon limits are represented by red circles. 

IV   DISCUSSION 

Predictably, values obtained from M1 are the lowest and indices’ values provided by M3 are 

the greatest (see Fig. 5). Indeed, a fine modeling of the mountainous Terrain model add new 

masks to the mock-up and therefore decreases the solar potential of the Terrain patches. 

 
Figure 5: Comparison of the two indicators (duration of sunlight exposure and irradiance, Dec. 21st) for 

the three sites. 
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The respective average elevations of the three sites vary from 310 m (Tresserve), to 604 m 

(Pugny-Chatenod), and 711 m (Ontex). The corresponding standard deviation in each site is 

included between 2 and 3.8 m (with a maximum value in the site of Tresserve). Height range 

between lowest and highest points within a 300 m buffer varies along the three sites. This 

range is 115 m (from 645 m to 760 m) high at Ontex, 125 m (from 555 m to 680 m) at Pugny-

Chatenod and 75 m (from 250 m to 325 m) at Tresserve. On that last site, the closest obstacles 

do not alter direct irradiance, since they are located in a northerly area. The Pugny-Chatenod 

site is located on a West-East slope, which alters early morning exposure (lower energy input). 

Eventually, the parcels chosen in Ontex are affected by southerly masks (see Fig. 6), that 

reduce mid-day exposure (higher energy input). 

 
Figure 6: The southern edges of the “cumulative viewshed” of the Ontex site (NW) are close from 

measurement locations (from 180 m to 670 m with a peak of about 1150 m high located just south at 

about 2.5 km). 

As one can notice, for the site located on the top of a small hill close to the lake (Tresserve), 

the coarse-grained model M2 provides simulations results that perfectly match those obtained 

using the reference Terrain model M1. When the Terrain model gets hillier in the immediate 

surroundings, simulation outcomes are not as clear-cut. Thus, in the specific case of Pugny-

Chatenod, where the site is located on a west-facing slope, the coarse-grained model M2 is 

accurate enough for the irradiation indicator (because it impacts mainly the early morning 

exposure with lower energy input). However, the mixed TIN M2 is obviously not precise 

enough to assess the precise daylight duration (there is indeed an average difference of about 

30 minutes with the reference values). At last, in the particular case of Ontex site, where the 

Terrain model is particularly hilly nearby the measurement locations, the mixed TIN M2 is 

undoubtedly inaccurate. 
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V   CONCLUSION 

In our explorative analysis we prove the potentialities and limits of a vector-based approach for 

analyzing large and complex terrains. Further investigation will be also conducted in order to 

improve the usability of the SketchUp extension developed in this research. Thus, every 

territory covered by a DEM could be analyzed, by dynamically changing the terrain site. 

Many parameters can also affect the modelling of a site. Closeness has to be defined according 

to the site location. We proposed a 300 m buffer but this parameter could be subject of a 

sensibility analysis. This analysis suggests that there should be an optimal obstacle region 

radius for sunlight access assessment, depending on each site. Generally speaking, adaptive 

modelling should be the aim of all site analysis. The accuracy of the skyline silhouette also 

alters the solar exposure. It relies on the distance between contour lines. A sensibility analysis 

should also be led on that parameter to determine how the level of detail of the terrain model 

affects the calculation of solar radiation indicators. 

We proposed that the solar exposure could be defined efficiently thanks to a site-centric 

modelling. The relevant obstacle region around the observing point depends on the urban 

fabric. This approach could be extended to other case studies, for a wide set of density range: 

from the open field to the high medieval urban fabric. 
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