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NON-ARCHIMEDEAN NORMAL FAMILIES

RITA RODRIGUEZ VAZQUEZ

ABsTRACT. We present several results on the compactness of the space
of morphisms between analytic spaces in the sense of Berkovich. We
show that under certain conditions on the source, every sequence of
analytic maps having an affinoid target has a subsequence that converges
pointwise to a continuous map. We also study the class of continuous
maps that arise in this way. Locally, they turn analytic after a certain
base change. Our results naturally lead to a definition of normal families.
We give some applications to the dynamics of an endomorphism f of the
projective space. We introduce two notions of Fatou set and generalize
to the non-Archimedan setting a theorem of Ueda stating that every
Fatou component is hyperbolically imbedded in the projective space.
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1. INTRODUCTION

The classical Montel’s theorem asserts that any family of holomorphic
functions on a domain in C™ with values in a ball is relatively compact for the
topology of the local uniform convergence [Mon07]. The proof uses Cauchy’s
estimates to obtain a uniform bound on the derivatives. By Ascoli-Arzela’s
theorem the family then is equicontinuous and the result follows.

This result has several applications in complex dynamics. It also plays an
important role in the study of Kobayashi hyperbolic complex analytic spaces.
For instance, it is closely related to Zalcman’s reparametrization lemma
Zal75], which is a key ingredient in the proof of Brody’s Lemma [Bro7§|,
characterizing compact Kobayashi hyperbolic complex analytic spaces in
terms of the non-existence of entire curves.

Date: October 25, 2017.
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The aim of this paper is to study the compactness properties of the space
of morphisms between analytic spaces defined over a non-Archimedean com-
plete field, in analogy to the classical Montel’s Theorem. We therefore fix a
non-Archimedean complete valued field & that is nontrivially valued.

An approach to this problem using equicontinuity has already been treated
in the literature. Hsia gave in [Hsi00] an equicontinuity criterion for families
of meromorphic functions on a disk. In [KS09], the Fatou set of a morphism
of the projective space is defined as the equicontinuity locus of the family of
iterates with respect to the chordal metric. However, this approach is limited
by the fact that one cannot apply Ascoli-Arzela’s theorem in this context.

We will work on analytic spaces as defined in [Ber90, Ber93]. The main
reason is that analytic spaces in the sense of Berkovich have good topological
properties: they are locally compact and locally pathwise connected, what
makes them a more adapted framework to arguments of analytic nature. The
analytic spaces we shall be mostly interested in are Berkovich analytifications
of projective varieties. Recall that the set of closed points of such a variety
forms a dense subset of its analytification with empty interior if k is not
trivially valued. We shall refer to these points as rigid points. The previously
mentioned equicontinuity results concern only the set of rigid points.

More recently, Favre, Kiwi and Trucco proved an analogue of Montel’s
theorem on the Berkovich analytic projective line Pi’an, see [FKT12|. They
show that when k is algebraically closed and has residue characteristic 0,
then every sequence of analytic maps from any open connected subset X of
]P’l,lf’a]n avoiding three points has a subsequence that is pointwise converging

to a continuous map X — Pi’an. They made extensive use of Berkovich’s

geometry and their strategy benefits from the tree structure of IP’,lf’an.

We explore the higher dimensional case, and consequently use deeper facts
from Berkovich theory. Of particular relevance for us is the theorem by
Poineau stating that compact analytic spaces are sequentially compact, see
[Poil3]. This result is non-trivial, since Berkovich spaces are not metrizable

in general. We show:

Theorem A. Let k be a non-Archimedean complete field that is nontrivially
valued. Let X be a good, reduced, o-compact, boundaryless k-analytic space.
LetY be a strictly k-affinoid space.

Then, every sequence of analytic maps fn, : X — Y admits a pointwise
converging subsequence whose limit is continuous.

The seemingly complicated hypothesis on the source space X are not such
in fact. We refer the reader to §2 for a detailed discussion on the techni-
cal assumptions on X. For the moment, let us indicate that two important
classes of k-analytic spaces satisfy these properties: analytifications of al-
gebraic varieties and connected components of the analytic interior of an
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affinoid space. The latter will be referred to as basic tubes. They have been
thoroughly studied by Bosch and Poineau, see [Bos77, [Poil4].

Remark that the boundaryless assumption is crucial, as problems arise
even in the affinoid case. Indeed, as pointed out in [FKT12l §4.2], consider
for instance the sequence of analytic maps from the closed unit disk D into
itself f,, : z — 22" For every n € N, the Gauss point is a fixed point for f,.
One can show that f, is pointwise converging, but its limit map is zero on
the whole open unit disk and hence not continuous.

In view of Theorem [A] we say that a family of analytic maps F from a
boundaryless k-analytic space X into a compact space Y is normal at a point
point x € X if there exists a neighbourhood V' 3 x such that every sequence
{fn} in F admits a subsequence f,; that is pointwise converging on V' to
some continuous map f:V — Y.

We now turn to the problem of describing the limits of pointwise converg-
ing analytic maps. As opposed to the complex setting, one cannot expect the
limit maps from Theorem [A]l to be analytic. Indeed, when k is algebraically
closed and non-trivially valued, any constant map f: X =Y, f=y €Y,
can be realized as the limit of constant analytic maps. However, f is analytic
if and only if y is rigid.

Inspite of not being analytic in general, the continuous limit maps obtained
in Theorem [Alare of a very particular kind: they turn analytic after a suitable
base change. In order to specify this phenomenon precisely, we rely again in a
crucial way on the results of Poineau. Let X be a k-analytic space. For every
complete extension K of k, we denote by 7g/;, : Xk — X the usual base
change morphism. Every k-point in X defines a K-point in X in a natural
manner. When the base field & is algebraically closed, Poineau [Poil3] shows
that this inclusion admits a unique continuous extension oy : X — Xk,
which by construction defines a section of 7 /.

Theorem B. Let k be a non-Archimedean algebraically closed complete field
that is nontrivially valued and X a good, reduced, boundaryless strictly k-
analytic space. Let' Y be a k-affinoid space. Let fr, : X — Y be a sequence
of analytic maps converging pointwise to a continuous map f.

Then, for any point x € X one can find an affinoid neighbourhood Z of
x, a complete extension K/k and a K-analytic map F : Zx — Yk such that

flz =7k o F ook
It would be interesting to find a K-analytic map £’ such that the stronger

condition 7y o F' = f o mg; holds, but our proof does not show this.

Let us explain the proof of Theorem [Blin the case where X is the open
r-dimensional polydisk D" and Y the closed s-dimensional polydisk D*. The
key idea is to view the set of all analytic maps from D" to D* as the set of
rigid points of an infinite dimensional polydisk Mor(D",D*). This procedure



4 RITA RODRIGUEZ VAZQUEZ

can be easily illustrated in the polynomial case. Observe that a polynomial
map sending D" into D* is given by finitely many coefficients in the base
field £ with norm at most 1, and so defines a rigid point in an appropriate
dimensional closed unit polydisk. This procedure can be done similarly for
general analytic maps. In this case, the coefficients define a rigid point in an
infinite dimensional polydisk denoted Mor (D", D*).

Now take a sequence f, : D" — D® of analytic maps, associated to a
sequence of rigid points {a,, } in Mor(D",D*). It can be showed that the fact
that f,, converges pointwise to some continuous map f amounts for «, to
converging to some point « in Mor(D",D*). Observe that « is not rigid in
general, but after a base change by H(«a), the complete residue field at «,
the point « can be lifted to a rigid point in Mor(]D)",]DS)H(a). This point
defines a H(«)-analytic map F : ]D);{(a) — D;—l(a) that satisfies the equality
I = Tk © F 003400y k- Observe that F' is not canonical, as it depends on
the choice of the rigid point in Mor(]D)T’,]I_))S)H(a) lying over a.

We go beyond Theorem [B] and show that to any point o in Mor(D", D?)
one can associate a continuous map from D" to D* in a continuous way, in
the sense that for any sequence of points a;, in Mor(D", D) converging to
a € Mor(D",D*), the corresponding sequence of continuous maps converges
everywhere pointwise to the continuous map associated to «. In Section [
we detail this correspondence.

This result suggests the following definition. We say that a continuous
map f between analytic spaces is weakly analytic if it is locally of the form
J = Tk o F ook for some complete extension K of k£ and some K-
analytic map F. In fact, weakly analytic maps can be characterized as being
locally the pointwise limit of analytic maps. In §6l we shall prove that weakly
analytic maps share many properties with analytic maps, such as an isolated
zero principle on curves.

We give applications of Theorem [Alto the dynamics of an endomorphism f
of the k-analytic projective space ]P’kN’an of degree at least 2. Kawaguchi and
Silverman associated a non-Archimedean Green function G to f in [KS07,
KS09|, generalizing the classical complex construction by Hubbard [Hub86|
and Fornaess and Sibony [FS95]. We attach to f two different notions of
Fatou sets. We define the normal Fatou set Fyomm(f) of f as the normality
locus of the family of the iterates {f™}. Next, we define the harmonic Fatou
set Fharm(f) as the set where the non-Archimedean Green function Gy of f
introduced by Kawaguchi-Silverman is strongly pluriharmonic in the sense
of [CL11].

In Proposition we show that the harmonic Fatou set of f can be
characterized in terms of a sort of equicontinuity property for the iterates
of f. Its proof follows its complex counterpart. It is now a consequence of
Theorem [Al that Flarm (f) is contained in Fyom(f). We conjecture that for
every endomorphism f of the projective space the two Fatou sets coincide.
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There are two main results on the geometry of the Fatou set of an endo-
morphism of the complex projective space of degree at least 2, see [Sib99|
for a complete survey. Every Fatou component is a Stein space [FS95] and
is hyperbolically imbedded in PY in the sense of Kobayashi [Ued94].

Here we shall focus our attention on the hyperbolicity properties of the
harmonic Fatou components in the non-Archimedean setting. To motivate
our next result, recall that a subspace 2 of a complex analytic space Y is
hyperbolically imbedded if the Kobayashi distance on €2 does not degenerate
towards its boundary [Kob98| [Lan87]. If Q is relatively compact in Y, then
Q is hyperbolically imbedded in Y if and only if the family Hol(D,2) of
holomorphic maps from the open unit disc D to 2 is relatively locally compact
in Hol(D,Y), see [Lan87), §1I, Theorem 1.2].

In our context, we prove:

Theorem C. Let f : PN:an — PNan pe an endomorphism of degree at least
2. Let Q be a connected component of the harmonic Fatou set Fyam(f) of
f, and let U be any connected open subset of PHa",

Then, every sequence of analytic maps g, : U — 0 admits a subsequence
gn; that is pointwise converging to a continuous map U — pN.an

Note that in the non-Archimedean setting checking the normality for ev-
ery open subset U of PL#" is stronger than just for the open unit disk, as
opposed to the complex case, see [Kob98, Theorem 5.1.5]. For instance, ev-
ery sequence of analytic maps f, : D — AL2%\ {0} admits a subsequence
converging to a continuous map, whereas this is not true if one replaces the
source by the punctured open unit disk.

It remains open whether in Theorem [C| one can take U to be any basic
tube.

We have the following Picard-type result:

Theorem D. Let Q be a connected component of the harmonic Fatou set
Fham (f) of an endomorphism f : PNan — PNan of degree d > 2. Then
every analytic map from AL\ {0} to Q is constant.

This paper is structured as follows. In Section 2 we review some basic facts
about Berkovich spaces and summarize several results on universal points
from [Poil3] that will be needed in the sequel. In section Bl we prove a version
of Theorem [A] for polynomial maps of uniformly bounded degree. In Section
[ we describe the structure of the topological space that parametrizes the
continuous maps that appear as pointwise limits of analytic maps between
polydisks. Section [5] comprises the proofs of Theorem [A] and Theorem [Bl
The properties continuous maps that are limits of analytic maps are studied
in §6l Finally, in Section §7 we give applications to dynamics of the previous
results and prove Theorem [C] and Theorem
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2. GENERAL FACTS ON ANALYTIC SPACES

Throughout this paper, k is a field endowed with a non-Archimedean
complete norm |.|]. We will always assume that k is nontrivially valued.
Except in §6.2] k will be algebraically closed.

We write |k*| = {|z| : x € k*} C Ry for its value group and k° = {z €
k :|z| < 1} for its ring of integers. The latter is a local ring with maximal
ideal k°° = {x € k : |z| < 1}. The residue field of k is k = k°/k°°.

The basic reference for this section is Berkovich’s original text [Ber90].
See also [Tem15| for a more recent survey.

2.1. Analytic spaces. Pick a positive integer N and an N-tuple of positive
real numbers r = (r1,--- ,7y). Denote by k{r='T} the set of power series
f=>,arT!, I = (i1, - ,in), with coefficients a; € k such that |as|r! — 0
as |I] := iy + -+ -+ iy tends to infinity. The norm ||>"; a;T| = maxy |as|r!
makes k{r~'T} into a Banach k-algebra. When r = (1,--- , 1), the previous
algebra is called the Tate algebra and we denote it by 7.

Let ¢ : B — A be a morphism of Banach k-algebras. The residue norm
on B/Kery is defined by |a| = inf,)—, |b], and we say that ¢ is admissible
if the residue norm is equivalent to the restriction to the image of ¢ of the
norm on A.

A Banach k-algebra A is called affinoid if there exists an admissible sur-
jective morphism of k-algebras k{r~1T} — A. If r; € |k*| for all i, then A
is said to be strictly affinoid.

For any k-affinoid algebra A, we denote by X = M(A) the set of all
multiplicative seminorms on A that are bounded by the norm |.|| on A.
Given f € A, its image under a seminorm x € M(A) is denoted by |f(z)| €
Ry. The set M(A) is called the analytic spectrum of A and is endowed
with the weakest topology such that all the functions of the form = — |f(z)|
with f € A are continuous. The resulting topological space X is nonempty,
compact Hausodorff [Ber90, Theorem 1.2.1] and naturally carries a sheaf of
analytic functions Ox such that Ox (X) = A, see [Ber90, §2.3]). The locally
ringed space (X, Ox) is called a k-affinoid space.

Given a point x € X = M(A), the fraction field of A/Ker(x) naturally
inherits from x a norm extending the one on k. Its completion is the complete
residue field at = and denoted by H(z). When H(z) is a finite extension of
k (or equivalently when H(x) = k, since k is supposed to be algebraically



NON-ARCHIMEDEAN NORMAL FAMILIES 7

closed), we say that x is rigid. The set X (k) of rigid points of X is dense in
X.

A character on A is a bounded homomorphism A — K, where K is any
complete extension of k. Two characters x1 : A — K7 and xs : A — K5 are
equivalent if there exists a character x : A — L and inclusions i : L — K3
and io : L — K9 such that i1 o y = x1 and i3 0 x = xo.

Composing the character A — K with the norm on K gives rise to a
seminorm on A that is bounded, and thus corresponds to a point = € M(A).
Equivalent characters give rise to the same point. Conversely, every point
x € M(A) induces a character x, : A — H(z) in a natural way. Any other
character A — K giving rise to x can be decomposed as A — H(x) — K.

The closed polydisk of dimension N and polyradius r = (ri,---,rn) €
(RF)Y is defined to be DN (r) := M(k{r~'T}). Whenr = (1,--- ,1) we just

write DV, and when N = 1 we denote it by D. The Gauss point Ty € DY is
the point associated to the norm

|(Z aITI)(xg)| := max |ag|.

General analytic spaces are ringed spaces (X, Ox ) obtained by gluing to-
gether affinoid spaces. Difficulties arise in the gluing construction as affinoid
spaces are compact, and we refer to [Ber90l [Ber93| for a precise definition.
Analytic spaces are locally compact and locally path-connected [Ber90), The-
orem 3.2.1]. Given an analytic space X, we denote by |X| its underlying
topological space.

The following topological result, due to Poineau, will be systematically
used throughout the paper:

Theorem 2.1 (|[Poil3|). Every k-analytic space X is a Fréchet-Urysohn
space. In particular, every compact subset of X is sequentially compact.

In the following, we will always deal with good analytic spaces, which is
formed by the subcategory of analytic spaces that are locally ringed spaces
modelled on affinoid spaces. In other words, any point in a good analytic
space admits a neighbourhood isomorphic to an affinoid space.

For any point x in a k-analytic space X, the stalk Ox ; is a local k-algebra
with maximal ideal m,. It inherits an absolute value extending the one on
k, and the completion of Ox ,/m, is again called the completed residue field
of x and denoted by H(z). In particular, when X is an affinoid space, this
definition coincides with the previous one.

The open polydisk of dimension N and polyradius r = (rq,...,rny) €
(RN is the set

DY (r) ={z e DY () : |Ti(z)| < ryi=1,...,N}.
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It can be naturally endowed with a structure of good analytic space by
writing it as the increasing union of N-dimensional polydisks ]D)év (p) whose
radii p = (p1,---, pn) € (RPN satisfy p; < r; foralli =1,...,N.

2.2. Analytic maps. A morphism of k-affinoid spaces M(A) — M(B) is
by definition one induced by a bounded morphism of Banach k-algebras
¢ : B — A. The fibre of ¢* : M(A) — M(B) over a point y € M(B)
is isomorphic to M(A®pH(y)), see §2.6] for the notion of complete tensor
product. Indeed, let y € M(B) and let x, : B — H(y) be the associated
character. By definition, a point x € M(A) is mapped to y if and only if the
composition B 5 A — H(x) factors through H(y), which is equivalent to
the character x, factorizing through the B-algebra morphism A&sH (y) —
H(z). Pick 2 € M(A®pH(y)) and let ARgH(y) — H(z) be the associated
character. The latter is equivalent to the data of morphisms H(y) — H(x)
and A — () such that the composition B 3 A — H(z) equals B —
H(y) — H(x). In other words, the image of x in M(A) is mapped to y by
®.

A morphism M(A) — M(B) is a closed immersion when ¢ is surjective
and admissible.

A surjective morphism ¢ : Ty — A is called distinguished if the quotient
norm [.|, induced by ¢ agrees with the supremum norm on A, see [BGR84,
§6.4.3]. We say that A is distinguished if such an epimorphism exists.

It can be shown that over an algebraically closed field k, every reduced
algebra (i.e. without non-trivial nilpotents) is distinguished [BGR84, The-
orem 6.4.3/1|. The key property of distinguished epimorphisms is that the

reduction A is isomorphic to the quotient Ty /ker ().
From the definition one obtains the following useful result:

Proposition 2.2. Let X be a k-affinoid space and let X — DV be a closed
immersion induced by a distinguished morphism of Banach algebras. Then,

every analytic map on X with values in a polydisk DM egtends to an analytic
map DV — DM

Proof. Let A be the underlying affinoid algebra of X. Pick an analytic map
f: X — DM, which by definition is given by elements fi,..., far € A with
| filsup < 1. Fix a distinguished epimorphism 75 — A. For l =1,..., M,
we may lift f; to an element ¢; in 7y having the same norm. The resulting
analytic map g = (g1,...,90) : DV — DM agrees with f on the affinoid
space X. O

Given any two k-analytic spaces X and Y, we let Morg(X,Y") be the set
of all analytic maps from X to Y.
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2.3. Analytification of algebraic varieties. To every algebraic variety
X over k one can associate a k-analytic space X" in a functorial way; see
[Ber90l §3.4] for a detailed construction.

In the case of an affine variety X = Spec(A), where A is a finitely gen-
erated k-algebra, then the set X?" consists of all the multiplicative semi-
norms on A whose restriction to k coincides with the norm on k. This set
is endowed with the weakest topology such that all the maps of the form
x € X* — |f(z)| with f € A are continuous.

Observe that any k-point z € X corresponds to a morphism of k-algebras
A — k and its composition with the norm on k defines a rigid point in X?2".
Since k is algebraically closed, one obtains in this way an identification of
the set of closed points in X with the set of rigid points in X?2",

Let X be a general algebraic variety and fix an affine open cover. The an-
alytification of a general algebraic variety X is obtained by glueing together
the analytification of its affine charts in natural way. Analytifications of al-
gebraic varieties are good analytic spaces, and closed points are in natural
bijection with rigid points as in the affine case.

2.4. Boundary and interior. Any k-analytic space X comes with natural
notions of boundary and interior. We shall restrict our attention to good
k-analytic spaces.

A point x in an affinoid space X lies in the interior of X if there exists a
closed immersion ¢ : X — D™ () for some polyradius r and some integer N
such that ¢(x) lies in the open polydisk DV (r).

If X is a good analytic space, a point x belongs to its interior if it admits
an affinoid neighbourhood U such that x belongs to the interior of U. We
let Int(X) be the open set consisting of all the interior points in X. Its
complement J(X) is called the boundary of X. It is a closed subset of X.

The analytification of any algebraic variety is boundaryless.

In the remaining of this section, we explain how to compute the interior
of a strictly k-affinoid space X = M(A). Recall that the spectral radius of
f € A s defined by

_ 1 n|l/n
p(f) = lim [[f*[77,

where || - || is the Banach norm on A. The supremum seminorm on A is
defined by |f|sup := sup{|f(z)| : z € M(A)} for f € A. The spectral radius
and the supremum seminorm agree [Ber90, Theorem 1.3.1].

When A is reduced, then p is a norm equivalent to || - ||. The set A° =
{f e A:p(f) <1} isasubring of Aand A = {f € A: p(f) < 1} an ideal.
The reduction of A is then defined as A := A°/.A°, and the reduction of X
is X = Spec(A).

Observe that Noether’s normalization Lemma [BGR84l Corollary 6.1.2/2]
implies that for any strictly k-affinoid algebra A, the reduction Aisa finitely
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generated k-algebra, and thus X is an affine variety over the residue field k.
The reduction of the closed polydisk ]D]kv is the affine space A]I%V .

The reduction map red : X — X is defined as follows. Every bounded
morphism of Banach k-algebras A — B induces a morphism between their
reductions A — B. In particular, from the character x, : A — H(x) associ-

P

ated to a point € X we obtain a k-algebra morphism Y, : A— H(z). We
set red(z) := Ker(Y,). This map is anticontinuous for the Zariski topology,
meaning that the inverse image of a closed set is an open set.

Lemma 2.3. Let X be a strictly k-affinoid space. Then,
Int(X) = {z € X : red(x) is a closed point}.

Proof. Let ¢ : X — DV be a closed immersion. The following diagram is
commutative by construction:

Let A be the underlying affinoid algebra of X and pick any x € X. If its
reduction = red(z) is a closed point then so is ¢(Z). The inverse image
of (&) is isomorphic to an open polydisk. Up to composing ¢ with an
automorphism of DV, we may assume that red™'($(#)) is isomorphic to
DY. The commutativity of the diagram implies that ¢(z) lies in DY,

Pick a point = € Int(X). By [Ber90, Proposition 2.5.2], the image of the
morphism of l;:—algebras Xz A = 7-l(x) induced by x, is integral over k.
This implies that Y,(A) ~ A/Ker(Y,) is a field. Thus, 7 is a closed point of
X. O

Proposition 2.4. Let X = M(A) andY = M(B) be k-affinoid spaces, and
let f: X —Y be a finite morphism. Then, Int(X) = f~}(Int(Y)).

This result is a consequence from [Ber90, Proposition 2.5.8] and [Ber90,
Corollary 2.5.13]. Here we give a proof in the strictly k-affinoid case.

Proof. We prove the result only in the strictly affinoid case. In order to adapt
this proof to the general one, one needs to use Temkin’s graded reduction of
affinoid algebras (|[Tem00l Tem04]).

The morphism f : X — Y induces the following commutative diagram:

x— 1 .y

rodl lred

Spec(A) 7, Spec(B)
Let  be a point in Int(X). By Lemma 2.3 its image f(z) belongs to Int(Y").
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Let now = € X be such that f(z) = y lies in Int(Y). By the previous
lemma, we have to show that red(x) is a closed point of X. Consider the
ring homomorphism ¢ : B— A inducing f . It induces a morphism ¢’ :
[S’V/ker(yy) — A/ker(X,), as the diagram above is commutative. Observe
that ¢ is integral, since it is finite ([BGR84, Theorem 6.3.5/1]), and thus ¢’
is also integral. As y € Int(Y'), by Lemma 23] the quotient g/ker(yy) is a
field. This implies that A/ ker(y,) is a field and thus that red(z) is a closed
point. O

2.5. Basic tubes. We introduce the following terminology.

Definition 2.5. A k-analytic space X is called a basic tube if there exists a
reduced equidimensional strictly k-affinoid space X and a closed point T in
its reduction such that X is isomorphic to red ™' (Z).

By convention, a basic tube is reduced.
Theorem 2.6. A basic tube is connected.

The fact that any basic tube over an algebraically closed field is connected
is a deep theorem due to [Bos77|, which was generalized to arbitrary base
fields in [Poil4].

Example 2.7. Letaq,--- ,a,, be type II points in P2 as defined in Berkovich
classification of points in P12 see [BerQ0, §1.4.4]. Then every connected
component of P\ {ay,--- ,a,} is a basic tube.

Proposition 2.8. A k-analytic space X is a basic tube if and only if it is
isomorphic to a connected component of the interior of some equidimensional
strictly k-affinoid space.

Remark 2.9. Fvery good reduced boundaryless k-analytic space has a basis
of open neighbourhooods that are basic tubes.

Proof. Let V' be any connected component of the interior of an equidimen-
sional strictly k-affinoid space X. By Lemma 2.3 red(V) is contained in the
set of closed points of the reduction of X. If red(V') contains at least two
distinct points, then V' can be written as a disjoint union of nonempty open
sets, contradicting the connectednes. Hence, red(V) is a singleton.

Let conversely X = red™!(Z) be a basic tube, where Z is a closed point
in the reduction of an equidimensional strictly k-affinoid space X. Clearly,
X is contained in some connected component V' of Int(f( ). The previous
argument shows that red(V) = {z}. O

Recall that a topological space is o-compact if it is the union of countably
many compact subspaces. For instance, open Berkovich polydisks or the
analytification of an algebraic variety are o-compact spaces. Observe that
there exist simple examples of k-analytic spaces which are not o-compact,
e.g. the closed unit disk of dimension N > 2 with the Gauss point removed
over a base field k with uncountable reduction k.
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PropOSItlon 2.10. For every basic tube X there exist a strictly k- aﬁﬁnozd
space X and a distinguished closed immersion into some closed polydisk X -
DN such that X is isomorphic to X NnDYV.

In particular, X is boundaryless and o-compact.

Proof. Let X = M(A) be an equidimensional reduced k-affinoid space and
let & be a closed point in its reduction such that red~!(%) is isomorphic to
X. Askis algebralcally closed and A is reduced, there exists a distinguished
closed immersion ¢ : X — ]D)N see [BGRR4, Theorem 6.4.3/1]. Hence, A is

isomorphic to k[T1,--- ,Tn]/ ker( ) by [BGR&4l Corollary 6.4.3/5].

The induced morphism Spec(A) — Aév is a closed immersion by [BGR84,
Proposition 6.4.3/3|, since ¢ is distinguished. We may assume that Z is
mapped to 0. We conclude that = is mapped to a point in red_l(O), which
is isomorphic to DV. O

2.6. Universal points and base changes. Let A and B be two Banach
k-algebras and denote by |.|4 and |.|z their respective Banach norms. On
the tensor product A ®j B we have the seminorm that associates to every
f € A®y B the quantity

|| = inf max{a;] 4 - [bi] 5,

where the infimum is taken over all the possible expressions of f of the form
f=>,ai®b; with a; € Aand b; € B. The seminorm ||.|| induces the tensor
norm on the quotient A ®; B/{||f|| = 0}, whose completion is a Banach
k-algebra satisfying a suitable natural universal property. This algebra is
called the complete tensor product of A and B and we denote it by A&;B,
see [BGR84) §2.1.7]).

Given a k-affinoid algebra A and a complete extension K of k, the K-
algebra A®, K is in fact K-affinoid. One defines the scalar extension of the
k-affinoid space X = M(A) by K as the K-affinoid space X := M(A®,K).
The natural morphism A — A®; K induces a base change morphism 7z Jk
Xx — X which is continuous and surjective. This construction can be done
similarly for general k-analytic spaces.

Recall the following definition from [Ber90, [Poil3]:

Definition 2.11. Let X be a k-analytic space. A point x in X is universal
if for every complete extension K of k the tensor norm on H(z)®iK is
multiplicative.

The key feature of universal points is that they can be canonically lifted
to any scalar extension. To explain this fact we may suppose that X is an
affinoid space with underlying algebra A. Pick any universal point z € X
and fix any complete extension K of k. The k-algebra morphism A —
H () corresponding to the point x induces a K-algebra morphism A® K —
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Since x is universal, the tensor norm on H(z)®;K is multiplicative, and
so the composition of AQyK — H(z)®,K with the tensor norm defines
a point in Xg. The point in X obtained by these means is denoted by
oK k().

Observe that if » € X is rigid, then so is o /,(x), and that o/ is a
section of 7y /3, on the set of universal points of X.

Theorem 2.12 (|[Poil3]). Let k be an algebraically closed complete field and
X a k-analytic space. Then, every point x € X is universal, and the map
oKk X — Xk is continuous.

We conclude this section by recalling the following construction.

Lemma 2.13. Let X be a k-analytic space and x a point in X. Then for
every complete extension K of H(x), the fibre W%}k(x) contains a rigid point.

Proof. Pick a point x € X. We may suppose K = H(x). Since the statement
is local at x, we may replace X by any affinoid domain of X containing
x. Denote by A the underlying k-affinoid algebra. Consider the character
Xz : A — H(x). The morphism A®,H(z) — H(x) sending f®a to xz(f)-a
is by definition a rigid point in Xy, lying over . O

We shall denote by 7(z) € Xy, the rigid point lying over # € X obtained
in the previous proof. This point 7(z) is not to be confused with o /().

3. POLYNOMIAL MAPS OF BOUNDED DEGREE

As a first step in proving Theorem [Al we deal with the case of sequences
of polynomial maps of bounded degree.

Throughout this section, we fix integers r,s,d > 0 and assume that the
base field k is algebraically closed.

The result we aim to show is the following:

Proposition 3.1. Let k be an algebraically closed non-Archimedean complete
field. Let fp : A"?" — A% be a sequence of polynomial maps of uniformly
bounded degree satisfying f,(D") C D*. Then, there exists a subsequence that
s converging pointwise to a continuous map f : AH?" — A5

3.1. Parametrization of polynomial maps of uniformly bounded de-
gree. In order to prove this theorem, we reinterpret polynomial maps be-
tween analytic affine spaces as rigid points in a closed polydisk.

Given a multi-index I = (i,--- ,i,), denote by |I| = max; i;.

Every polynomial map f : A™*" — A% of degree at most 6" where § € N*
satisfying f(D") C D? is of the form

f:(flv"'vfs): Zal,ITI7"'7ZaS,ITI 3

[]<é [11<é
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with |a; | < 1. Thus, the point

a=a(f) = ((ar1)<s - » (as,1)11<s) (3.1)

can be realized as rigid point in the (Berkovich) analytic space D*(0+1)

Additionally, to every not-necessarily rigid point a in D*O*D" we shall
associate a continuous map

Pa — PCC,S . Ar,an — As,an

as follows. Consider first the analytic map ® : DS@GTD" x gAran _y psan
given by the k-algebra morphism

KTy, ..., Ts] — k[T,.... T (e, in<s: - (as,0)in<st
T — Zal,ITI-

[11<é

Next, consider the projection my : Ds@+D" 5 Aman — DO+ The fi-
bre over the point a € D*O+D)" is isomorphic to A;_’;Zn) (cf. §2.2))). Re-

call from §2 that the point a € D*@+D" is associated to the character
Xo * K{(a1,1)n<s: -+ -5 (as,1)n<s} — H(a). Set K := H(a). The inclusion

LK A;?n — DZ(HDT X AZ’an is given by
k[T, - T (a0 in<ss - -+ (asn)in<st — K[T,...,T;]
i — T;
ar = Xalanr) -
Finally, for every z € A™?" we set:

Po(2) = ®orgoog(2) , (3.2)

where o, : AY™ — AR is the canonical lift discussed in §2.6 The map
P, : A" — A%3% s clearly continuous. Explicitely, given a polynomial
9=y g;T7 € k[Ty,--- ,Ts] and a point z € A" we have

Ji

9Pal) = || D o [T D xala)T” oxk(2)] - (3.3)

JeNs =1 \|I|<s

To emphasize the fact that D*0+D" parametrizes polynomial maps of degree
d, we shall denote it from now on by Mory®. For r,s and § € N fixed, we
have thus constructed a map
Ev:Mory® — CO(A™™, A%
a — Ev(a):=P,.
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3.2. Remarks on the map Ev.

1. The assignment

(o, z) — Ev(a)(2)
does not define a continuous map on [Mory®| x [A™*"|. This phenomenon
already appears when r =s =6 = 1.

Indeed, suppose by contradiction that there exists a continuous map ¢ :
|D?| x |Aban| — |ALa%| such that ¢ ((ag, a1), 2) = ap+a1z for any ag, oy, 2 €
k and |z| < 1. Pick any sequence of points (,, € k such that |[(,] = 1 and
|Cn — G| = 1 for n # m. Both the sequences {(,} and {—(,} converge to
the Gauss point z,. We compute:

ligrl(p ((Cny1),Gn) = hgl‘p ((Cns 1), =Cn) = ¢ (g, 1), 29) = T4 -

However, we have that ¢ (((,1),—(,) = 0 for all n, contradicting the con-
tinuity of .
2. In general, the map

Ev:Mory® — CO(A™™" A%M)
a — Ev(a)
is not injective. This already occurs in the case r = s = 1 for affine maps.

Indeed, let r = s = § = 1. The space Mor%’1 is naturally isomorphic to the
polydisk D?. Denote by py and p; the first and second projections Mor}’1 —
Mory". Pick two points o, o € Mory" such that po(a) = po(a’) = z, € D.
As seen in §2.2] the fibre p; 1(:vg) is naturally homeomorphic to DH(%), and
so the points « and o correspond to points ag,a) € DH(%) respectively.
Write K = H(z4) for simplicity, and recall that K is a non-trivial extension
of k that contains the field of rational functions in one variable k(S) as a
dense subset. Assume that both a; and o are the rigid points in Dy given
by a1 = Q(S) = qo + 15 + q25% and o) = Q'(S) = qo + 1.5 + ¢45?, with
q2 # ¢ and |qa| = |q]-

We claim that Ev(a) = Ev(«/). It suffices to check that they agree on
the set of rigid points. Indeed, pick any z € A (k). Following Berkovich’s
classification of the points in the disk [Ber90L §1.4.4|, the point Ev(a)(z)
corresponds to the closed ball in k centered at zqy and of radius max{|1 +
12, |q22|}. Since |q2| = |gb|, we conclude that Ev(a)(z) = Ev(a/)(2).

3.3. Proof of Proposition 3.3l Consider a sequence of polynomial maps
fn : AT — AS30 of degree at most § € N satisfying f,,(D") C D*.

For every n € N, let a,, be the rigid point in the polydisk D*O+D)" corre-
sponding to the mapping f,, as constructed above. The polydisk Ds@+D" g
sequentially compact by Theorem 2.1], therefore we may find a subsequence
{an, }n; converging to some point a € DsO+D" . Recall that this limit point
defines a continuous map Ev(a) : A™?" — ASan,

It remains to verify that Ev(«) is the pointwise limit of the subsequence
{fn;}. Observe that this is equivalent to checking that for every z € A™*"
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and every g € k[T1,...,Ts], the sequence of real numbers {|g(fn,(2))|}nen
converges to |g(Ev(a)(z))].

If z is a non-rigid point in A™*" we make a base change by H(z) and take
a rigid point = € D7, 18 lying over z (see Lemma [2.13). The maps f,; induce
analytic maps A7 ( ) = Aj_f(“zl) and ¢ defines an analytic function on A;_’La(g).
By definition,

19(fn; ()| = |9(fn; (Tyey s (@))] = lg(fn; ()],

so that |g(fn,(2))| converges if and only if \g(fnj( x))| converges.
Similarly, Ev(a) defines a continuous map A p (z) A‘;f(uzl). Indeed, recall

from ([B.2) that Ev(a) = ® 0 19y(0) © 0py(a)/k- As @ is k-analytic, it induces

a H(z)-analytic map D (((H)l) X A;_’La(g) — Aj_f(“zl) that we shall also denote by

P.

Denote by L the complete residue field H (o (.)/x(a)), which is a com-
plete extension of H(z). Moreover, we claim that it is also a complete exten-
sion of H(a). In order to see this, notice that ker(a) = k{ai1}|7j<s1<1<s N
ker(cgy(.)/x (). Thus, we have inclusions

k{ai1}in<s,1<i<s/ ker(a) C H(z){ar1}11<s5,1<i1<s/ ker(op 2y (@)

and so H(0p(.)/k(a)) is a complete extension of H ().

D;_E?:;l) x AV a(m) given by the
inclusion of the fibre of the first projection over the point oy, /(). We
obtain that Ev(«) induces the continuous map ® oty o0y, /H(z)- By construc-

tion, we see that

l9(Ev(e)(2))] = |g(Ev(a) (myya) ()] = lg(BEv () (@))] -

Consider next the inclusion ¢, : A7™ —

We may thus assume that z is rigid. Let g = >~ ;s 9777 be a polynomial
of degree d. Denoting f,,; = (fl(”f)7 o 7fs("j))7 we have:

i) = | X w1 (0)' |-

J|<d =1
Ji

= Z QJH Z al(’r}j)zl = (%) .

JI<d =1 \|1<6

Taking the polynomial in s(§ + 1)"-variables
s Ji
=Y a I D suz" | ek[{Suhccsn<s) - (3.4)

Jj<d =1 \|1]<o

one sees that (*) = [R(an,; )|, and so [R(an;)| — [R(a)| as n tends to infinity
since ay,; — a. Moreover, it is clear from (3.3) that R(a) = g(Ev(a)(2)),
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and so the sequence |g(fn;(2))| converges to |g(Ev(a)(2))|, concluding the
proof. O

4. PARAMETRIZATION OF THE SPACE OF ANALYTIC MAPS

We interpret analytic maps between an open and a closed polydisk as rigid
points of the spectrum of a suitable Banach k-algebra. Our aim is to build
an infinite dimensional analytic space Mor(D",D*) that parametrizes in a
suitable sense the set of all analytic maps from D" to D®. This construction
shall be used in the next section to prove Theorem [Al

We shall assume troughout this section that k is algebraically closed.
We fix two integers r,s > 0.

4.1. Construction of the Banach k-algebra 7.;°. Pick some integer
0 € N*. Recall from §3]that the set of all polynomial maps P : A™?" — A0
of degree at most § such that P(D") C D® can be endowed with a nat-
ural structure of affinoid space whose affinoid algebra is the Tate algebra
k{air,-- as1}1<s = k{ai1}n<s1<1<s- We denote this space by Mory”.
It is isomorphic as a k-analytic space to the unit polydisk D*@+1)"

Observe that for any given § € N* there exists a natural truncation map
prs : Morgf_l — Morg’s, which is a surjective analytic map dual to the
inclusion of Tate algebras k{as}rj<s1<i<s C k{air}r<s+1,1<i<s- These
inclusions are isometric and we may so consider the inductive limit of this
directed system. It is a normed k-algebra that we denote by 7.

In order to describe the elements of 77° and its norm, we introduce the
set S of all maps M : {1,...,s} x N — N having finite support and set
M| = >, M(l,I) for every M € S. We define S5 as the subset of S
consisting of all M € S such that M(l,I) = 0 for all [I| > 6+ 1. Observe that

no such set Ss is finite. Given a = ((al,I)IIIS& ey (a571)‘1‘S5) and M € S,
we write
M(1,I
oM — H a) 1(7 )
1<i<s,JENT

The k-algebra T"® consists of all power series that are of the form

Z aMm 'an

MeSs

for some 0 € N and whose coefficients gy € k are such that [gm| — 0 as
M| — oo.

Let us describe the norm on 77%. Observe that by the definition of S;, ev-
ery element > yc s gv-aM € T belongs to the Tate algebra k{ay1}11<51<1<s5
and we may associate to D _yjcg, gy -a™ the norm on k{ay1}|11<5,1<1<s- Since
the inclusions of k{a 1} 11<s1<i<s In k{ai1}jr<s4+1,1<i<s are isometric, this
norm is well-defined.
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Remark 4.1. The k-algebra T™* is not complete. Take for instance r =
s =1 and consider the sequence fp, =Y\ | gi-a; € TUL. This is a Cauchy
sequence as soon as the coefficients g; € k are such that |g;| — 0 when i — oo,
but it does not have any limit in T

The completion 735° of 77 is the Banach k-algebra consisting of all power

series
S e
Mes
such that |gy| tends to zero with respect to the filter of cofinite subsets, i.e.

such that for all € > 0 the set of M € S such that |gy| > € is finite.

Definition 4.2. The space Mor(D",D*) is the analytic spectrum of the Ba-
nach algebra Tog".

In particular, Mor(D", D) is compact, because it is the analytic spectrum
of the k-Banach algebra 75°.
S

For every ¢ € N, the isometric inclusion k{a;}|7j<s1<i<s C Tos” defines
a natural surjective continuous map Pr§° : Mor(D",D*) — Mory*. We may
as well consider the inverse limit of all the spaces Morg’s, induced by the
truncation maps prg : Morg’jl — Morg’s. These maps verify the equality prso
Pr§S, = Pr§° and induce a continuous map ¢ : Mor (D", ]]3)8)_—> @5 Morg’s.

We shall consider the inclusions i5 : Mory® — Mor(D",D®) given by the
bounded morphism 7o5® — k{ai1}11<s,1<1<s, sending a; 1 to itself if [I| < 9
and to 0 otherwise. These are closed immersions.

Proposition 4.3. The map ¢ : Mor(D",D*) — Jim Mory® is a homeomor-
phism.
Proof. The inverse limit @ s Morg’s is compact by Tychonoff.

Let us show that ¢ : Mor(D", D?) — lim Mory® is bijective.

Fix § > 0. Let ms @ lim Mory® — Mors be the natural map and pry :
Morg’jl — Mory”® the truncation map. We know that Pry® = w50 ¢ :
Mor (D", D¥) — Mory®. Pick a point y € Jim Mory® and consider ms(y) €
Mory®. Consider the set Ks consisting of all the points o € Mor(D", D?)
such that Pr§°(a) = m5(y). The closed immersion is5 : Mory® — Mor(D", D?)
constructed above is a section of Pr§°. Thus, the map Prg° is surjective and
the subset K is non-empty. Clearly, we have that K511 C K. Every Ky is
compact and so the intersection Ns>oKs is nonempty. This shows that ¢ is
surjective.

For the injectivity, let a, o’ be two points in Mor(D", D*) having the same
image in lim Mory®. We have to check that |g(a)| = |g(e/)| for every g €

2%, that by density reduces to the case where g € 7™*. We know that
Pr§°(a) = Pry°(a’) € Mory” for all 6. Given g € 7"% observe that it lies in
k{a 1} 11<s,1<i<s for some 6 > 0. Thus,

lg()] = 1g(Pr5® ()| = |g(Pr5°(a))] = lg(a)] ,
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concluding the proof. O

Recall from §2] the definition of the complete residue field H(«) of a point
a € Mor(D",D%). We say that « is rigid when H(a) = k. To simplify
notation, we write as = Prs°(a).

Proposition 4.4. Let o be a point in Mor(D", D). For every § € N, the
inclusion of Banach k-algebras k{al,l}lglgs,mgé C 757 induces an extension
of valued fields H(a)/H (o).

The complete residue field H(«) is isomorphic to the completion of the
inductive limit of valued fields lim o H(as).

Proof. A point a € Mor(ID", D) corresponds to a seminorm on the k-algebra
7557, whose restriction to k{ai1}|11<5,1<1<s is the seminorm as. The kernel of
s is the intersection of k{a; 1 }|7/<s1<i1<s With ker(a). This induces inclusions

k{a”}mg&lglgs/ker(a(g) C TL°/ ker(a). (4.1)

It follows that there are inclusions H(as) C H(«), and thus the direct
limit of the #H(cy) is naturally contained in H(«). In order to show that
H(w) is isometrically isomorphic to the completion of lim ¢ H (), it suffices
to show that lim, #(as) is dense in H(a).

Consider the field K := lim Frac (k{ay,r}n<s1<i<s/ ker(as)). Tt is clear
that K is contained in lim #(as). By (&I) and by the definition of 737, we
also know that K is dense in Frac (753" / ker(a)). The latter is by definition
dense in H (), which proves that lim, H(as) is dense in H(a). O

Proposition 4.5. The set of rigid points in Mor(D",D*) is dense.

Proof. Pick any point a € Mor(D", D). For every § € N, pick a sequence
of rigid points ag) € Mory”® converging to as. By Proposition E.3] and
Proposition £}, a point in Mor(D", D*) is rigid if and only if for every § € N
its projection to Morg’s is rigid.

We may view each point ag) as a rigid point in Mor (D", D®) via de map i :
Mors® — Mor (D", D*) constructed above. We claim that « lies in the closure
of the set {ag) }ns- Indeed, fix an open neighbourhood U of . It is a finite
intersection of open sets of the form {8 € Mor(D",D*) : |g(B)| — |g(a)|| < r}
for some r < 1. Since 7™* is dense in To°, we may assume that g € 75,
Thus, for sufficiently large 6 one has that |g(as)| = |g(a)|. Moreover, by

construction we have |g(a£§))| "2 |g(ag)|. Tt follows that for §,n >> 0, the

points ag) belong to U. O
4.2. Universal property of the space Mor(D",D%). Let us specify in
which sense Mor (D", D¥) parametrizes the space of analytic maps from Dj. to
]]j)z. Recall from §2.2] that a morphism between the spectra of two Banach k-
algebras is by definition a continuous map induced by a bounded morphism
between the underlying algebras. In the same fashion, an analytic map
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from a good k-analytic space W into Mor(D",D%) is given by an affinoid
covering {W;} of W and analytic maps W; — Mor (D", D*), which are induced
by bounded morphisms of Banach k-algebras and are compatible with the
restrictions.

Theorem 4.6. There exists an analytic map ® : Mor(D",D%) x D" — D?
satisfying the following universal property. Let W be the analytic spectrum
of a Banach k-algebra or any good k-analytic space. Then, for any analytic
map F : W xD" — D* there exists a unique morphism G : W — Mor (D", D*)
such that F(z,z) = ®(G(x), z) for all z € W (k) and z € D" (k).

Proof. Let us first construct the analytic map ® : Mor(D",D%) x D" — D*.
The assignment

(51,... ,SS) — (Z CL17]TI,..., Z (J,s,]TI)

IeNT IeN”

defines a bounded morphism of Banach k-algebras ¢ : k{Si,...,Ss} —
To {p~ T, ..., p~1 T, } for every positive p < 1, and thus an analytic map
@ : Mor(D", D%) x D" — D*.

We now prove the universal property. Suppose first that IV is the analytic
spectrum of a Banach k-algebra A. Let F': W x D" — D?® be an analytic
map, induced by some bounded homomorphism of Banach k-algebras

(51,...,55) —> (Z bL[TI,..., Z bs’[TI> s

IeN” IeN"

where b1 € A are such that sup; 7 [0y 7(z)] < 1 for all z € W.

Consider the analytic map G : W — Mor(D", D®) given by a; ; + by s for
all I e N"and all 1 <1 <'s. A rigid point x € W together with a rigid point
z € D" defines a rigid point in the product W x D", and by construction we
have F(z, z) = ®(G(x), 2).

Conversely, let H : W — Mor(D",D*) be an analytic map sending ap to
some ¢ ; € A and satisfying F(z,z2) = ®(H(x), z) for all z € W (k) and all
z € D"(k). For every fixed z € W(k), consider the analytic map z € D" —
®(H(z),z). By hypothesis, it agrees with the map z € D" — ®(G(x), 2),
and so by r(x) = ¢ r(x) for every I € N" and 1 < [ < s. As the equalities
hold for every rigid x € W, we conclude that H = G.

Let now W be an arbitrary good k-analytic space. Let {W;} be an affinoid
covering of W inducing an analytic map F : W x D" — D*. By the previ-
ous case, for every affinoid domain W; of W there exists a unique analytic
map G; : W; — Mor(D",D*), induced by a bounded morphism of Banach
algebras, such that F(x,z) = ®(G;(z), z) for all x € W;(k) and z € D" (k).
By construction, the maps G; agree on the intersections W; N W; and are
compatible with the restrictions. O
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4.3. Points of Mor(D",D%) as continuous maps D" — D*. The follow-
ing theorem specifies in which sense the points of the space Mor(D",D?)
correspond to continuous maps from D" to D%,

Theorem 4.7. There exists a map Ev from Mor(D",D%) to the space of
continuous functions CO(D",D%) such that the following holds:
i) The map Ev(a) is analytic if and only if « € Mor(D",D%) is rigid.
In that case, the map Ev(a) is precisely ®(a, ).
ii) For any fived z € D", the assignment o € Mor(D",D%) +— Ev(a)(z)
1S a continuous map.

Proof. The map Ev : Mor(D",D*) — C%(D",D*) is given as follows. Fix a
point a € Mor(D",D*) and consider the first projection 7y : Mor(D",D*) x
D" — Mor(D",D*). The fibre 7 ' (a) is canonically isomorphic to Do) (cf.
§2.2). We can thus consider the inclusion map 3o : DY) = Mor (D", D%) x
D" given by
my{ﬂ_lTh s 7/0_1T7“} — H(a){p_lTh s 7p_1T7‘}
i = T; (4.2)
acTy — xala)
for p < 1, where x4 : Tog® — H(a) denotes the character associated to the
point a. Let ogyqy/k : D" — DTH(O!) be the continuous map discussed in §2.0l
Let @ : Mor(D",D*) x D" — D* be the analytic map from Theorem We
set:
Ev(a) = ® oty a) © 0x(a)/k -

Clearly, Ev(a) is a continuous map from D" to D*. Specifically, for any
z €D and for any g = > ;o 9557 in k{51, ..., S}, we have

s J
g(Ev(@)(2) = > g ] (Z Xaol(air) - TI) (n@yk(2)| . (43)
J I=1 \ I

Pick a rigid point a € Mor(D",D?), i.e. such that H(a) = k. In this
situation, the fibre 7 1(a) is homeomorphic to D", and so t4(,) is in fact an
analytic map between k-analytic spaces, and the map o)k is the identity
on D". Then, for every z € D" the pair («, z) defines a point in Mor (D", D) x
D", and so tx(2) = (e, 2). Thus, Ev(a) = ®(a, -) is analytic.

Suppose conversely that Ev(a) is analytic. It follows from (@3] that
the map Ev(a) can be decomposed as Ev(a) = 7, o F o 0k i, where
F :D" — D* is the K-analytic map

F(z) = (Z Xalarr) - 2%, .., Z Xalasr) - 27).
IeNT IeNT

It suffices to treat the case s = 1. Since Ev(«) is analytic, we may find coef-
ficients by € k bounded by 1 such that Ev(a)(z) = > ;ene br2! for every z €
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D" (k). Notice that the equality 7/ (3 jenr Xalar) - 27) =2 e br2" € k
implies that Y ;one Xa(ar) - 27 € k, as k is algebraically closed.
Suppose by contradiction that « is not a rigid point and consider the

equation
Z b2l = Z Xalar) -2, (4.4)

IeN" IS\

where we may assume that every x,(ar) is either 0 or does not belong to k.
Since « is not rigid, not all of them are zero. We may consider the nonempty
set M C N” consisting of all the multi-indices I € N” such that x,(ar) ¢ k.
Let P be the Newton polytope of M, i.e. the convex hull of the union of all
upper-quadrants I + R’ with I € M. It is a non-compact polytope in R,
whose extremal points all belong to M.

Pick any extremal point p of P, and take any hyperplane in R” with integer
coefficients H = {S1z1+. ..+ Brx, = [p} intersecting the polytope P exactly
at the point p. In other words, we have

0B+ ...+ i > Po (4.5)

for every I € N distinct from p intervening in (£4]). Fix any A € k with
|A\| < 1 and consider the rigid point z = (A, ..., A5") € D". Then,

Z b[ZI _ Z bl()\ﬁl"n’)\ﬁr)l _ Z bl)\i1ﬁ1+...+irﬁr _
IeNT IeNT IeNr
= b D b AR = AP O(A)
IeN" I#p

where the last equality follows from ([@3). It follows that b,\% + O(A\%) =
Xa(ap) A% + O(N\P0), and hence x.(a,) = b, € k. Repeating this procedure
at every vertex of the polytope P, we conclude that x,(ay) € k for every
I € P, contradicting the fact that « is not rigid.

Let us now prove the continuity statement. Fix a point z € D". It suffices
to check that for any sequence of points {a,,} C Mor(D",D*) converging to
some a € Mor(D",D#), we have Ev(ay,)(z) — Ev(a)(2).

Consider the second projection 7o : Mor(D",D%) x D" — D". The fi-
bre 7, '(z) is isomorphic to Mor(D",D%)3,)- The inclusion map g :
Mor (D", D%) ;) — Mor(D",D¥) x D" is given by

TEHp ' T o7 ) = TLSRRH(2)
T, — x.(T3)
aiy = apr

for p < 1, where x, : k{p™'T1,...,p T} — H(z) denotes the character
associated to the point z. Pick some converging power series g = 3 ;e grT!
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T {p~ Ty, ...,p~ T} and compute:

19 (12202 @ oy (@) | = | (D 91 - X=(T)F) (o u(e)) |
IeN”
= ?é?\]}ﬂgl |Xz I‘H(z = }H%§|Xa(gl |H ‘TI ‘
= (> Xal9r) - T") (nay/n(2) | = 19 (1) © on(eyw(2)) | - (4.6)
IeN"

That is, for all fixed z € D" and o € Mor(D", D), we have

U(a) © TH(a) /k(2) = La(z) © On(z) k() -
Consider the continuous map ¥(z) : Mor(D",D¥) — D, defined as the
composition W(z) = ® 01,y 0 09y (z) k- For every fixed a € Mor(D",D*) and
every fixed z € D", we have

U(z)(a) = Ev(a)(z).
If o, is a sequence of points in Mor(D",D*) converging to «, then the con-
tinuity of W(z) implies that W(z)(a,) converges to ¥(z)(«) as n goes to
infinity, and so
Ev(a™)(2) "= Ev(a)(2) ,
concluding the proof. O

4.4. The space Mor(D",D*) is Fréchet-Urysohn. We prove a technical
result that is a key step in the proof of Theorem [Al

Theorem 4.8. The space Mor(D",D%) is Fréchet-Urysohn.

We follow Poineau’s proof of the fact that analytic spaces are Fréchet-
Urysohn [Poil3l, Proposition 5.2|, which in turn relies on [Poil3l Théoréme
4.22).

Recall that a subset I' of the analytic spectrum of a k-Banach algebra
(A, ]|l is a boundary if for every g € A there exists some z € I' such that
lg(x)] = |lg]|]. A closed boundary is called the Shilov boundary if it is the
smallest closed subset I' of M(A) satisfying this property. Since we have
excluded the trivially valued case and the norm on 752" is multiplicative,
there exists a Shilov boundary in Mor(D",D*) by [EMNO04, Theorem C].

In the following we deal with subfields [ of k that are of countable type over
the prime subfield k), of £, i.e. such that [ has a dense kj-vector subspace of
countable dimension.

The following proposition is an infinite dimensional analogue of [Poil3]
Théoréme 4.22].

Proposition 4.9. For every point a in Mor(D",D%) there exists a subfield
l of k that is of countable type over the prime subfield k, of k and satisfying
the following property. Let I' be any subfield of k with | C I C k and let
T Mor (D", D*) — Mor(D",D%); be the base change morphism. Then

is the unique point in the Shilov boundary of the fibre (W](;?l,)_l(ﬂz?l,(a)).
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Proof. The space Mor(D", D*) is the projective limit of Mory® with the mor-

phisms Pr§g : Mor(D",D*) — Mory® for § € N* (cf. Proposition E3). A

point « in Mor(D",D*) is thus determined by a sequence ()s>0, where

cach ag lies in Mory® and satisfies prs,(asp1) = as for the projections
r,s r,S

prsyq : Morg, ; — Morg™.

To every o we apply [Poil3, Théoréme 4.22]. We obtain a field 1° C k
that is of countable type over the prime subfield k,, of k£ and such that for any
subfield 19 C I’ C k the point g is the only point in the Shilov boundary of
(W]‘z/l,)_l(wi/l,(a(;)), where ﬂ'i/l, : Mory® — Morg:f, denotes the base change
morphism.

Let [ be the subfield of k generated by all the 1°. By construction, [ is of
countable type over k,. We may assume in addition that [ is algebraically
closed.

The equality 7Ti v ° Pr§5, = Prgg o 77127[, implies that Prgg maps the fibre
(W,??l,)_l(ngl,(a)) to the fibre (Wi/l,)_l(ﬂg/l,(a(g)). We show that « belongs
to the Shilov boundary of (77,271,)_1(771271,(&)). Pick an element g € 753", As
T is dense in T3, we may assume that g lies in k{al,1}|1|g5,1§§s for some
d > 0. Thus, |g(a)| = |g(as)|, which is the maximum value of g, since oy
belongs to the Shilov boundary of (ﬂ'i/l,)_l(ﬂ'g/l, ().

Pick a point 8 € (Wﬁl,)_l(ﬂﬁl,(a)) different from a, i.e. such that G5 #
ags for some & > 0. As «g is the unique point in the Shilov boundary of
(Wg/l/)—l(wg/l,(a(;)), we may find some g € k{a; s}|7<s such that

l9(B) = 19(Bs)| < lg(as)| = |g()],

showing that « is the unique point in the Shilov boundary of the space
(Wﬁl/)_l(ﬂﬁp(a))- (]

Proof of Theorem[].8 Let A be any subset of Mor(D",D*) and let a be a
point in the closure of A. Let [ be the subfield of k£ associated to « from
Proposition Let [ C I’ C k be any subfield of k that is of countable
type over [. Every polydisk Morg:ls, is first countable, and as a consequence
so is the countable product of all the Morg:ls,. The space Mor(D",D*); is
a subspace of the product [ Morg’f, by Proposition 3] and thus is first
countable. ’

Copying Poineau’s proof of [Poil3l Proposition 5.2| and using Proposition
49 we may find a sequence of points «,, in A converging to a. U

5. MONTEL’S THEOREM

This section is devoted to the proof of Theorem [Al We first apply the
results and constructions from the previous sections to prove the case where
the base field £ is algebraically closed and next we generalize this argument
to an arbitrary non-Archimedean complete field.
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5.1. Proof of Theorem [A] in the algebraically closed case. Let k be
an algebraically closed complete non-Archimedean field.

Let X be a good, reduced, o-compact k-analytic space without boundary
and Y a strictly k-affinoid space. Pick a sequence of analytic maps f, : X —
Y. We claim that there exists a subsequence that is pointwise converging to
a continuous map.

Since any k-affinoid space Y may be embedded into a polydisk, we may
readily assume that Y = D* for some integer s.

Assume first that X = D". In this case, each analytic map f, corre-
sponds to a rigid point ,, in Mor(D",D*) by Theorem Since the space
Mor (D", D%) is compact and Fréchet-Urysohn by Theorem A8 we may find
a converging subsequence a;; converging to some point o € Mor (D", D%).
The continuous map Ev(a) : D" — D* is the limit map of the subsequence
fn; by Theorem BT

Suppose now that X is a basic tube in the sense of §25 Let X be a
strictly k-affinoid space and X 5D a distinguished closed immersion such
that X is isomorphic to X NID" (cf. Proposition ZI0). We may thus write X
as a growing countable union of affinoid spaces X = J, p<1 X,. Moreover,
since k is algebraically closed, we may take every p in |k*|. As the affinoid
algebra corresponding to X is isomorphic to the quotient of the Tate algebra
7, by some closed ideal I, we may assume that the affinoid algebra A, of
each X, is of the form k{p™'Ty,...,p T} modulo the ideal generated by
I. In particular, we have distinguished closed immersions ¢, : X, — D" (p).

Let f, : X — D* be a sequence of analytic maps. Fix 0 < p < 1, p € |k*]|.

We may apply Proposition to the restriction of f,, to X, to obtain an

analytic map gﬁi’ ) D"(p) — D* extending fy|x,. Indeed, fy|x, is given by

elements fln), e fsn) € A, of norm at most 1. As we have a distinguished
epimorphism k{p~'Ty,...,p T} — A,, we may lift each fl("), l=1,...,s,

to an element in k{p~'T},...,p 'T}} having the same norm. These define

analytic maps gﬁf) : D"(p) — D* satisfying gﬁf) o, = fnlx, for all n € N.

We now apply the previous case to the restricted sequence {gﬁf ) lDr(p) - We
conclude by a diagonal extraction argument.

Consider now X as in the theorem. Being o-compact, X is the union of
countably many compact sets K,,. Since it is a good analytic space without
boundary, each compact set K, is included in a finite union of open sets,
each isomorphic to a basic tube. It follows that X is a countable union of
basic tubes U,,. By the previous case, on every open set U, there exists
a subsequence converging pointwise, and extracting diagonally we may find
a subsequence { fnj} converging pointwise on the whole X. The limit is
continuous on every Uy, and hence on X since they are open. O
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5.2. Proof of Theorem [A] over an arbitrary base field. Let K be a
completed algebraic closure of k, and X, Yi be the scalar extensions of X
and Y respectively, see §2.0l

Pick a sequence f, : X — Y of analytic maps and consider the analytic
maps F, : Xg — Y induced by the base change. The following diagram

commutes:

Fy
XK —L>YK

WK/kl lﬂx/k
f

X—">Y

Observe that the analytic space X is good and o-compact, since the preim-
age W%}k(U) of an affinoid domain U of X is an affinoid domain in Xg. It
follows directly from the definition of the interior that X is boundary-
less (|Ber90l, Proposition 3.1.3|). Thus, by the algebraically closed case
of Theorem [A] proved above, we may assume that F, is pointwise con-
verging to a continuous map F : X — Yg. Pick a point z € X. As

TK/k is surjective, we may choose a point 2 e W[_{}k(z) It follows that

fn(2) = fu(mi/k(2")) = Tre 0 Fo(2'), which tends to mgy, o FI(2') =: f(2)
as m goes to infinity. The limit map f is well-defined. Indeed, if 2/, 2" are
two points in W%}k(z), then

lim 7/, © F,.(?) = limfn(ﬂK/k(z')) =
= lim fo(7r/p(2")) = lim g 0 Fr(2") -

It remains to check that f is continuous. Let A be any closed (hence com-
pact) subset of Y. By continuity, the set F~1 (W%}k(A)> is closed. Recall
that the map 7/, : Xk — X is proper. Since Xk and X are locally com-

pact, then 7 /. is closed. As a consequence, 1A = Kk (F_l o F[_{}k(A))

is closed.

5.3. Fields with countable residue field. We observe in this section that
part of the assertion of Theorem [Al extends to maps between any k-affinoid
spaces when the residue field of k£ is countable. Specifically, we do not ex-
clude source spaces with boundary and show that one may always extract
an everywhere converging subsequence. This section will not be used in the
rest of the paper, since the limits we obtain this way are not necessarily
continuous.

Recall that the boundary of an affinoid space can be written as a finite
union of affinoid spaces defined over some extension of &, see [Ducl2, Lemma
3.1]. Here we shall only use the following observation. Consider the closed
N-dimensional polydisk DV, and denote by p; : DV — D the projection to
the i-th coordinate. Recall that the boundary of D consists only of the Gauss
point. It follows from Lemma 23] that p,” 1(:179) is contained in the boundary
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of DV for every i = 1,--- , N. Let now z be a point in 9DV and consider
the commutative diagram:

DY 2D

rodJ{ J/rod

N _Pi 1
Ap —— &

Suppose that p;(x) # x4 for all i. By Lemma 2.3 the point ];;(x/) is closed
in A,% corresponding to some maximal ideal (T; — ;) C k[T;] for every
i = 1,...,N. The commutativity of the diagram implies that the maxi-
mal ideal (T} — (1,...,Tn — (n) of k[Th,...,Tn] is contained in the prime
ideal corresponding to red(x). As a consequence, red(z) € A]];V is closed,
contradicting the fact that = belongs to oDY.

The boundary of DV is thus equal to the union pj*(zy) U... Upy (z4).

-1 . . “N—1

Observe that each fibre p; " (z4) is isomorphic to D3 ae)
Proposition 5.1. Suppose k is a non-Archimedean complete valued field
that is algebraically closed and such that k is countable. Let X and Y be
k-affinoid spaces and assume that X is reduced and distinguished. Then,
every sequence of analytic maps fr, : X — Y has an everywhere pointwise
converging subsequence.

Proof. We may assume X = D", Y = D* as in the proof of Theorem [Al The
set of connected components of the interior of D" is in bijection with the set
of k-points on its reduction A’i; and hence is countable.

We now argue inductively on 7. When » = 1, then the boundary of D
consists of a single point, namely the Gauss point. We may therefore apply
Theorem [Al to each of the (countably many) components of the interior of D
and apply a diagonal extraction argument to conclude.

Assume now that the statement holds for the polydisk of dimension r — 1
defined over any complete valued field with countable residue field, and pick
a sequence of analytic maps f, : D" — D*. As before, we apply Theorem [Al
to each of the (countably many) components of the interior of D" so that we
may suppose that f,, converges pointwise on the interior of D".

The boundary of D" is the union of r unit polydisks of dimension r — 1
defined over the field #H(z4) by our previous discussion. On each of these

we may apply the induction hypothesis, as the field H(z,) is isomorphic to
E(T), which is countable. This concludes the proof. O

5.4. Analytic properties of pointwise limits of analytic maps. Con-
tinuous maps of the form Ev(a) : D" — D* are very special, as they exhibit
properties that are distinctive of analytic maps. We shall prove that they lift
to analytic maps after a suitable base change and that the graph of Ev(a) is
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well-defined in the analytic product D" x D* and not just in the topological
product |D"| x |D#|.
Recall from §2.6] the definition of the continuous map g, : X — Xg.

Theorem 5.2. Let k be a complete non-Archimedean field that is alge-
braically closed.

Let « be a point in Mor(D",D*). Then there exists a closed subset Ty, of
D" x D* such that the first projection m : I'a — D" is a homeomorphism
and such that for every z € D" the image of T'y, N 771_1(2) under the second
projection is the point Ev(a)(z) € D?.

Moreover, there exist a complete extension K of k and a K-analytic map
Fy : Dy — D such that Ev(a) = 7y, 0 Fy 0 0k,

Proof. Fix a point a € Mor(D", D) and denote by H(«) its complete residue
field. We define I', as the image of a continuous map ¢ : D" — D" x D?,
that we construct as follows. B

Let t3(q) : ]D)%(a) — Mor(D",D®%) x D" be the inclusion map defined in
@2). Let Y : Mor(D", D) x D" — D" x D* be the analytic map induced by

Ko 'Ty,...,p07 " TS, ..., Sy — TZHp 'Ty,...,p7 T}
i = T

Sl — Z al,ITI.
I

Let o3k : D" — DTH(O!)' We set 1 = T 0 13y(a) © Opy()- Explicitly, ¢ is
induced by the analytic map ¥ : D" — D" x D® that maps any z € D" to
the seminorm sending every g € To{p 'T1,...,p T, }, which is of the form
9= jens 9557 with g; € k{p™'T1,...,p 'T,} are such that |g;| — 0 as
|J| = 0, to the following real number:

S
i
9T =D g [T O xalars) - TN (r@ym(2)| . (5.1)
J =1 1
Consider the projections 7y and o on D" x D* to the first and second factor
respectively. It is an immediate consequence of the previous computation

and (€3] that
ma(¢(2)) = Ev(a)(z2).

If no variables S; appear in the expression of g € To{p 'T1,...,p T} },
then g lies in the algebra k{p='Ty,...,p 'T.}. Thus, by (G.I) we see that
19(¥(2))] = lg(2)|, and so

m((z)) =z .

It remains to check that the image I'y, of 9 is a closed subset of D" x D*.
Let z, be a sequence of points in D" such that v(z,,) converges to some point
xin D" x D*. As m1(¢(2,)) = 2n, We see that z, converges to 7(z) € D",
and by continuity of ) we have that x = ¢(m(z)) lies in I',. The set Iy, is
so sequentially closed, and hence closed.
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Consider now the continuous map Ev(a) : D" — D*. Let K be the
complete residue field H(«). Consider the #H(a)-analytic map

F, = (Z Xalarr)-TH, ..., Z Xal@s,1) -TI> .

IeN" IeNr
A direct computation together with (4.3]) shows that Ev(a) = mp(a)/k © Fa ©
07—[(a)/k~ U

5.5. Proof of Theorem Let Y be any k-affinoid space. We may fix a
closed immersion of Y into some polydisk D® and assume Y = D%,

Suppose first that X = D". Each analytic map f, is of the form f, =
Ev(ay,) for some rigid point o, € Mor (D", D*) by Theorem 7l It was shown
in Proposition 23] that the space Mor(ID", D%) is Fréchet-Urysohn so that we
may assume that a, converges to some point a € Mor(D",D*). The limit
map [ is precisely Ev(a) (cf. Theorem [£7]) and we conclude by Theorem
0.2)

Let now X be any good, boundaryless, reduced k-analytic space. Pick a
point € X and an affinoid neigbourhood Z of x containing x in its interior.
Fix a distinguished closed immersion of Z into some closed unit polydisk D" .
For every n we may find an analytic map fn : D" — D*® such that fn\ 7= fn
by Proposition We now apply the previous case to the restriction of fn
to D", concluding the proof. O

6. WEAKLY ANALYTIC MAPS

In this section we look more precisely at the properties of continuous limits
of analytic functions, as obtained in Theorem [Bl

As before, k is any complete non trivially valued non-Archimedean field
which is algebraically closed.

6.1. Definition and first properties. We begin with a definition.

Definition 6.1. Let X and Y be any two good k-analytic spaces, and let
f: X =Y be a continuous map.

We say that f is weakly analytic if for every point x € X there exist
an affinoid neighbourhood U of x, a complete field extension K/k and an
analytic map F : Ux — Yk such that f|, = mg, 0 F ook

It will be convenient to denote by WA(X,Y") the set of all weakly analytic
maps from X to Y.

Clearly, the set Morg(X,Y") of analytic maps from X to Y is a subset of
WA(X,Y). It is also a strict subset if Y has dimension at least 1, since any
constant map is weakly analytic, but it is analytic only if the constant is a
rigid point.

Proposition 6.2. Let X be a basic tube and Y be a k-affinoid space. Let
f X =Y be a continuous map. The following two conditions are equivalent.
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i) For any point © € X there exist an affinoid neighbourhood Z of x
and a sequence of analytic maps fn, : Z — Y pointwise converging to
flz.

i) For any point x € X there exist an affinoid neighbourhood Z of z, a
complete extension K of k and an analytic map F : Zx — Y such

that f|Z :ﬂ'K/kOFOO'K/k,

A consequence of the previous result is that when X has no boundary,
a continuous map f : X — Y is weakly analytic whenever for every point
x € X there exists a basic tube U containing x and a sequence of analytic
maps f, from U to Y that converge pointwise to f.

Proof. The implication i) = ii) is precisely Theorem [B] since basic tubes are
boundaryless. -
Suppose that ii) is satisfied. Choosing a closed immersion Y — D?, we
may assume Y = . Pick a point z € X and an affinoid neighbourhood
Z of x such that there exists a complete extension K/k and a K-analytic
map F : Zg — Dj such that f|; = Tk © F o ok, By Proposition
2.2l we may find an analytic map F . DY — Dﬁ( that agrees with F' on
Zr N DY. ABy Theorem [£7] there exists a rigid point a € Mor (D", D*) i
such that F = ®(a,-). The point o = T () in Mor(D",D®) is not rigid
in general, but we may find points a,, € Mor(D",D*)(k) converging to a by
Proposition [4.3] since k is assumed to be non trivially valued. The analytic
maps Ev(ay,) converge pointwise to Ev(a) : D), — Dj by Theorem A7, and
by construction we have that Ev(«a) = WK/kOFOO’K/k , see Theorem O

6.2. Rigidity of weakly analytic maps. We prove here the following
statement:

Proposition 6.3. Suppose f: X — Y is a weakly analytic map, where Y is
a curve. If x is a rigid point that is mapped to a non-rigid point by f, then
f s locally constant near x.

Proof. Let x € X be a rigid point such that y = f(x) is not rigid. Since this
is a local statement, we may replace X and Y by affinoid neighbourhoods of
x and y respectively. In particular, we may assume that X = D" and x = 0.
After maybe reducing X, there exists an extension K of k£ and a K-analytic
map F : X — Y such that f = 7y, 0 F oo, Observe that F'(z) is a
rigid point of Y.
Suppose first that ¥ = ID. The fact that y is not rigid means that y has

positive diameter, i.e.

inf (T —a)(y)| =7 > 0.

ack®
By continuity, we can find a polyradius € > 0 such that every rigid point z in
D% (0; €) satisfies |F'(z) — F(0)|x < r, where |.|g denotes the absolute value
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on K. Pick a point a € k°. For every rigid point z € D' (0;¢€), we get
(T —a)(y)l = max{[F(z) = F(0)|x, (T — a)(y)|}
= max {|F(z) = F(0)|x, (T — a)(mgx o F(0))[}
max {|F(z) — F(0)|x, [F(0) — a|x}
|F(2) — alk
= (T —a)(rgmo F(2)) -
Thus, F' maps the polydisk D% (0;€) into the fibre W[_{}k(y) As

o /k(Dy(05€)) € D (05¢),

we conclude that f is locally constant near 0.

For Y any affinoid of dimension 1 there exists a finite morphism ¢ : ¥ — D
by Noether’s Lemma. By what precedes, the composition ¢ o f is locally
constant near 0, and by finiteness so is f. O

Example 6.4. The previous result does not hold if Y has dimension greater
than 2. Consider for instance the weakly analytic map f : 1D — D? given by
[ =7k oF ook, where K = H(xg) and F(z) = (x4, 2). No rigid point
in D has rigid image under f, but f is not locally constant at these points.

6.3. Weakly analytic maps from curves.

Proposition 6.5. Let f: X — Y be a weakly analytic map, where X is a
curve. If there exists a converging sequence of rigid points of X whose images
under f are rigid points, then f is analytic.

Remark 6.6. Let X be a k-affinoid space. Let f : X — D® be a continuous
map such that there exists a complete extension K/k such that f = TK /K ©
F ooy for some K-analytic map F. We may assume that the extension
K/k is of countable type [ BGR84, §2.7].

Indeed, let A be the underlying k-affinoid algebra of X and fiz an epi-
morphism k{r—'T} — A such that A is isomorphic as a Banach algebra to
k{r=IT}/I for some closed ideal I C k{r='T}. Eaxtending scalars, we see
that Ag is isomorphic to K{r—'T}/I as a K-affinoid algebra. The map F
is then determined by elements F,--- , Fs € Ag with |Fi|sup < 1, and hence
the expression of F' contains at most countably many elements of K.

Proof. Pick any sequence z,, € X (k) such that f(z,) are also rigid, and
assume that lim, x, = x. Here x may be non-rigid. We may replace X
by some affinoid neighbourhood of z and assume that f = g/, 0 F oog
for some complete extension K/k and some K-analytic map F. Observe
that f(xz,) = F(z,) € Y(k). We may as well replace Y by an affinoid
neighbourhood of f(z) and embed it in some polydisk D*.

Let A be the underlying k-affinoid algebra of X. The map F is then deter-
mined by elements F1,- - , Fy in the K-affinoid algebra Ax with |F|g,p < 1.
Pick any real number o > 1. By [BGR&84, Proposition 2.7.2/3] there is an
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a-cartesian Schauder basis {e;}jen of K, and we may choose eg = 1 by
IBGR84, Proposition 2.6.2./3|.

Fix an epimorphism T3y — Ax and lift every F; to an element G; in Tjy.
Then for every | = 1,--- , s we can develop G = _; alITI with alI € K and
such that |a}|x — 0 as |I] goes to infinity. Using the Schauder basis we may
find elements alL ; € k such that alI =5 ; alL ;€5 and satisfying

lab 1k < mj&X\alI,ﬂk < ald}|k .

Since alat|x — 0 as as |I| goes to infinity, the series A{ =Y ,d jTI de-
fines an element in 73;. Thus, we obtain a converging power series G; =
PP (>, alI’jTI)ej. Recall that Fj(xy,) € k for all n, and so Gi(z,) € k. We

infer that for j > 1 and for all n, A](x,) = 0. Each of these A] defines
in turn an analytic map on X that vanishes at every x,, and hence is con-
stant equal to zero on X by the principle of isolated zeros. It follows that
F = A? for every 1 < i < s, thus they are defined over k. O

We observe that the previous result does not hold in higher dimension.

Example 6.7. Let ¢, € k, |G| = 1, |G — (| = 1 for n # m. Let f be
the weakly analytic map obtained as the limit of the sequence f, : D* — D1,
given on the rigid points by fn(z1,22) = (nz1+22. The map f is not analytic,
since the rigid point (A, 0) € D?, 0 < |\| < 1, is mapped to the point in D
corresponding to the closed ball B(0;|\|). However, the set {0} x D(k) is
mapped to the set of rigid points.

A consequence of the previous result is the following statement that can
be viewed as the principle of isolated zeroes for weakly analytic maps.

Proposition 6.8. Let f : X — Y be a non constant weakly analytic map
where X is a curve without boundary. Then the fibre of any rigid point in'Y
contains no accumulation point.

Proof. Let y € Y (k) and suppose there exist points z,, € X converging to a
point z and such that f(z,) =y for all n. In this situation, we may assume
Y = D% y = (0,---,0) and replace X with some affinoid neighbourhood
of x such that f lifts to a K-analytic map F' over some complete extension
K/Ek. This map F' is given by some elements Fj,--- , Fs in the underlying
affinoid algebra of Xg of norm at most 1.

The point y is rigid and so it has only one preimage under 7 ;. Thus,

(07 70) :f($n) :FOO-K/k($n) ED%

for all n. Since X is a curve and F' is non-constant (otherwise f would be
s0), F~1(0) is included in the set of rigid points of X. It follows that every
0K /k(xn) is rigid. Each component F; of F' defines an analytic map between
the curves X and Dy and admits a sequence of zeros with an accumulation
point o (). It follows that every [ is identically zero, hence so is f. [
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6.4. A conjecture on weakly analytic maps. On basic tubes, we con-
jecture that weakly analytic maps can be globally lifted to analytic maps.

Conjecture 1. Let Y be a k-affinoid space and X a basic tube. Let f: X —
Y be a weakly analytic map. Then, there exist a complete extension K/k and
F: Xg — Yk analytic such [ =7y, 0 F ook .

Notice that a weakly analytic map can be locally lifted to an analytic
map over some complete extension of k. Conjecture [Il means that this can
be done globally.

Remark 6.9. In the case when X andY are polydisks, Conjectured amounts
to saying that the map Ev is surjective onto the set WA(X,Y).

The map Ev becomes closed by Theorem .7 for the topology of the point-
wise convergence, and so WA (X,Y") becomes Fréchet-Urysohn for this topol-

ogy.
Observe that if Conjecture [Il holds, then using Theorem [£.8 we have:

Theorem 6.10. Suppose that Conjecture [d] holds.

Let X be a boundaryless o-compact k-analytic space and 'Y a k-affinoid
space. Then, every sequence of weakly analytic maps f, : X — Y admits a
subsequence that is pointwise converging to a weakly analytic map f: X — Y.

As a consequence, we have:

Corollary 6.11. Suppose that Conjecture [l holds. Let X be a boundaryless
o-compact k-analytic space and 'Y a k-affinoid space. Let {f,} C WA(X,Y)
be a sequence converging to some continuous map f. Then, [ is weakly
analytic.

7. APPLICATIONS TO DYNAMICS

In this section, we attach two different notions of Fatou sets to an endo-
morphism f of the projective space PV2" of degree at least 2 and study their
geometry, which exhibit similar properties to the complex case.

7.1. Strongly pluriharmonic functions. We recall the definition from
[CL11]:

Definition 7.1. Let X be any boundaryless k-analytic space. A continuous
function u : X — R is strongly pluriharmonic if for every x € X there exist
an open neighbourhood U of x, a sequence of invertible analytic functions hy,
on U and real numbers b,, such that

u=_lim by, -log|hn|

locally uniformly on U.
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Harmonic functions have been widely studied in dimension 1. Baker-
Rumely [BR10|] and Favre-Rivera Letelier [FRL10], and Thuillier [Thu05]
have defined non-Archimedean analogues of the Laplacian operator, on Pha"
and on general analytic curves respectively.

If X is an analytic curve, strongly harmonic functions are harmonic in the
sense of Thuillier. It is not known yet whether the converse holds, see [CL11],
Remark 2.4.6]. However, if X is a connected open subset of P1®" then all
definitions agree by [BR10, Corollary 7.32].

Observe that over C, pluriharmonic functions are in fact locally the loga-
rithm of the norm of an invertible function, whereas this is not true in the
non-Archimedean setting. Counterexamples appear already for curves, see
[CL11) §2.3].

Remark 7.2. Let X be any boundaryless k-analytic space. The set of all
strongly pluriharmonic functions on X forms a R-vector space.

7.2. Harmonic functions on open subsets of P1#". Recall from [Ber90,
§4.2] that the analytic projective line P13 is the one-point compactification
of A The points in A" can be explicitly described as follows [Ber90,
§1.4.4].

Pick a € k and r € R, and denote by B(a;r) the closed ball in k centered
at a and of radius r. To B(a;r) we can associate a point 7, € Alan by
setting |P(nq,r)| := supjy_q<, [P(y)| for every polynomial P € k[T]. Points
of the form 7, are called type I points, and these are precisely the rigid
points of A2, Consider the point 7,, with r > 0. If r € |[k*| we say that
Na,r is of type Il and if r ¢ |k*| of type III. A decreasing sequence of closed
balls B(a;;7;) in k with empty intersection defines a converging sequence of
points 7, r, € A2 The limit point is called a type IV point. Any point in
AL21 is of one of these four types.

It is a fundamental fact that the Berkovich projective line carries a tree
structure. Roughly speaking, it is obtained by patching together one-dimen-
sional line segments in such a way that it contains no loop. We refer to
[Jon15, §2| for a precise definition. Suffice it to say that for any two points
x,y € PL" there exists a closed subset [z, y] C PL*" containing = and y that
can be endowed with a partial order making it isomorphic to the real closed
unit interval [0,1] or to {0}. These ordered sets are required to satisfy a
suitable set of axioms. For instance, for any triple x,y,z there exists a
unique point w such that [z,z] N [y, z] = [w,z] and [z,y] N [z,y] = [w,y].
Any subset of the form [z, y] is called a segment.

As a consequence, P1#" is uniquely path-connected, meaning that given
any two distinct points x,y € P the image of every injective continuous
map 7 from the real unit interval [0, 1] into P1®* with v(0) = x and v(1) =y
is isomorphic to the segment [z, y].

A nonempty closed subset I' C P11 is called a subtree if it is connected.
An endpoint of I' is a point = € I" such that I'\ {z} either remains connected



NON-ARCHIMEDEAN NORMAL FAMILIES 35

or is empty. For every subtree I' of P1@" there is a canonical retraction
rp : P30 5 T, which sends a point o € P to the unique point in I' such
that the intersection of the segment [x,rr(x)] with I' consists only of the
point rp(x).

A strict finite subtree I' of P1#" is the convex finitely many type II points
Z1,...,%Tn. As aset, it is the union of all the paths [z;,z;],i=1,...,n.

Recall that a disk in P?" is by definition either a disk in A" or the
complement of a disk in A", Basic tubes in P12 are strict simple domains
in the terminology of [BR10]. They are either P or strict open disks in
PL2" with a finite number of strict closed disks of P removed. In partic-
ular, basic tubes different from P1*" and strict open disks can be obtained
as an inverse image rp 1(19), where T is a strict finite subtree of P12* and
I'Y the open subset of I' consisting of I' with its endpoints removed.

Similarly, every connected affinoid domain of P12 is either a closed disk
or a closed disk in P with a finite number of open disks of P*?" removed.
In particular, an affinoid subset of the form D(a;7) \ U, D(a;;7;) is home-
omorphic to the Laurent domain of underlying affinoid algebra

E{r—X(T —a),r181,...,rnSu}/(S1(T —a1) — 1,...,Su(T — a,) — 1).

Given a subset W C Ph#2 denote by W its closure and by dopW its
topological boundary. If W is a basic tube strictly contained in P%#* then
OwopW consists of a finite set of type II points.

Proposition 7.3. Let U be a proper connected open subset of PH*". Then
there exist an increasing sequence Wy, of basic tubes of P12 exhausting U
and a sequence of strictly affinoid subspaces X, of PL* satisfying

WmCXmCWm+1CU
for every m € N*.

The proof makes extensive use of the tree structure of P12, Recall from
[BRI10, Appendix B] that the tangent space at a point x € P is defined
as the set TP of paths leaving from 2 modulo the relation having a
common initial segment. The space T,P1#" is in bijection with the connected
components of P52\ {z}. Given any tangent direction v € T,PL* we
denote by U (%) the corresponding connected component of P12\ {z}.

Proof. By [BR10, Corollary 7.11] there exists a sequence of basic tubes W,
exhausting U and such that W,, C Win+1 C U for every m € N*.

Fix a positive integer m > 0. As we have assumed that U is strictly
contained in P, the topological boundary of W,, is a non-empty finite set
of type II points of P12, The convex hull I, of Otop Wi is thus a subgraph
of P21 with finitely many endpoints.

If W,, is an open disk, we set X,,, to be the closed disk of same centre and
same radius as W,,,. Otherwise, consider the following strict finite subtree I
of P13, Let I'?. be the open subset of I',, consisting of T',,, with its endpoints
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removed. Pick a point x in I',,\T'?,. There are at most finitely many tangent
directions at z containing points of the complement in U and not contained
in I';,,. For every such tangent direction, attach a segment to I',, in that
direction and in such a way that it is contained in W,,+1 and such that its
endpoint is a type II point. If no such tangent direction exists, lengthen that
edge ending at = such that the new endpoint is again of type II and belongs
to Wit1. Denote by I' the strict finite subtree obtained this way. Observe
that all the boundary points of I, are contained in T'°.

Let rp : P4 — T be the natural retraction map. The basic tube W,
is precisely 7 (T'9,). Setting X, = rp ' (T'n), clearly one has W, C X, C
W1 Let zi,..., 2, be the endpoints of I'p,, where z;; = N ri; Ar€ of
type II. The set X,,, is homeomorphic to P1#" minus the strict open disks
]D)(aij; r,-j), j=1,...,m, and is thus strictly affinoid. O

The following proposition will be essential for the proof of Theorem [Cl

Proposition 7.4. Let U be a basic tube in P12, There exists a positive
constant C depending only on U such that for every harmonic function g :
U — R there exists an analytic function h: U — AL\ {0} such that

sup |g — log |h|| < C.
U

Proof. If U is either P1#" or D, the assertion is trivial, because every har-
monic function on D or on P is constant by [BRI0, Proposition 7.12].
We may thus assume that U is of the form D\ U, D(a;,r;) with r; € ||,
0 <r <1land|a| <1fori=1,...,m The topological boundary of U
consists of m + 1 type II points.

By the Poisson formula [BR10), Proposition 7.23|, we may find real num-
bers co, ..., ¢y with Y 7" ¢; = 0 such that for all z € U

_cO+ZcZ log (T — a;)(2)].

Pick non-zero integers nq, ..., n,, such that |¢; —n;| < 1 and b € k such that
|log |b| — co| < 1. Consider the map h: U — Ala2\ {0},

—bH —a;)"

Since a; ¢ U, the function log |h| is harmonic on U and we have

Suplg loglhll<|Co—10g|b||+Z|Cz— I-Sgplogl(T—az)(Z)l-
=1

The functions log|(T" — a;)(z)| are bounded on U and it follows that the
right-hand side of the inequality is bounded. O
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7.3. Green functions after Kawaguchi-Silverman. Consider an endo-
morphism of the N-dimensional projective analytic space f : PV:an — pN.an
of degree d > 2. Denote by f its n-th iterate. Fixing homogeneous coordi-
nates, such a map can be written as f = [Fy : - -+ : Fiy], with F; homogeneous
polynomials of degree d without non-trivial common zeros.

Denote by p : AN*TLan\ fo} — PN:an the natural projection map. An
endomorphism f of PV can be lifted to a map F : ANThan _, AN+lan
such that po F' = fop. One can take for instance F' = (Fp,--- , Fn). In the
sequel, we will always choose lifts of f such that all the coefficients of the
F;’s lie in k° and at least one of them has norm 1.

Given Ty,...,Tn affine coordinates of ANT1LAa" and a point z € ANTLan,
we define its norm as |z| = maxo<;<n |Ti(z)|. Analogously, we set |F(z)| =
maxo<i<n |Fi(z)|. With these norms in hand, we may now define the Green
function associated to f following Kawaguchi and Silverman [KS07, [KS09],
see [Sib99] for the complex case.

Proposition-Definition 7.5. The sequence of functions
1
Gn(2) = 5 log |F"(2)

converges uniformly on ANTLan,
One defines the dynamical Green function associated to f as Gy(z) =
limy, 00 Gp,.

Proof. Let us show that the limit lim,, G, exists. The inequality |F(2)| < |z|?
is clear. Since the polynomials F; have no common zeros other than the
origin, by the homogeneous Nullstellensatz we may find a positive integer
s such that the homogeneous polynomial T} € k[Tp,...,Ty] belongs to the
ideal generated by Fp,...,Fn for every ¢ = 0,...,N. That is, for every
i there are homogeneous polynomials /\§ € k[Ty,...,Ty] such that T} =

Z;V:o )\3Fj For any z € ANT121 we have:

L |8 < i. . < s—d . .
2 = jmax [zl” < max [X;(2)Fj(2)] < max Cla|"™"- max |F;(2)]

for some positive constant C' depending only on the polynomials )\3 Hence,
for all z we have that

C- 2" < |F(2)] < 2%, (7.1)

and so

C-[F' ()" < [F'H(z)] < |[F™(2)]".
Set C1 = |log C|. Taking logarithms, one obtains
C
d_n.
By the ultrametric inequality, |Gy — Gr| < % for all j > 0 and for all n,
and so the limit Gy = lim,, .o, G, exists. U

‘Gn-‘rl - Gn’ < (72)
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Remark 7.6. Letting j go to infinity in (L2), one obtains the inequality

C
Gy — Gl < d—i. (7.3)
Theorem 7.7 (|[KS07]). i) The function Gy is continuous.

ii) For every A\ € k* and for every z € ANTLa e have that
Gr(X-2) = Gy(z) +log|A|.
iii) There exists a positive constant C' such that

sup |Gy(z) —loglz|| < C .
ZeANJrl,an
7.4. Fatou and Julia sets. Let us first discuss the one-dimensional situa-
tion, both in the complex and in the non-Archimedean setting.

Recall that there are several characterizations of the Fatou and Julia sets
of an endomorphism f of PL. The Fatou set F(f) can be defined as the
normality locus of the family of the iterates of f, and the Julia set J(f) as
its complement. Equivalently, one can set J(f) to be the support of unique
measure of maximal entropy, also referred to as the equilibrium measure, see
[Sib99], or as the closure of the repelling periodic points.

Some of these equivalences have a non-Archimedean counterpart. There
is a well-defined notion of the canonical measure of an endomorphism f of
PLan (see [FRLO4, [FRLO6] and [BRI0, §10.1]), and so one sets J(f) to be its
support and F(f) its complement. Using a similar definition of normality as
ours, it can be shown that the Fatou set agrees with the normality locus of
the family of the iterates of f [FKT12, Theorem 5.4].

One may as well consider the Fatou and Julia sets in restriction to the
set of rigid points of Ph# see [Sil07] for a survey on the topic. However,
notice that if f is a map with good reduction, i.e. if the reduction f of f is
a selfmap of P! of the same degree as f, then its Julia set contains no rigid
points [Sil07, Theorem 2.17].

We mention the following two characterizations of the intersections of
J(f) and F(f) with P13(k). It was shown in [FKT12, Theorem C] that
the intersection of the Fatou set F(f) with the set of rigid points in P18
agrees with the set of rigid points where the sequence of the iterates f” is
equicontinuous with respect to the chordal metric on P18 (k).

The Fatou set of a non-invertible complex endomorphism f of ]P’g for
N > 2 is defined as the normality locus of the family of the iterates. Its
complement is the support of the Green current, which is the unique positive
closed (1,1)-current that is forward invariant by f, see [Sib99, Théoréme
1.6.5] for a proof. There are several possible definitions for the Julia set of f,
see [Sib99, Définition 3.31]. We define the Julia set of f as the complement
of the Fatou set.

We now explore the non-Archimedean higher dimensional case. We con-
sider two different Fatou sets of f:
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Definition 7.8. The normal Fatou set Fyoorm(f) of an endomorphism f :
PN-an _y PN:an o f degree at least 2 is the set of all points z € PN# where the
family {f"} is normal.

The normal Julia set Jyorm (f) is the complement of Fyorm(f)-

Definition 7.9. Let p : ANtLan _ pNan po the ysual map. We define the
harmonic Fatou set Fyam(f) of f as the set of points z € PN having a
neighbourhood U such that the Green function Gy is strongly pluriharmonic
-1
on p~H(U).
The harmonic Julia set Jyarm (f) is the complement of Fyarm(f).

It follows directly from the definitions that both Fatou sets Fyorm(f) and
Fharm(f) are open and totally invariant.

The set Jparm(f) is always nonempty. Indeed, Chambert-Loir has con-
structed a natural invariant probability measure p; on PN:an and shown
that its support is contained in the complement of the locus where G is
strongly pluriharmonic, see [CL11, Proposition 2.4.4|. In other words, the
support of yy is included in the harmonic Julia set of f.

We do not know whether the Fatou set is always non-empty.

Example 7.10. Let z € PN be any rigid fived point for f such that the
eigenvalues of its differential D f(z) are all of norm at most 1. Then, we may
find an arbitrarily small open neighbourhood U of z which is f-invariant,
i.e. such that f(U) C U. After maybe reducing U, we may assume that
UcC{z=1,|z|<2,i=1,--- ,N}. We thus have:
1

1
dn

The second term converges uniformly to 0. On the open set p~Y(U), the func-
tion Gy is thus the uniform limit of the sequence % log ||, hence strongly
pluriharmonic. Hence z belongs to the harmonic Fatou set.

n
7

B

1
log | F| + —1
og |Fp'l + - og max

In dimension 1, it follows from the Woods Hole formula that any rational
map admits at least one indifferent fixed point p, i.e. such that |f/(p)| = 1.
We observe that the same result holds for any polynomial map f : A% —
A%31 that extends to an endomorphism of P22" so that Fyawm(f) # 0 in this
case.

Remark 7.11. In [KS09|, the authors define the Fatou set of an endo-
mophism of the N-th projective space IP){CV as the equicontinuity locus of the
family of iterates, which they prove to be the same as the locus where it
1s locally uniformly Lipschitz. However, the definition of the Fatou set in
terms of equicontinuity presents some difficulties already in dimension one.
Indeed, let k be a field of characteristic p > 0 and consider the polynomial
f(z) = pz% + cz, with |c| = 1. Then, the family of the iterates f" is normal
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at the Gauss point, but it is not equicontinuous at x4, see [BR10, Example
10.53].

7.5. Comparison between F, .., and Fj,.,. We expect our two notions
of Fatou sets to coincide.

Conjecture 2. For every non-invertible endomorphism f of the projective
space, we have that Fhorm(f) = Fhamm(f)-

In dimension 1, the equality follows from [FKT12, Theorem 5.4], and
we are able to prove one inclusion in general. Our argument relies on the
following result which gives a characterization of Fyam(f) in terms of a sort
of equicontinuity property for the iterates of f. Its proof follows its complex
counterpart.

Proposition 7.12. Let f : PNan — PNan pe an endomorphism of degree
d>2 and U a basic tube in PN-2n,

The Green function Gy is strongly pluriharmonic on the open set p Y U) C
ANFLan L0V if and only if for every n € N there exists a lift F,, of f™ on
U and a positive constant Cy such that e~ < |F,| < et on p~1(U) for all
n € N.

This result together with Theorem [Al implies the following:
Corollary 7.13. The harmonic Fatou set Fyarm (f) is contained in Fyomal (f).

Proof of Proposition[T12. Pick any lift F = (Fy,--- , Fn) of f, where F; €
k[Tp,- -+ ,Tn] are homogeneous polynomials of degree d without nontrivial
common zeros. We may assume that supp |F(z)| = 1. Recall from (73] that
there exists a positive constant Cy such that |Gy — G| < % for all n € N.

Let U be a basic tube on which G is strongly pluriharmonic. Let h,, €

gN +1(U) and let b, be non-zero real numbers such that G is the uniform
limit of the sequence b, -log |h,|. After maybe extracting a subsequence and
renumbering it, we may assume that

C
Gy — b - log | < =

Lo (ERL
@78 \ [ [P

Vn >0
on U. Thus, we have
€
dn

log|Fn| - bn . 10g|hn|

< max {|Gy — by, - log |h,||, |Gy — Gy}
< O
S
So we see that for n > 0
—c I c
e 1 S W S e 1. (74)

Since the functions h,, have no zeros on U, each F;, := ﬁ is a lift of f™.
n
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Assume conversely that on U, for every n € N there exists a lift F, of
f™ such that e~ < |F,| < e for some positive constant C;. Then, for

every n € N we may choose a non-vanishing function h, on U such that
F" = h, - F,. It follows that

1 1 1
G, = d—nlog\F”\ = d—nlog\hnl + d—nlog |F| -
The second term converges uniformly to 0. On the open set p~1(U), the func-
tion G is thus the uniform limit of the sequence din log |hy|, hence strongly
pluriharmonic. O

7.6. Hyperbolicity of the Fatou components. Recall that Mory(X,Y)
denotes the set of analytic maps from X to Y.

Definition 7.14. Let Q) be a relatively compact subset of an analytic space
Y and U a basic tube.

The family Mor (U, Q) is said to be normal if for every sequence of analytic
maps {fn} C Mor,(U,Q2) there exists a subsequence fn; that is pointwise
converging to a continuous map f : U — Y.

Remark 7.15. In the complex setting, the previous definition corresponds
to the family Hol(U, Q) being relatively compact in Hol(U,Y). The complex
definition of normality for a non-compact target is slightly different, since it
allows for a sequence to be compactly divergent [Kob98, §I.3].

Let f : PN:an _y pNan he ap endomorphism of degree at least 2. Theorem
thus states that for every connected component €2 of the harmonic Fatou

set Flam(f) and for every connected open subset U of P the family
Mory (U, ) is normal.

Proof of Theorem[d Let Q be a connected component of Flarm (f) of an en-
domorphism f : PVan — PN.an of degree at least 2. Let U be any connected
open subset of P1# . Our aim is to show that the family Mor (U, Q) is
normal.

The projective space PY:# can be covered by N + 1 charts Vp,...,Vyx

analytically isomorphic to DY. For every i = 0,--- , N, let s; : {z € PN:an .
2z # 0} — ANTLan be the analytic local section of p sending the point
z=1z20:...:2N] to (2—3,...,'221,1,%,...,2—12’). Let g : U — Q be an

analytic map. We claim that for any compact subset K C U the map g,
admits a lift to p~(Q).

Suppose first that U is not the whole P12, By Proposition [73] there
exists a sequence of basic tubes W,,, exhausting U and a sequence of affinoid
subspaces X, satisfying

W CXnmCU.

Pick any compact subset K C U. For m sufficiently large, K is contained
in some X,,. Fix m € N*. Cover X,, by sets Ui(m) = g 4(V;) N X,, with
0 < i< N. On every Uigm) = g Y Vi) N g7 *(Vj) N X, we know that
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posjog = posjog, and thus s;og = (pl(-;.n)-(sj og) for some gpl(-;»n) € OX(UZ-(JW)).
Since X, is an affinoid subspace of P13 we have that H'(X,,, O*) = 0 by
[Put80]. We may thus find ¢; € OX(Ui(m)) and @; € OX(U;m)) such that
(m)
cpg-n) = spfm). On X,,, consider the following local lifts of g:
QO.

J

G U™ @), g = B2,

Pi

It follows that g;"* = g;" on UZ-(;H), and hence we have a lift g™ : X,, —
p 1) of g as required.

By definition of the harmonic Fatou set, the Green function Gy of f is
strongly pluriharmonic on p~!(£2), and thus G o g™ is harmonic on X,,.

Let g, : U — Q be a sequence of analytic maps. For every X, consider
the lifts ¢, : X, — p~1(Q) of the restriction of g, to X,, constructed
above.

Fix a sufficiently large real number C' > 0 and consider the set M = {z €
ANTLan {0} + L <|Gf(2)| < C}. By Theorem [T, the set M is compact.
By Proposition [[4] for every n and every m there exists an analytic map

™ Wy, — AL\ {0} such that
sup |Gy o g, —log |h]| < C.
Wm

We set g, = *‘7}?—:. Each ¢, : W,, — p 1) is a lift of g, and its
image lies in the compact M. By Theorem [A], there exists a subsequence
of g, converging pointwise to a continuous map. By a diagonal extraction

argument, we conclude that the family Mory (U, §2) is normal.

The case U = P12 follows by writing P5®" as a finite union open disks.
O

7.7. Curves in Fatou sets. The aim of this section is to prove Theorem [D]
i.e. to show that harmonic Fatou components contain no nontrivial image
of Aban\ {0}.

We briefly observe the following fact that follows almost directly from the
work of Chambert-Loir.

Proposition 7.16. Suppose that C is an algebraic curve in PN and let
f o PNan  PNan be gny endomorphism of degree at least 2. Then the
harmonic Fatou set of f cannot contain a Zariski open subset of C.

In particular, a Fatou component contains no complete algebraic curve.
This supports the conjectural fact that any Fatou component should be Stein
(in the sense of |[Kie67]). Over the complex numbers, this result is proved
in [Ued94], [FS95, Mae04], but the proof relies on pluripotential techniques
which are not available at the moment over a non-Archimedean field.
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Proof of Proposition[716. Since the result is not central to our studies, we
shall only give a sketch of proof, which relies on special metrizations of line
bundles. We refer to [CL11 §2] for a detailed exposition of these notions.
Choose a homogeneous lift F' = (Fp,---,Fn) of f to Aévﬂ’an \ {0}, and
consider the associated Green function Gy = lim, din log |F™|. The function
G induces a continuous and semi-positive metrization |- |p in the sense of
Zhang on the tautological line-bundle O(1) on P41 see [CLIT] §2.1].

Pick any algebraic curve C in PN2" The restriction of the metrized line
bundle (O(1),| - |F) to C is again continuous and semi-positive. We may
thus consider its curvature, see [Thu05L Proposition 4.2.3|. It is a positive
measure p¢c on the Berkovich analytification of C' of mass deg-(O(1)) which
does not charge any rigid point, see [Thu05, §4.2.1]. The support of uc is
contained in Jyam(f), which implies the result. O

We shall use the following proposition:

Proposition 7.17. Let Q be an open subset of PN-a0,

If the family of analytic maps Mory, (ALY \ {0}, Q) is normal, then every
analytic map AL\ {0} — Q is constant.

As a direct application, we obtain:
Proof of Theorem [D. Tt follows from Theorem [C] and Proposition [[.I71 O

As a first step in proving Proposition [[. 17, we deal with a simpler partic-
ular case, that of entire curves.

Proof of the particular case of entire curves. Let ) be any open subset of
PN:an and assume that the family Morg (A Q) is normal. Suppose that
there exists a non-constant analytic map ¢ : A" — Q. Consider the
sequence of analytic maps from AL into © given by fn(2) = g(z"). By
normality there is a subsequence { fnj} that is pointwise converging to a
continuous map f : Alan — pN.an,

The Gauss point z, is fixed by all the maps z + 2", and so f(z4) = g(x,).
For every integer m > 0 let z,,, = Mo1—L € A2 Since every z,, lies in the

open unit disk D, we have that
flzm) = n}li)noo f"j (2m) = n}gnoog ((zm)™) = 9(0)

for all m. The continuity of f implies that the f(z,) tend to f(z,) as m
goes to infinity. It follows that g(x4) = ¢(0) is a rigid point of . As the
source AL is one-dimensional, g must be constant. O

In order to prove Proposition [[.17], we need to recall some basic topological
facts. Recall from §7.2] that given a point 2 € P1® we denote by U(%) the
connected component of P13\ {z} corresponding to the tangent direction
7€ T,Phan,

Let g : U C P1#" — P12 he a non-constant analytic map. For every point
x € U, the map g induces a tangent map dg(z) between T, U and Tg(m)Pl’an.
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Let ¥ be a tangent direction at z that is mapped to ¥ € Tg(x)IP’l’an by dg(z).
Then either g(U (%)) = U(¥") or g(U(¥)) = P12, This follows from the fact
that the map ¢ is open [BR10), Corollary 9.10].

Of special interest for us is the case when z is a type II point. Assume for
simplicity that both = and g(z) are the Gauss point. The space T, g]P’l’an is
isomorphic to ]P’}C, and the tangent map dg(x) : ]P’/%~C — ]P’/%~C and can be described
as follows. In homogeneous coordinates g can be written as g = [Gy : G1]
with Gy, G; € O(AL™) without common zeros by [FvdP04, Theorem 2.7.6],
where all the coefficients of Gy and (GG are of norm less or equal than one
and least one has norm one. Thus, we may consider the reduction map of g,
which is a non-constant rational map from IP’%C to itself, and hence surjective.
One can show that dg(z) is given by the reduction of g [BR10, Corollary
9.25].

Proof of Proposition[717. Suppose that Morg (A" \ {0},€) is normal. We
first deal with the case where ) is contained in P13, Let g : Ala2\ {0} —
P12" be a non-constant analytic map. We may assume that it is of the form
g = [Gp : G1] with G; : Ab3n\ {0} — AL analytic without common zeros
by [FvdP04l Theorem 2.7.6]. Our goal is to construct a sequence of analytic
maps from AL3\ {0} to itself such that the composition with g gives a
sequence g, : A3\ {0} — Q that admits no converging subsequence with
continuous limit.

Suppose first that there exists a type II point in PL#" having infinitely
many preimages in the segment 7' = {1y, € Ab : 0 < r < co}. Composing
with an automorphism of P1#" we may assume that this point is the Gauss
point. Let thus {7o,,} be a sequence of preimages of z.

Denote by V;, the compact set containing 7o, consisting of Ala"\ {0}
minus the open sets U(?)) and U(¥Ux), where ¥ and U are the tangent
directions at 79, pointing at 0 and at infinity respectively. As dg(no,r,,)
is surjective, we deduce that g(V,) avoids at most two tangent directions
at x4 After maybe extracting a subsequence, we may find a connected
component B of P1#n\ {z,} that is contained in g(V},) for all n > 0. As
a consequence, we may pick a rigid point ag in B and rigid points x, € V,
such that g(z,) = ao for every n € N.

Consider the sequence in Mory, (AL2\ {0}, P11 given by g, (2) = g(zn12™).
By normality, we may assume that g, converges to a continuous map gec-
The Gauss point x4 is fixed by g0, as gn(z4) = x4 for all n € N. For every
fixed n € N and every m < n, the map g, sends the set of all the m-th roots
of unity R,, to ag, and so g, maps every R,, to ag. For every m € N pick
a point ¢, € R, such that ¢, — x4 as m tends to infinity. We have that

goo(xg) = W%I_H)éogoo(gm) = ap ,

contradicting the continuity.
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Suppose next that every type II point in P1®" has at most finitely many
preimages in the segment T'. Pick a sequence of type II points {ng,, } with
rn, — +00 as n goes to infinity. By compactness, we may assume that the
points g(no ,) converge to some point Yo, € PLan We claim that the points
g(no,r) converge to a point Yy as r tends to infinity. To see this, fix a basic
tube V' containing y... Recall that O,V is a finite set of type II points.
By assumption, g(no,) does not belong to dyop V' for sufficiently large r. For
n > 0 we have that g(no,,) lies in V. Thus, g(no,) must belong to V for
r > 0.

Pick any r € Ry and consider the tangent direction ¢ at 7y, pointing
towards infinity. We may assume that g(U(¥)) avoids at most one rigid point
in P11 as otherwise Picard’s Big theorem [CR04] asserts that g admits an
analytic extension at infinity and we conclude by the case of entire curves.
After maybe varying the r,, we may find a rigid point ag € P1*" and rigid
points x,, with |z, | = r, such that g(x,) = ao for all n.

Consider the sequence g,(z) = g(z,2™) and assume that it admits a
continuous limit ¢g,,. Our previous argument shows that g., maps every set
Ry, to ag. The points g,(x4) converge to Y, by our claim, and hence g is
not continuous.

Assume now that €2 is an open subset of P2 Let g : Ab#\ {0} — Q
be a non-constant analytic map. This map can be written in homogeneous
coordinates as g = [Gp : ... : Gy], with G; € OX(Ala"\ {0}). As g is not
constant we may assume that G is non-constant and that G is not a scalar
multiple of Gy. We may assume by [FvdP04, Theorem 2.7.6] that Gy and
(G1 have no common zeros. As a consequence, the map defined on the image
of g by

m:[Go(2) i ... : GN(2)] = [Go(2) : G1(2)]
is well-defined and analytic. By construction 7 o g is non-constant and ana-
lytic. By the previous case we may find z,, € k> such that no subsequence
of {m o g(x,nz™)} has a continuous limit, and thus neither {g(z,2™)}. O
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