
HAL Id: hal-01347127
https://hal.science/hal-01347127v1

Preprint submitted on 20 Jul 2016 (v1), last revised 30 Dec 2017 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NON-ARCHIMEDEAN NORMAL FAMILIES
Rita Rodríguez Vázquez

To cite this version:

Rita Rodríguez Vázquez. NON-ARCHIMEDEAN NORMAL FAMILIES. 2016. �hal-01347127v1�

https://hal.science/hal-01347127v1
https://hal.archives-ouvertes.fr


NON-ARCHIMEDEAN NORMAL FAMILIES

RITA RODRÍGUEZ VÁZQUEZ

Abstract. We present several results on the compactness of the space
of morphisms between analytic spaces in the sense of Berkovich. We
show that under certain conditions on the source, every sequence of
analytic maps having an affinoid target has a subsequence that converges
pointwise to a continuous map. We also study the class of continuous
maps that arise in this way. Locally, they turn analytic after a certain
base change. We give some applications of these results to the dynamics
of an endomorphism f of the projective space. We define the Fatou
set as the normality locus of the family of the iterates {fn}. We then
generalize to the non-Archimedan setting a theorem of Ueda stating
that every Fatou component is hyperbolically imbedded in the projective
space.
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1. Introduction

The classical Montel’s theorem asserts that any family of holomorphic
functions on a domain in Cn with values in a ball is relatively compact for the
topology of the local uniform convergence [Mon07]. The proof uses Cauchy’s
estimates to obtain a uniform bound on the derivatives. By Ascoli-Arzelà’s
theorem the family then is equicontinuous and the result follows.

This result has several applications in complex dynamics. It also plays an
important role in the study of Kobayashi hyperbolic complex analytic spaces.
For instance, it is closely related to Zalcman’s reparametrization lemma
[Zal75], which is a key ingredient in the proof of Brody’s Lemma [Bro78],
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2 RITA RODRÍGUEZ VÁZQUEZ

characterizing compact Kobayashi hyperbolic complex analytic spaces in
terms of the non-existence of entire curves.

The aim of this paper is to study the compactness properties of the space
of morphisms between analytic spaces defined over a non-Archimedean com-
plete field, in analogy to the classical Montel’s Theorem. We therefore fix a
non-Archimedean complete valued field k, which may be trivially valued.

An approach to this problem using equicontinuity has already been treated
in the literature. Hsia gave in [Hsi00] an equicontinuity criterion for families
of meromorphic functions on a disk. In [KS09], the Fatou set of a morphism
of the projective space is defined as the equicontinuity locus of the family of
iterates with respect to the chordal metric. However, this approach is limited
by the fact that one cannot apply Ascoli-Arzelà’s theorem in this context.

We will work on analytic spaces as defined in [Ber90, Ber93]. The main
reason is that analytic spaces in the sense of Berkovich have good topological
properties: they are locally compact and locally pathwise connected, what
makes them a more adapted framework to arguments of analytic nature. The
analytic spaces we shall be mostly interested in are Berkovich analytifications
of projective varieties. Recall that the set of closed points of such a variety
forms a dense subset of its analytification with empty interior. We shall refer
to these points as rigid points. The previously mentioned equicontinuity
results concern only the set of rigid points.

More recently, Favre, Kiwi and Trucco proved an analogue of Montel’s
theorem on the Berkovich analytic projective line P

1,an
k , see [FKT12]. They

show that when k is algebraically closed and has residue characteristic 0,
then every sequence of analytic maps from any open connected subset X of
P
1,an
k avoiding three points has a subsequence that is pointwise converging

to a continuous map X → P
1,an
k . They made extensive use of Berkovich’s

geometry and their strategy benefits from the tree structure of P1,an
k .

We explore the higher dimensional case, and consequently use deeper facts
from Berkovich theory. Of particular relevance for us is the theorem by
Poineau stating that compact analytic spaces are sequentially compact, see
[Poi13]. This result is non-trivial, since Berkovich spaces are not metrizable
in general. We show:

Theorem A. Let k be a non-Archimedean complete field and X a good,
reduced, σ-compact, boundaryless strictly k-analytic space. Let Y be a k-
affinoid space.

Then, every sequence of analytic maps fn : X → Y admits a pointwise
converging subsequence whose limit is continuous.

The seemingly complicated hypothesis on the source space X are not such
in fact. We refer the reader to §2 for a detailed discussion on the techni-
cal assumptions on X. For the moment, let us indicate that two important



NON-ARCHIMEDEAN NORMAL FAMILIES 3

classes of k-analytic spaces satisfy these properties: analytifications of al-
gebraic varieties and connected components of the analytic interior of an
affinoid space. The latter are the main examples of basic tubes. They have
been thoroughly studied by Bosch and Poineau, see [Bos77, Poi14].

Remark that the boundaryless assumption is crucial, as problems arise
even in the affinoid case. Consider for instance the sequence of analytic
maps from the closed unit disk D̄ into itself fn : z 7→ zn!. For every n ∈ N,
the Gauss point is a fixed point for fn. One can show that fn is pointwise
converging, but its limit map is zero on the whole open unit disk and hence
not continuous.

In view of Theorem A, we say that a family of analytic maps F from a
boundaryless k-analytic space X into a compact space Y is normal at a point
point x ∈ X if for every sequence {fn} in F there exists a neighbourhood
V ∋ x and a subsequence fnj that is pointwise converging on V to some
continuous map f : V → Y .

We now turn to the problem of describing the limits of pointwise converg-
ing analytic maps. As opposed to the complex setting, one cannot expect the
limit maps from Theorem A to be analytic. Indeed, when k is algebraically
closed any constant map f : X → Y , f ≡ y ∈ Y , can be realized as the limit
of constant analytic maps. However, f is analytic if and only if y is rigid.

Inspite of not being analytic in general, the continuous limit maps obtained
in Theorem A are of a very particular kind: they turn analytic after a suitable
base change. In order to specify this phenomenon precisely, we rely again in a
crucial way on the results of Poineau. Let X be a k-analytic space. For every
complete extension K of k, we denote by πK/k : XK → X the usual base
change morphism. Every k-point in X defines a K-point in XK in a natural
manner. When the base field k is algebraically closed, Poineau [Poi13] shows
that this inclusion admits a unique continuous extension σK/k : X → XK ,
which by construction defines a section of πK/k.

Theorem B. Let k be a non-Archimedean algebraically closed complete field
and X a good, reduced, σ-compact, boundaryless strictly k-analytic space.
Let Y be a k-affinoid space. Let fn : X → Y be a sequence of analytic maps
converging pointwise to a continuous map f .

Then, for any point x ∈ X one can find an affinoid neighbourhood Z of
x, a complete extension K/k and a K-analytic map F : ZK → YK such that

f |Z = πK/k ◦ F ◦ σK/k.

It would be interesting to find a K-analytic map F such that the stronger
condition πK/k ◦ F = f ◦ πK/k holds, but our proof does not show this.

Let us explain the proof of Theorem B in the case where X is the open
r-dimensional polydisk Dr

k and Y the closed s-dimensional polydisk D̄s
k. The

key idea is to view the set of all analytic maps from Dr
k to D̄s

k as the set
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of rigid points of an infinite dimensional polydisk Morr,s∞ . This procedure
can be easily illustrated in the polynomial case. Observe that a polynomial
map sending Dr into D̄s is given by finitely many coefficients in the base
field k with norm at most 1, and so defines a rigid point in an appropriate
dimensional closed unit polydisk. This procedure can be done similarly for
general analytic maps. In this case, the coefficients define a rigid point in an
infinite dimensional polydisk denoted Morr,s∞ .

Now take a sequence fn : Dr → D̄s of analytic maps, associated to a
sequence of rigid points {α(n)} in Morr,s∞ . It can be showed that the fact

that fn converges pointwise to some continuous map f amounts for α(n) to
converging to some point α in Morr,s∞ . Observe that α is not rigid in general,
but after a base change by H(α), the complete residue field at α, the point α
can be lifted to a rigid point in Morr,s∞,H(α). This point defines aH(α)-analytic

map F : Dr
H(α) → D̄s

H(α) that satisfies the equality f = πH(α)/k ◦F ◦σH(α)/k.

Observe that F is not canonical, as it depends on the choice of the rigid
point in Morr,s∞,H(α) lying over α.

We go beyond Theorem B and show that to any point α in Morr,s∞ one
can associate a continuous map from Dr to D̄s in a continuous way, in the
sense that for any sequence of points α(n) in Morr,s∞ converging to α ∈ Morr,s∞ ,
the corresponding sequence of continuous maps converges everywhere point-
wise to the continuous map associated to α. In Section 4 we detail this
correspondence.

This result suggests the following definition. We say that a continuous
map f between analytic spaces is weakly analytic if it is locally of the form
f = πK/k ◦ F ◦ σK/k for some complete extension K of k and some K-
analytic map F . In fact, weakly analytic maps can be characterized as being
locally the pointwise limit of analytic maps. In §5 we shall prove that weakly
analytic maps share many properties with analytic maps, such as an isolated
zero principle on curves.

We give applications of Theorem A to the dynamics of an endomorphism

f of the k-analytic projective space P
N,an
k of degree at least 2. We define the

Fatou set of such an endomorphism as the normality locus of the family of
iterates {fn}n∈N. Kawaguchi and Silverman associated a non-Archimedean
Green function Gf to f in [KS07, KS09], generalizing the classical complex
construction by Hubbard [Hub86] and Fornaess and Sibony [FS95]. We show
in Theorem 6.10 that the Fatou set of f can be characterized in terms of
the strong pluriharmonicity locus of the Green function Gf in the sense of
Chambert-Loir [CL11].

There are two main results on the geometry of the Fatou set of an endo-
morphism of the complex projective space of degree at least 2, see [Sib99]
for a complete survey. Every Fatou component is a Stein space [FS95] and
is hyperbolically imbedded in PN

C in the sense of Kobayashi [Ued94].
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Here we shall focus our attention on the hyperbolicity properties of the
Fatou components in the non-Archimedean setting. To motivate our next
result, recall that a subspace Ω of a complex analytic space Y is hyperboli-
cally imbedded if the Kobayashi distance on Ω does not degenerate towards
its boundary [Kob98, Lan87]. If Ω is relatively compact in Y , then Ω is
hyperbolically imbedded in Y if and only if the family Hol(D,Ω) of holomor-
phic maps from the open unit disc D to Ω is relatively locally compact in
Hol(D, Y ), see [Lan87, §II, Theorem 1.2].

In our context, we prove:

Theorem C. Let f : PN,an → PN,an be an endomorphism of degree at least 2.
Let Ω be a Fatou component of f , and let U be any connected open subset of
P1,an. Then, the family Mor(U,Ω) of analytic maps from U to Ω is normal.

Note that in the non-Archimedean setting checking the normality for every
open subset U of P1,an is stronger than just for the open unit disk, as opposed
to the complex case, see [Kob98, Theorem 5.1.5]. For instance, the family
Mor(D,A1,an \ {0}) is normal, whereas this is not true if one replaces the
source by the punctured open unit disk.

It remains open whether in Theorem C one can take U to be any basic
tube.

As a corollary of Theorem C we have the following Picard-type result:

Corollary D. Let Ω be a Fatou component of an endomorphism f : PN,an →
PN,an of degree d ≥ 2. Then every analytic map from A1,an \ {0} to Ω is
constant.

This paper is structured as follows. In Section 2 we review some basic facts
about Berkovich spaces and summarize several results on universal points
from [Poi13] that will be needed in the sequel. Section 3 comprises the proof
of Theorem A. In Section 4 we describe the structure of the topological space
that parametrizes the continuous maps that appear as pointwise limits of
analytic maps between polydisks. We also give a proof of Theorem B. The
properties of these maps are studied in §5. Finally, in Section §6 we give
applications to dynamics of the previous results and prove Theorem C and
Corollary D.

Acknowledgements. I would like to thank mu advisor Charles Favre for
his constant support during the preparation of the paper. I would also like
to show my gratitude to Jérôme Poineau and Antoine Ducros for answering
numerous questions.

2. General facts on analytic spaces

Throughout this paper, k is a field endowed with a non-Archimedean
complete norm |.|. We do not exclude the trivially valued case. Except in
§3.5, k will be algebraically closed. We write |k×| = {|x| : x ∈ k×} ⊆ R+ for
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its value group and k◦ = {x ∈ k : |x| ≤ 1} for its ring of integers. The latter
is a local ring with maximal ideal k◦◦ = {x ∈ k : |x| < 1}. The residue field

of k is k̃ = k◦/k◦◦.

The basic reference for this section is Berkovich’s original text [Ber90].
See also [Tem15] for a more recent survey.

2.1. Analytic spaces. Pick a positive integer N and an N -tuple of positive
real numbers r = (r1, · · · , rN ). Denote by k{r−1T} the set of power series
f =

∑
I aIT

I , I = (i1, · · · , iN ), with coefficients aI ∈ k such that |aI |r
I → 0

as |I| := i1 + · · ·+ iN tends to infinity. The norm ‖
∑

I aIT
I‖ = maxI |aI |r

I

makes k{r−1T} into a Banach k-algebra. When r = (1, · · · , 1), the previous
algebra is called the Tate algebra and we denote it by Tn.

Let ϕ : B → A be a morphism of Banach k-algebras. The residue norm
on B/Kerϕ is defined by |a| = infϕ(b)=a |b|, and we say that ϕ is admissible
if the residue norm is equivalent to the restriction to the image of ϕ of the
norm on A.

A Banach k-algebra A is called affinoid if there exists an admissible sur-
jective morphism of k-algebras k{r−1T} → A. If ri ∈ |k

×| for all i, then A
is said to be strictly affinoid.

For any k-affinoid algebra A, we denote by X = M(A) the set of all
bounded multiplicative seminorms on A whose restriction to k is the absolute
value on k. Given f ∈ A, its image under a seminorm x ∈ M(A) is denoted
by |f(x)| ∈ R+. The set M(A) is called the analytic spectrum of A and is
endowed with the weakest topology such that all the functions of the form
x 7→ |f(x)| with f ∈ A are continuous. The resulting topological space X
is compact and naturally carries a sheaf of analytic functions OX such that
OX(X) = A, see [Ber90, §2.3]). The locally ringed space (X,OX) is called
a k-affinoid space.

Given a point x ∈ X = M(A), the fraction field of A/Ker(x) naturally
inherits from x a norm extending the one on k. Its completion is the complete
residue field at x and denoted by H(x). When H(x) is a finite extension of
k (or equivalently when H(x) = k, since k is supposed to be algebraically
closed), we say that x is rigid. The set X(k) of rigid points of X is dense in
X.

A character is a bounded homomorphism A → K, with K any complete
extension of k. If L is a complete extension of K, we say that the characters
A → K →֒ L and A → K are equivalent. Composing the character A → K
with the norm on K gives rise to a seminorm on A that is bounded, and
thus corresponds to a point x ∈ M(A). Equivalent characters give rise to
the same point. Conversely, every point x ∈ M(A) induces a character
χx : A → H(x) in a natural way. Any other equivalent character A → K
giving rise to x can be decomposed as A → H(x) →֒ K.
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The closed polydisk of dimension N and polyradius r = (r1, · · · , rN ) ∈
(R+

∗ )
N is defined to be D̄N

k (r) :=M(k{r−1T}). When r = (1, · · · , 1) we just

write D̄N , and when N = 1 we denote it by D̄. The Gauss point xg ∈ D̄ is
the point associated to the norm |(

∑
aiT

i)(xg)| := max |ai|.

General analytic spaces are ringed spaces (X,OX ) obtained by gluing to-
gether affinoid spaces. Difficulties arise in the gluing construction as affinoid
spaces are compact, and we refer to [Ber90, Ber93] for a precise definition.
Analytic spaces are locally compact and locally path-connected. Given an
analytic space X, we denote by |X| its underlying topological space.

The following topological result, due to Poineau, will be systematically
used throughout the paper:

Theorem 2.1 ([Poi13]). Every k-analytic space X is a Fréchet-Urysohn
space. In particular, every compact subset of X is sequentially compact.

In the following, we will always deal with good analytic spaces: these are
locally ringed spaces modelled on affinoid spaces. In other words, any point
in a good analytic space admits a neighbourhood isomorphic to an affinoid
space.

For any point x in a k-analytic space X, the stalk OX,x is a local k-algebra
with maximal ideal mx. It inherits an absolute value extending the one on
k, and the completion of OX,x/mx is again called the completed residue field
of x and denoted by H(x). In particular, when X is an affinoid space, this
definition coincides with the previous one.

The open polydisk of dimension N and polyradius r = (r1, . . . , rN ) ∈
(R+

∗ )
N is the set

DN
k (r) = {x ∈ D̄N

k (r) : |Ti(x)| < ri, i = 1, . . . , N}.

It can be naturally endowed with a structure of good analytic space by
writing it as the increasing union of N -dimensional polydisks DN

k (ρ) whose

radii ρ = (ρ1, · · · , ρN ) ∈ (R+
∗ )

N satisfy ρi < ri for all i = 1, . . . , N .

2.2. Analytic maps. A morphism of k-affinoid spaces M(A) → M(B) is
by definition one induced by a bounded morphism of Banach k-algebras ϕ :
B → A. The fibre ofM(A)→M(B) over a point y ∈ M(B) is isomorphic to
M(A⊗̂BH(y)), see §2.6 for the notion of complete tensor product. Indeed, let
y ∈ M(B) and let χy : B → H(y) be the associated character. By definition,

x is mapped to y if and only if the composite B
ϕ
→ A→ H(x) factors through

H(y). The latter is equivalent to the morphism χx factorizing through the
B-algebra morphism A⊗̂BH(y)→H(x) .

A morphism M(A) →M(B) is a closed immersion when ϕ is surjective
and admissible.

A surjective morphism ϕ : TN → A is called distinguished if the quotient
norm |.|ϕ induced by ϕ agrees with the sup norm on A, see [BGR84, §6.4.3].
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We say that A is distinguished if such an epimorphism exists. It can be
shown that over an algebraically closed field k, every reduced algebra (i.e.
without non-trivial nilpotents) is distinguished [BGR84, Theorem 6.4.3/1].

The key property of distinguished epimorphisms is that the reduction Ã is

isomorphic to the quotient T̃N/k̃er(ϕ).

Given any two k-analytic spaces X and Y , we let Mor(X,Y ) be the set
of all analytic maps from X to Y .

2.3. Analytification of algebraic varieties. To every algebraic variety
X over k one can associate a k-analytic space Xan in a functorial way; see
[Ber90, §3.4] for a detailed construction.

In the case of an affine variety X = Spec(A), where A is a finitely gen-
erated k-algebra, then the set Xan consists of all the multiplicative semi-
norms on A whose restriction to k coincides with the norm on k. This set
is endowed with the weakest topology such that all the maps of the form
x ∈ Xan 7→ |f(x)| with f ∈ A are continuous. Observe that any k-point
x ∈ X corresponds to a morphism of k-algebras A→ k and its composition
with the norm on k defines a rigid point in Xan. Since k is algebraically
closed, one obtains in this way an identification of the set of closed points in
X with the set of rigid points in Xan.

The analytification of a general algebraic variety X given by an affine open
cover is obtained by glueing together the analytification of its affine charts in
natural way. Analytifications of algebraic varieties are good analytic spaces,
and closed points are in natural bijection with rigid points as in the affine
case.

2.4. Boundary and interior. Any k-analytic space X comes with natural
notions of boundary and interior, which are defined as follows.

A point x in an affinoid space X lies in the interior of X if there exists a
closed immersion ϕ : X → D̄N(r) for some polyradius r and some integer N
such that ϕ(x) lies in the open polydisk DN (r).

If X is an analytic space, a point x belongs to its interior if it admits
an affinoid neighbourhood U such that x belongs to the interior of U . We
let Int(X) be the open set consisting of all the interior points in X. Its
complement ∂(X) is called the boundary of X. It is a closed subset.

The analytification of an algebraic variety is boundaryless.

In the remaining of this section, we explain how to compute the interior
of a strictly k-affinoid space X =M(A). Recall that the spectral radius of
f ∈ A is defined by

ρ(f) = lim
n→∞

‖fn‖1/n,

where ‖ · ‖ is the Banach norm on A. When A is reduced, then ρ is a norm
equivalent to ‖ · ‖. It follows that A◦ = {f ∈ A : ρ(f) ≤ 1} is a local ring
whose maximal ideal is equal to A◦◦ = {f ∈ A : ρ(f) < 1}. The reduction of

A is then defined as Ã := A◦/A◦◦, and the reduction of X is X̃ = Spec(Ã).
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Observe that Noether’s normalization Lemma [BGR84, Corollary 6.1.2/2]

implies that for any strictly k-affinoid algebra A, the reduction Ã is a finitely

generated k̃-algebra, and thus X̃ is an affine variety over the residue field k̃.
The reduction of the closed polydisk D̄N

k is the affine space AN
k̃

.

The reduction map red : X → X̃ is defined as follows. Every bounded
morphism of Banach k-algebras A → B induces a morphism between their

reductions Ã → B̃. In particular, from the character χx : A → H(x) associ-

ated to a point x ∈ X we obtain a k̃-algebra morphism χ̃x : Ã → H̃(x). We
set red(x) := Ker(χ̃x). This map is anticontinuous.

Lemma 2.2. Let X be a strictly k-affinoid space. Then,

Int(X) = {x ∈ X : red(x) is a closed point}.

Proof. Let ϕ : X → D̄N be a closed immersion. We have the following
diagram:

X

red
��

ϕ
// D̄N

red
��

X̃
ϕ̃

// AN
k̃

Let x ∈ X. If its reduction x̃ = red(x) is a closed point then so is ϕ̃(x̃).
The inverse image of ϕ̃(x̃) is isomorphic to an open polydisk DN , and the
commutativity of the diagram implies that ϕ(x) lies in DN .

Let A be the underlying affinoid algebra of X and pick a point x ∈ Int(X).

By [Ber90, Proposition 2.5.2], the image of the morphism of k̃-algebras χ̃x :

Ã → H̃(x) induced by χx is integral over k̃. This implies that χ̃x(Ã) ≃

Ã/Ker(χ̃x) is a field. Thus, x̃ is a closed point of Ã. �

Proposition 2.3. Let X = M(A) and Y = M(B) be strictly k-affinoid
spaces, and let f : X → Y be a finite morphism. Then, Int(X) = f−1(Int(Y )).

Proof. The morphism f : X → Y induces the following commutative dia-
gram:

X

red
��

f
// Y

red
��

Spec(Ã)
f̃

// Spec(B̃)

Let x be a point in Int(X). By Lemma 2.2, its image f(x) belongs to Int(Y ).
Let now x ∈ X be such that f(x) = y lies in Int(Y ). By the previous

lemma, we have to show that red(x) is a closed point of X̃. Consider the

ring homomorphism ϕ : B̃ → Ã inducing f̃ . It induces a morphism ϕ′ :

B̃/ker(χ̃y) → Ã/ker(χ̃x), as the diagram above is commutative. Observe
that ϕ is integral, since it is finite ([BGR84, Theorem 6.3.5/1]), and thus ϕ′

is also integral. As y ∈ Int(Y ), by Lemma 2.2 the quotient B̃/ker(χ̃y) is a
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field. This implies that Ã/ ker(χx) is a field and thus that red(x) is a closed
point. �

Remark 2.4. The previous results hold for any (not necessarily strictly)
affinoid space. In that case, one needs to use Temkin’s graded reduction of
affinoid algebras ([Tem00, Tem04]).

2.5. Basic tubes. We introduce the following terminology.

Definition 2.5. A k-analytic space X is called a basic tube if there exists a
reduced equidimensional strictly k-affinoid space X̂ and a closed point x̃ in
its reduction such that X is isomorphic to red−1(x̃).

By convention, a basic tube is therefore reduced.

Example 2.6. Let a1, · · · , am be non-rigid points in P1,an. Then every con-
nected component of P1,an \ {a1, · · · , am} is a basic tube.

Recall that a topological space is σ-compact if it is the union of countably
many compact subspaces. For instance, open Berkovich polydisks or the
analytification of an algebraic variety are σ-compact spaces. However, note
that σ-compactness is a non-trivial assumption, since examples of non σ-
compact spaces include the closed disk with the Gauss point removed for a
base field k with uncountable reduction k̃.

Theorem 2.7. A basic tube is connected, has no boundary and is σ-compact.

The fact that any basic tube is connected is a deep theorem due to [Bos77]
and [Poi14]. The other two statements follow from the next proposition of
independent interest.

Proposition 2.8. For every basic tube X there exist a strictly k-affinoid
space X̂ and a distinguished closed immersion into some closed polydisk X̂ →
D̄N such that X is isomorphic to X̂ ∩ DN .

Proof. Let X̂ =M(A) be an equidimensional reduced k-affinoid space and
let x̃ be a closed point in its reduction such that red−1(x̃) is isomorphic
to X. Recall from §2.2 that there exists a distinguished closed immersion
ϕ : X̂ → D̄N , as k is algebraically closed and A is reduced.

Hence, Ã is isomorphic to k̃[T1, · · · , TN ]/k̃er(ϕ) by [BGR84, Proposition

6.4.3/4], and the induced morphism Spec(Ã) → AN
k̃

is a closed immersion

by [BGR84, Theorem 6.3.1/6]. We may assume that x̃ is mapped to 0. We
conclude that x is mapped to a point in red−1(0), which is isomorphic to DN

by [BL85, Proposition 2.2]. �

2.6. Universal points and base changes. Let A and B be two Banach
k-algebras and denote by |.|A and |.|B their respective Banach norms. On
the tensor product A ⊗k B we have the seminorm that associates to every
f ∈ A⊗k B the quantity

||f || = inf max |ai|A · |bi|B,
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where the infimum is taken over all the possible expressions of f of the form
f =

∑
i ai⊗bi with ai ∈ A and bi ∈ B. The seminorm ||.|| induces the tensor

norm on quotient the A ⊗k B/{||f || = 0}, whose completion is a Banach
k-algebra satisfying a suitable natural universal property. This algebra is
called the complete tensor product of A and B and we denote it by A⊗̂kB,
see [BGR84, §2.1.7]).

Given a k-affinoid algebra A and a complete extension K of k, the K-
algebra A⊗̂kK is in fact K-affinoid, thus we may define the scalar extension
of the k-affinoid space X = M(A) by K as the K-affinoid space XK :=
M(A⊗̂kK). The natural morphism A → A⊗̂kK induces a base change
morphism πK/k : XK → X. This construction can be done similarly for
general k-analytic spaces.

Recall the following definition from [Ber90, Poi13]:

Definition 2.9. Let X be a k-analytic space. A point x in X is universal
if for every complete extension K of k the tensor norm on H(x)⊗̂kK is
multiplicative.

The key feature of universal points is that they can be canonically lifted
to any scalar extension. To explain this fact we may suppose that X is an
affinoid space with underlying algebra A. Pick any universal point x ∈ X
and fix any complete extension K of k. The k-algebra morphism A → H(x)
corresponding to x ∈ X induces a K-algebra morphism A⊗̂kK →H(x)⊗̂kK.

Since x is universal, the tensor norm on H(x)⊗̂kK is multiplicative and so
the composite of A⊗̂kK → H(x)⊗̂kK with the tensor norm defines a point
in XK . The point in XK obtained by these means is denoted by σK/k(x).

Observe that if x ∈ X is rigid, then so is σK/k(x), and that σK/k is a
section of πK/k on the set of universal points of X.

Theorem 2.10 ([Poi13]). Let k be an algebraically closed complete field and
X a k-analytic space. Then, every point x ∈ X is universal, and the map
σK/k : X → XK is continuous.

We conclude this section by recalling the following construction.

Lemma 2.11. Let X be a good k-analytic space and x a point in X. Then
for every complete extension K of H(x), the fibre π−1

K/k(x) contains a rigid

point.

Proof. Pick a point x ∈ X. We may suppose K = H(x). Since the statement
is local at x, we may replace X by any neighbourhood of x. The k-analytic
space X being good, we may suppose it is an affinoid space. Denote by A
the underlying k-affinoid algebra. Consider the character χx : A → H(x).
The morphism A⊗̂kH(x)→ H(x) sending f ⊗ a to χx(f) · a is by definition
a rigid point in XH(x) lying over x. �

We shall denote by τ(x) ∈ XH(x) the rigid point lying over x ∈ X obtained
in the previous proof. This point τ(x) is not to be confused with σK/k(x).
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3. Montel-type results

The aim of this section is to prove Theorem A. To that end, we fix a
non-Archimedean complete valued field k that is algebraically closed. Under
suitable assumptions on the k-analytic spaces X and Y we shall prove that
any sequence of analytic maps fn : X → Y admits a subsequence with
continuous limit.

We shall do this in several steps: first we show how to extract subsequences
that converge pointwise; then we prove the continuity of the limit.

3.1. Pointwise convergence on open polydisks. In this section, we
prove:

Theorem 3.1. Let X be a basic tube defined over k and let Y be a k-affinoid
space.

For any sequence of analytic maps fn : X → Y , there exists a subsequence
that converges pointwise everywhere on X.

Given a multi-index I = (i1, · · · , ir), denote by |I| = maxj ij .

Proof. Let us first treat the case X = Dr. Consider a sequence of analytic
maps fn : Dr → Y . Since any k-affinoid space can be embedded into a
polydisk, we may readily assume that Y = D̄s for some integer s.

Every analytic map fn : Dr → D̄s is of the form fn = (f
(n)
1 , · · · , f

(n)
s ), with

f
(n)
l =

∑
I a

(n)
l,I T

I , where I = (i1, · · · , ir), |a
(n)
l,I | ≤ 1 and |a

(n)
l,I |ρ

I |I|→∞
−−−−→ 0

for every 0 < ρ < 1. For every l = 1, . . . , s, we set ‖f
(n)
l ‖ = maxI |a

(n)
l,I | ≤ 1.

For every integer δ, we introduce the truncated maps

f δ
n = (f

(n)
1,δ , · · · , f

(n)
s,δ ) =


∑

|I|≤δ

a
(n)
1,I T

I , · · · ,
∑

|I|≤δ

a
(n)
s,I T

I


 .

Observe that since |a
(n)
l,I | ≤ 1, the points

αn,δ :=
(
(a

(n)
1,I )|I|≤δ, · · · , (a

(n)
s,I )|I|≤δ

)
(3.1)

are rigid points and belong to D̄(δ+1)rs(k) for all n.

The polydisk D̄
(δ+1)rs
k is sequentially compact by Theorem 2.1, therefore

the sequence {αn,δ}n has a converging subsequence for every δ ≥ 0.
By a diagonal extraction argument, and possibly by replacing fn by a

subsequence, we may thus suppose that for every δ there exists αδ ∈ D̄
(δ+1)rs
k

such that αn,δ → αδ.

Pick any z ∈ Dr. Our goal is to show that the sequence fn(z) converges.
Observe that this is equivalent to checking that for every g ∈ Ts, the sequence
of real numbers {|g(fn(z))|}n∈N is converging.
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If z is a non-rigid point in Dr, we make a base change by H(z) and take
a rigid point x ∈ Dr

H(z) lying over z (see Lemma 2.11). The maps fn induce

analytic maps XH(z) → YH(z) and g defines an analytic function on YH(z).
By definition,

|g(fn(z))| = |g(fn(πH(z)/k(x))| = |g(fn(x))|,

so that |g(fn(z))| converges if and only if |g(fn(x))| converges.

We may thus suppose that z is a rigid point. We fix a positive real number
ǫ > 0, and expand g =

∑
J gJT

J in the Tate algebra Ts. We also consider
a sufficiently large integer d ≥ 0 such that max|J |≥d+1 |gJ | < ǫ. Then the

truncation g̃ =
∑

|J |≤d gJT
J satisfies

∣∣|g(fn(z))| − |g̃(fn(z))|
∣∣ ≤

∣∣g(fn(z)) − g̃(fn(z))
∣∣

=

∣∣∣∣∣∣

∑

|J |≥d+1

gJ

s∏

l=1

(
f
(n)
l (z)

)jl
∣∣∣∣∣∣

≤ max
|J |≥d+1

|gJ |

s∏

l=1

∥∥∥f (n)
l

∥∥∥
jl
≤ max

|J |≥d+1
|gJ | < ǫ

It follows that if |g̃(fn(z))| is a Cauchy sequence for all truncations of arbi-
trarily large degree d, then |g(fn(z))| will also be a Cauchy sequence.

In other words, if |g(fn(z))| converges when g is a polynomial, then it
also does for any g ∈ Ts. From now we may and shall assume that g is a
polynomial of degree d.

Recall the definition of the truncated maps f δ
n = (f

(n)
1,δ , · · · , f

(n)
s,δ ). We

have:

∣∣∣g(f δ
n(z))

∣∣∣ =

∣∣∣∣∣∣

∑

|J |≤d

gJ

s∏

l=1

(
f
(n)
l,δ (z)

)jl
∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

|J |≤d

gJ

s∏

l=1


∑

|I|≤δ

a
(n)
l,I z

I




jl
∣∣∣∣∣∣
= (∗)

Taking the polynomial in (δ + 1)rs-variables

R :=
∑

|J |≤d

gJ

s∏

l=1


∑

|I|≤δ

Sl,Iz
I




jl

∈ k
[
{Sl,I}1≤l≤s,|I|≤δ

]
, (3.2)

one sees that (∗) = |R(αn,δ)|, and so |R(αn,δ)| → |R(αδ)| as n tends to

infinity since αn,δ → αδ. In particular, the sequence
∣∣g(f δ

n(z))
∣∣ converges.

Pick any ρ < 1 such that z is a rigid point in D̄r(ρ), and denote by ‖.‖
the Banach norm on k{ρ−1T1, · · · , ρ

−1Tr}. Observe that

‖f
(n)
l − f

(n)
l,δ ‖ = ‖

∑

|I|≥δ+1

a
(n)
l,I T

I‖ = max
|I|≥δ+1

|a
(n)
l,I | ρ

|I| ≤ ρδ+1 .

Since g is a polynomial, we may assume its coefficients have norm at most 1.

To simplify notation, set f
(n)
s+1 ≡ 1, f

(n)
0,δ ≡ 1 for all δ and for all n. We have:
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∣∣∣g(fn(z))− g(f δ
n(z))

∣∣∣ =
∣∣∣∣∣
∑

J

gJ

[(
fn(z)

)J
−
(
f δ
n(z)

)J]
∣∣∣∣∣

=

∣∣∣∣∣
∑

J

gJ

[
s∑

l=1

((
f
(n)
l (z)

)jl −
(
f
(n)
l,δ (z)

)jl)
s∏

i=l+1

(
f
(n)
i (z)

)ji
l−1∏

k=0

(
f
(n)
k,δ (z)

)jk
]∣∣∣∣∣

≤ max
J,l
|gJ | ·

∣∣∣
(
f
(n)
l (z)

)jl −
(
f
(n)
l,δ (z)

)jl∣∣∣
s∏

i=l+1

∣∣∣f (n)
i (z)

∣∣∣
ji

l−1∏

k=0

∣∣∣f (n)
k,δ (z)

∣∣∣
jk

≤ max
J,l
|gJ | ·

∣∣∣
(
f
(n)
l (z)

)jl −
(
f
(n)
l,δ (z)

)jl∣∣∣ ≤ max
J,l
|gJ | ·

∣∣∣f (n)
l (z)− f

(n)
l,δ (z)

∣∣∣

= max
J,l
|gJ | ·

∣∣∣∣∣∣

∑

|I|≥δ+1

a
(n)
l,I z

I

∣∣∣∣∣∣
≤ max

J
|gJ |

s∏

l=1

max
|I|≥δ+1

|a
(n)
l,I |ρ

|I|,

so that
|g(fn(z)) − g(f δ

n(z))| ≤ ρδ+1. (3.3)

Write
∣∣|g(fn(z))| − |g(fm(z))|

∣∣ ≤ max
{∣∣|g(fn(z))| − |g(f δ

n(z))|
∣∣ ,

∣∣|g(f δ
n(z))| − |g(f

δ
m(z))|

∣∣,
∣∣|g(f δ

m(z))| − |g(fm(z))|
∣∣
}
.

The first and third terms are ≤ ρδ+1 by (3.3) and the second one tends to
0 by our preceding argument. If ǫ > 0 is fixed, then we may take δ large
enough such that ρδ+1 ≤ ǫ, and for any n,m large enough we get

∣∣|g(fn(z))|−
|g(fm(z))|

∣∣ ≤ ǫ. It follows that {|g(fn(z))|} is a Cauchy sequence, concluding
the proof of the theorem in the case X = Dr.

Suppose now that X is a basic tube. Let X̂ be a k-affinoid space and X̂ →
D̄r a distinguished closed immersion such that X is isomorphic to X̂ ∩ Dr

(cf. Proposition 2.8). We may thus write X as a growing countable union
of affinoid spaces X =

⋃
0<ρ<1Xρ. As the affinoid algebra corresponding

to X̂ is isomorphic to the quotient of the Tate algebra Tr by some closed
ideal I, we may assume that the affinoid algebra Aρ of each Xρ is of the form
k{ρ−1T1, . . . , ρ

−1Tr}modulo the ideal I. In particular, we have distinguished
closed immersions Xρ → D̄r(ρ).

Let fn : X → D̄s be a sequence of analytic maps. For every ρ < 1, the
restriction of each fn to Xρ can be extended to an analytic map D̄r(ρ) →

D̄s. Indeed, fn|Xρ is given by f
(n)
1 , . . . , f

(n)
s ∈ Aρ. As for every ρ < 1

we have a distinguished epimorphism k{ρ−1T1, . . . , ρ
−1Tr} → Aρ, we may

lift each f
(n)
l , l = 1, . . . , s to an element in k{ρ−1T1, . . . , ρ

−1Tr} having the
same norm. We conclude by the previous case and a diagonal extraction
argument. �
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3.2. Fields with countable residue field. We observe in this section that
Theorem 3.1 extends to maps between any k-affinoid spaces when the residue
field of k is countable. This section will not be used in the rest of the paper,
since the limits we obtain this way are not necessarily continuous.

Recall that the boundary of an affinoid can be written as a finite union
of affinoid spaces defined over some extension of k, see [Duc12, Lemma 3.1].
Here we shall only use the following observation. Consider the closed N -
dimensional polydisk D̄N , and denote by pi : D̄

N → D̄ the projection to the
i-th coordinate. Recall that the boundary of D̄ consists only of the Gauss
point. It follows from Lemma 2.2 that the interior of D̄N in contained in
p−1
i (Int(D̄)) for every i = 1, · · · , N . Let now x be a point in ∂D̄N and

consider the commutative diagram:

D̄N

red
��

pi
// D̄

red
��

AN
k̃

p̃i
// A1

k̃

Suppose that pi(x) 6= xg for all i. The diagram implies that there exist

ζ1, · · · , ζN ∈ k̃ such that every ideal of k̃[T1, · · · , TN ] of the form 〈Ti − ζi〉
is contained in the prime ideal corresponding to red(x). As a consequence,
red(x) ∈ AN

k̃
is closed, contradicting the fact that x belongs to ∂D̄N .

The boundary of D̄N is thus equal to the union p−1
1 (xg) ∪ . . . ∪ p−1

N (xg).

Observe that each fibre p−1
i (xg) is isomorphic to D̄N−1

H(xg)
.

Proposition 3.2. Suppose k is a non-Archimedean complete valued field
that is algebraically closed and such that k̃ is countable. Let X and Y be
k-affinoid spaces. Then, every sequence of analytic maps fn : X → Y has
an everywhere pointwise converging subsequence.

Proof. We may assume X = D̄r
k, Y = D̄s

k as in the proof of Theorem 3.1.
The set of connected components of the interior of D̄r

k is in bijection with

the set of k̃-points on its reduction As
k̃

and hence is countable.

We now argue inductively on r. When r = 1, then the boundary of D̄

consists of a single point, namely the Gauss point. We may therefore apply
Theorem 3.1 to each of the (countably many) components of the interior of
D̄ and apply a diagonal extraction argument to conclude.

Assume now that the statement holds for the polydisk of dimension r− 1
defined over any complete valued field with countable residue field, and pick
a sequence of analytic maps fn : D̄r

k → D̄s
k. As before, we apply Theorem

3.1 to each of the (countably many) components of the interior of D̄r
k so that

we may suppose that fn converges pointwise on the interior of D̄r
k.

The boundary of D̄r
k is the union of r unit polydisks of dimension r − 1

defined over the field H(xg) by our previous discussion. On each of these
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we may apply the induction hypothesis, as the field H̃(xg) is isomorphic to

k̃(T ), which is countable. This concludes the proof. �

3.3. Polynomial maps of bounded degree. Pick any integers r, s > 0,

δ ≥ 0 and fix a point α in the (Berkovich) analytic space D̄
(δ+1)rs
k . We shall

associate to these data a continuous map

Pα = P r,s
α : Ar,an

k → A
s,an
k .

Consider first the analytic map Φ : D̄
(δ+1)rs
k × A

r,an
k → A

s,an
k , given by the

k-algebra morphism

k[T1, . . . , Ts] → k[T1, . . . , Tr]{(a1,I)|I|≤δ, · · · , (as,I)|I|≤δ}

Tl 7→
∑

|I|≤δ

al,IT
I .

Next, consider the projection π1 : D̄
(δ+1)rs
k ×A

r,an
k → D̄

(δ+1)rs
k . The fibre over

the point α ∈ D̄
(δ+1)rs
k is isomorphic to A

r,an
H(α) (cf. §2.2). Recall that the point

α ∈ D̄
(δ+1)rs
k is associated to the character χα : k{(a1,I)|I|≤δ, . . . , (as,I)|I|≤δ} →

H(α). Set K := H(α). The inclusion ιK : Ar,an
K → D̄

(δ+1)rs
k × A

r,an
k is given

by

k[T1, · · · , Tr]{(a1,I)|I|≤δ, . . . , (as,I)|I|≤δ} → K[T1, . . . , Tr]

Ti 7→ Ti

al,I 7→ χα(al,I).

Finally, for every z ∈ A
r,an
k we set:

Pα(z) = Φ ◦ ιK ◦ σK/k(z),

where σK/k : Ar,an
k → A

r,an
K is the canonical lift discussed in §2.6. The map

Pα : Ar,an
k → A

s,an
k is clearly continuous. Explicitely, given a polynomial

g =
∑

J gJT
J ∈ k[T1, · · · , Ts] and a point z ∈ A

r,an
k ,

|g(Pα(z))| =

∣∣∣∣∣∣


∑

J

gJ

s∏

l=1

( ∑

|I|≤δ

χα(al,I)T
I
)jl

σK/k(z)

∣∣∣∣∣∣
(3.4)

To emphasize the fact that D̄
(δ+1)rs
k parametrizes analytic maps, we shall

denote it from now on by Morr,sδ . For r, s fixed, we have constructed a map

Ev : Morr,sδ → C0(Ar,an,As,an)

α 7→ Ev(α) = Pα.

Note that for every fixed α ∈ Morr,sδ , the map z 7→ Ev(α)(z) = Pα(z) can
be expressed as

Pα(z) = πK/k ◦ Fα ◦ σK/k(z),
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where Fα : Ar,an
K → A

s,an
K is the polynomial map

Fα = (F1, · · · , Fs) =


∑

|I|≤δ

χα(a1,I)T
I , · · · ,

∑

|I|≤δ

χα(as,I)T
I




Observe that the coefficients of Fα define a rigid point

β :=
(
(χα(a1,I))|I|≤δ, · · · , (χα(as,I))|I|≤δ

)
∈ Morr,sδ,K

and πK/k(β) = α.

Proposition 3.3. Let r, s, δ be three positive integers and let α be a point

in the Berkovich analytic space Morr,sδ := D̄
(δ+1)rs
k .

Then for every fixed z ∈ A
r,an
k and every sequence of points αn in Morr,sδ

converging to α ∈ Morr,sδ , one has Pαn(z)→ Pα(z).

Moreover, if β =
(
(b1,I)|I|≤δ, · · · , (bs,I)|I|≤δ

)
is any rigid point in Morr,sδ,H(α)

such that πH(α)/k(β) = α, then the H(α)-analytic map Fβ = (F1, · · · , Fs),

where Fl =
∑

|I|≤δ bl,IT
I for l = 1, · · · , s, satisfies

Pα = πH(α)/k ◦ Fβ ◦ σH(α)/k.

Corollary 3.4. Every sequence of polynomial maps fn : Ar,an → As,an of
uniformly bounded degree such that fn(D̄

r) ⊆ D̄s for all n admits a pointwise
converging subsequence whose limit f : Ar,an → As,an is continuous.

Proof. The condition fn(D̄
r) ⊆ D̄s implies that each fn is given by a rigid

point αn ∈ D̄(δ+1)rs. The result follows directly from Proposition 3.3 and
[Poi13]. �

Remark 3.5. The function (α, z) 7→ Pα(z) does not define a continuous
map on |Ar,an| × |Morr,sδ |. This phenomenon already appears when r = s =
δ = 1. Indeed, suppose by contradiction that there exists a continuous map
ϕ : |A1,an| × |D̄| → |A1,an| such that ϕ(z, w) = z + w for any z, w ∈ k
with |w| ≤ 1. Pick any sequence of points ζn ∈ k such that |ζn| = 1 and
|ζn − ζm| = 1 for n 6= m. Then ζn converges to the Gauss point xg, and we
have ϕ(ζn,−ζn) = 0 for all n, whereas

lim
n

ϕ(ζn,−ζn) = lim
n

ϕ(ζn, ζn) = ϕ(xg, xg) = xg.

This gives a contradiction.

Remark 3.6. In general, the map

Ev : Morr,sδ → C0(Ar,an,As,an)

α 7→ Ev(α) = Pα

is not injective. This phenomenon already occurs for r = s = δ = 1.

Indeed, let r = s = δ = 1. Denote by p0 and p1 the first and second
projections Mor1,11 → Mor1,10 . As above, denote by k{a0, a1} the underlying

affinoid algebra of Mor1,11 . Let α ∈ Mor1,11 be such that p0(α) = xg. Now,
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the point α can be viewed as a point in the fibre p−1
0 (xg) ≃ D̄H(xg). Suppose

further that α is a rigid point in D̄H(xg) corresponding to q0 + q1a0 + q2a
2
0 ∈

k(a0) ⊂ H(xg).
Fix a rigid point z ∈ A1,an and pick some g =

∑
j gjT

j ∈ k[T ]. Then,

|g(Pα(z))| = |g(P
[z](α))| =

∣∣∣∣∣∣
(∑

j

gj(a0 + a1z)
j
)
(α)

∣∣∣∣∣∣
.

As z ∈ k, for suitable gi,j ∈ k we may write
∑

j gj(a0+a1z)
j =

∑
i,j gi,ja

i
0a

j
1.

Then,

|g(Pα(z))| =

∣∣∣∣∣∣
(∑

i,j

gi,ja
i
0a

j
1

)
(α)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(∑

j

gi,ja
i
0(q0 + q1a0 + q2a

2
0)

j
)
(xg)

∣∣∣∣∣∣
.

The image Pα(z) is not rigid in general. In order to compute it, approximate

α by a the sequence of rigid points αn = (ζn, q0 + q1ζn + q2ζ
2
n) ∈ Mor1,11 ,

where ζn ∈ k are such that |ζn| = 1 and |ζn − ζm| = 1 for all n 6= m. For
z ∈ A1,an rigid, Pαn(z) = ζn + (q0 + q1ζn + q2ζ

2
n)z. By Proposition 3.3,

Pαn(z)→ Pα(z) as n→∞. The rigid point z ∈ Ar,an is thus mapped by Pα

to the point in A1,an corresponding to the closed ball

D̄
(
zq0;max{|1 + q1z|, |q2z|}

)
.

Let α′ be a rigid point in D̄H(xg) corresponding to q0+ q1a0+ q′2a
2
0 ∈ k(a0) ⊂

H(xg), with |q′2| = |q2|. An analogous computation shows that any rigid
point z ∈ A1,an is sent by Pα′ to the point in A1,an corresponding to the
closed ball

D̄
(
zq0;max{|1 + q1z|, |q

′
2z|}

)
.

It follows that Pα and Pα′ agree on the set of rigid points and so they are
equal.

Proof of Proposition 3.3. Fix a point α ∈ Morr,sδ and set K = H(α).

Let us first show that Pα does not depend on the lift. To this end, pick
β1 6= β2 two rigid points in Morr,sδ,K whose images by πK/k are equal to
α. Denote by F1 and F2 respectively the K-analytic polynomial maps they
induce on A

r,an
K , and set P1 = πK/k ◦ F1 ◦ σK/k and P2 = πK/k ◦ F2 ◦ σK/k.

By density, it suffices to check that P1 and P2 agree on the set of rigid
points. Thus, let z ∈ A

r,an
k be rigid and pick g =

∑
J gJT

J ∈ k[T1, · · · , Ts].

Write β1 = (b1, · · · , bs), where bl = (bl,I)|I|≤δ ∈ K(δ+1)r for l = 1, · · · , s.
Then:

|g(P1(z))| = |g(π ◦ F1 ◦ σK/k(z))| = |g(F1(z))|K

=

∣∣∣∣∣∣

∑

J

gJ

s∏

l=1

( ∑

|I|≤δ

bl,Iz
I
)jl
∣∣∣∣∣∣
K

= |R(β1)|K ,
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where R denotes the polynomial in (δ + 1)rs-variables with coefficients in k
defined in (3.2). It follows that

|g(P1(z))| = |R(β1)| =
∣∣R(πK/k(β1))

∣∣ =
∣∣R(πK/k(β2))

∣∣ = |g(P2(z))|.

Let us now prove the continuity statement. Fix a point z ∈ A
r,an
k . Our aim

is to construct a continuous map P [z] : Morr,sδ → A
s,an
k such that for all α ∈

D̄
(δ+1)rs
k we have P [z](α) = Pα(z). To do so, consider the second projection

π2 : Morr,sδ × A
r,an
k → A

r,an
k . As above, the fibre over z is isomorphic to

Morr,sδ,H(z). Let χz : k[T1, · · · , Tr] → H(z) be the character corresponding to

the point z, and set L := H(z).
Let ιL : Morr,sδ,L → Morr,sδ × A

r,an
k be the continuous map given by

k[T1, · · · , Tr]{(a1,I)|I|≤δ, · · · , (as,I)|I|≤δ} → L{(a1,I)|I|≤δ, · · · , (as,I)|I|≤δ}

Ti 7→ χz(Ti)

al,I 7→ al,I .

Pick some g =
∑

|I|≤δ gIT
I in k{(a1,I)|I|≤δ, · · · , (as,I)|I|≤δ}{T1, . . . , Tr}.

Fix z ∈ Dr
k and α ∈ Morr,sδ . Then ιK ◦ σK/k(z) = ιL ◦ σL/k(α). Indeed,

denote by χz(T ) = (χz(T1), · · · , χz(Tr)) ∈ Lr. Then,

∣∣g
(
ιK ◦ σK/k(z)

)∣∣ =
∣∣( ∑

|I|≤δ

χα(gI) · T
I
) (

σK/k(z)
) ∣∣

= max
|I|≤δ

|χα(gI)|K ·
∣∣T I(z)

∣∣ = max
|I|≤δ
|gI(α)| ·

∣∣χz(T )
I
∣∣
L

=
∣∣( ∑

|I|≤δ

gI · χz(T )
I
) (

σL/k(α)
) ∣∣ =

∣∣g
(
ιL ◦ σL/k(α)

)∣∣ (3.5)

Let Φ : Morr,sδ ×A
r,an
k → A

s,an
k be the map defined above and consider the

continuous map P [z] : Morr,sδ → A
s,an
k , where

P [z] = Φ ◦ ιL ◦ σL/k.

As a consequence of (3.5), for all fixed z ∈ Dr
k and α ∈ Morr,sδ ,

P [z](α) = Pα(z).

Now let αn be a sequence in Morr,sδ converging to a point α. Then, by
continuity we have that for every z ∈ A

r,an
k

lim
n

Pαn(z) = lim
n

P [z](αn) = P [z](α) = Pα(z).

�

3.4. Continuity of pointwise limits of analytic maps. In this section,
we complete the proof of Theorem A. First we show:

Theorem 3.7. Let X be a basic tube defined over k and let Y be a k-affinoid
space.
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Suppose that fn : X → Y is a sequence of analytic maps that converges
pointwise to a map f . Then f is continuous.

Remark 3.8. It is crucial here to assume that X has no boundary. Indeed,
as pointed out in [FKT12, §4.2], the sequence of analytic maps from the

closed unit disk D̄ to itself fn(z) = z2
n!

converges pointwise everywhere, but
the limit map f is not continuous. The Gauss point xg is a fixed point of f ,
but f maps the whole of D to 0.

Proof of Theorem 3.7. We may assume that Y = D̄s.
Suppose first that X = Dr. Pick any sequence fn : Dr → D̄s of analytic

maps converging to f . It suffices to see that for every 0 < ρ < 1, the
restriction of f to D̄r(ρ) is continuous.

Each fn is determined by a power series f
(n)
l =

∑
I a

(n)
l,I T

I , l = 1, · · · , s,

with |a
(n)
l,I |ρ

|I| |I|→∞
−→ 0 for all 0 < ρ < 1. For each integer δ ∈ N, we introduce

the truncated maps

f δ
n = (f

(n)
1,δ , · · · , f

(n)
s,δ ) =


∑

|I|≤δ

a
(n)
1,I T

I , · · · ,
∑

|I|≤δ

a
(n)
s,I T

I


 .

as above. Replacing fn by a subsequence if necessary, we may furthermore
assume that for every δ ≥ 0 the sequence of points αn,δ defined by (3.1) is

converging to some αδ ∈ D̄
(δ+1)rs
k . It follows from Proposition 3.3 that f δ

n

converges pointwise to the continuous map Pαδ
.

Fix any positive real number 0 < ρ < 1, and recall the estimate (3.3). For
any g ∈ Ts and any z ∈ D̄r(ρ), we have

∣∣|g(fn(z))| − |g(f δ
n(z))|

∣∣ ≤ ρδ+1, so
that ∣∣|g(f(z))| − |g(Pαδ

(z))|
∣∣ ≤ ρδ+1 (3.6)

by letting n→∞. This implies that Pαδ
converges pointwise everywhere on

Dr to f .

We now prove the continuity of f . Since polydisks are Fréchet-Urysohn
spaces by [Poi13], it suffices to check the continuity of f on sequences. Let
zm be a sequence of points in D̄r(ρ) converging to some z, and pick any
g ∈ Ts. We need to show that |g(f(zm))| converges to |g(f(z))|. Pick a
positive real number ǫ > 0, and δ large enough such that ρδ+1 ≤ ǫ. Since
Pαδ

is continuous, we have
∣∣|g(Pαδ

(zm))| − |g(Pαδ
(z))|

∣∣ → 0 as m → ∞,
hence

∣∣|g(f(zm))| − |g(f(z))|
∣∣ ≤ max

{∣∣|g(f(zm))| − |g(Pαδ
(zm))|

∣∣,
∣∣|g(Pαδ

(zm))| − |g(Pαδ
(z))|

∣∣,
∣∣|g(Pαδ

(z))| − |g(f(z))|
∣∣} < ǫ ,

for all m large enough. This concludes the proof of the theorem in the case
where X is the open unit polydisk.
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If X is a general basic tube, we may write it as an increasing union of
affinoids and use a diagonal extraction argument as in the proof of Theorem
3.1 to conclude. �

Proof of Theorem A. Being σ-compact, X is the union of countably many
compact sets Kn. Since it is a good analytic space without boundary, each
compact set Kn is included in a finite union of open sets, each isomorphic
to a basic tube. It follows that X is a countable union of basic tubes Um.

By a diagonal extraction argument and Theorem 3.1, there exists a sub-
sequence fnk

converging pointwise on any open sets Um, hence on X. By
Theorem 3.7, the limit is continuous on every Um and hence on X since they
are open. �

3.5. Convergence results over an arbitrary base field. We observe
in this section that our main theorem also holds for any complete non-
Archimedean valued base field k.

Theorem 3.9. Let k be any complete non-Archimedean valued field. Let X
be a good, reduced, σ-compact, boundaryless strictly k-analytic space and Y
be a k-affinoid space.

Then, every sequence of analytic maps fn : X → Y has a pointwise con-
verging subsequence whose limit map f is continuous.

Proof. Let K be the completed algebraic closure of k, and XK , YK be the
scalar extensions of X and Y respectively, see §2.6.

Pick a sequence fn : X → Y of analytic maps and consider the analytic
maps Fn : XK → YK induced by base change. The following diagram
commutes:

XK
Fn

//

πK/k

��

YK

πK/k

��

X
fn

// Y

Observe that the analytic space XK is good and σ-compact, since the preim-
age π−1

K/k(U) of an affinoid domain U of X is an affinoid domain in XK . It

follows directly from the definition of the interior that XK is boundaryless
([Ber90, Proposition 3.1.3]). Thus, by Theorem 3.7 we may assume that Fn

is pointwise converging to a continuous map F : XK → YK . Pick a point
z ∈ X. As πK/k is surjective, we may choose a point z′ ∈ π−1

K/k(z). It follows

that fn(z) = fn(πK/k(z
′)) = πK/k ◦ Fn(z

′), which tends to πK/k ◦ F (z′) :=
f(z) as n goes to infinity. The limit map f is well-defined. Indeed, if z′, z′′

are two points in π−1
K/k

(z), then

lim
n

πK/k ◦Fn(z
′) = lim

n
fn(πK/k(z

′)) = lim
n

fn(πK/k(z
′′)) = lim

n
πK/k ◦Fn(z

′′).

It remains to check that f is continuous. Let A be any closed (hence com-

pact) subset of Y . By continuity, the set F−1
(
π−1
K/k(A)

)
is closed. Recall
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that the map πK/k : XK → X is proper. Since XK and X are locally com-

pact, then πK/k is closed. As a consequence, f−1(A) = πK/k

(
F−1 ◦ π−1

K/k(A)
)

is closed. �

4. Analytic properties of pointwise limits of analytic maps

We analyse further the structure of the limit maps obtained in Theorem A,
and prove they can be lifted to analytic maps after a suitable base change. To
that end, we interpret analytic maps between an open and a closed polydisk
as rigid points of the spectrum of a suitable Banach k-algebra.

Throughout this section, we fix two integers r, s > 0.

4.1. The infinite dimensional affinoid space Morr,s∞ . Our aim is to build
an infinite dimensional analytic space Morr,s∞ that parametrizes in a suitable
sense the set of all analytic maps from Dr

k to D̄s
k.

Pick some δ ∈ N and let P : Ar,an
k → A

s,an
k be a polynomial map of degree

at most δ such that P (Dr
k) ⊂ D̄s

k. Since P can be written as

P (T1, . . . , Tr) = (
∑

|I|≤δ

a1,IT
I , . . . ,

∑

|I|≤δ

as,IT
I)

with |al,I | ≤ 1, the set of all such polynomial maps of degree at most δ can be
endowed with a natural structure of affinoid space whose affinoid algebra is
the Tate algebra k{a1,I , · · · , as,I}|I|≤δ = k{al,I}|I|≤δ,1≤l≤s. We shall denote

this space by Morr,sδ . It is isomorphic to the unit polydisk D̄(δ+1)rs.

Observe that for any given δ ∈ N there exists a natural truncation map
prδ : Morr,sδ+1 → Morr,sδ , which is a surjective analytic map dual to the
inclusion of Tate algebras k{al,I}|I|≤δ,1≤l≤s ⊂ k{al,I}|I|≤δ+1,1≤l≤s. These
inclusions are isometric and we may so consider the inductive limit of this
directed system. It is a normed k-algebra that we denote by T r,s.

In order to describe the elements of T r,s, we introduce the set S of all maps
M : {1, . . . , s}×Nr → N having finite support and set |M| =

∑
l,I M(l, I) for

every M ∈ S. We define Sδ as the subset of S consisting of all M ∈ S such
that M(l, I) = 0 for all |I| ≥ δ + 1. Given a =

(
(a1,I)|I|≤δ, . . . , (as,I)|I|≤δ

)

and M ∈ S, we write

aM =
∏

1≤l≤s,I∈Nr

a
M(l,I)
l,I .

The k-algebra T r,s consists of all power series that are of the form
∑

M∈Sδ

gM · a
M,

for some δ ∈ N and whose coefficients gM ∈ k are such that |gM| → 0 as
|M| → ∞.
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Remark 4.1. The k-algebra T r,s is not complete. Take for instance r =
s = 1 and consider the sequence gn =

∑n
i=1 ĝi · a1,i ∈ T

r,s. This is a Cauchy
sequence as soon as the coefficients ĝi ∈ k∗ are such that |ĝi| → 0 when
i→∞, but it does not have any limit in T r,s.

The completion T r,s
∞ of T r,s is a Banach k-algebra consisting of all power

series ∑

M∈S

gM · a
M

such that for all ǫ > 0 the set of M ∈ S such that |gM| > ǫ is finite.

Definition 4.2. The space Morr,s∞ is the analytic spectrum of the Banach
algebra T r,s

∞ .

For every δ ∈ N, the isometric inclusion k{al,I}|I|≤δ,1≤l≤s ⊂ T
r,s
∞ defines a

natural surjective continuous map Pr∞δ : Morr,s∞ → Morr,sδ . We may as well
consider the inverse limit of all the spaces Morr,sδ , induced by the truncation
maps prδ : Morr,sδ+1 → Morr,sδ . These maps verify the equality prδ ◦ Pr

∞
δ+1 =

Pr∞δ and induce a continuous map ϕ : Morr,s∞ → lim
←−δ

Morr,sδ .

We shall consider the inclusions iδ : Morr,sδ → Morr,s∞ given by T r,s
∞ →

k{al,I}|I|≤δ,1≤l≤s, sending al,I to itself if |I| ≤ δ and to 0 otherwise. These
are closed immersions.

Proposition 4.3. The map ϕ : Morr,s∞ → lim
←−δ

Morr,sδ is a homeomorphism.

In particular, Morr,s∞ is compact.

Proof. The inverse limit lim
←−δ

Morr,sδ is compact by Tychonoff, and Morr,s∞ is

compact because it is the analytic spectrum of the k-banach algebra T r,s
∞ .

Let us show that ϕ : Morr,s∞ → lim
←−δ

Morr,sδ is bijective.

Fix δ ≥ 0. Let πδ : lim
←−δ

Morr,sδ → Morr,sδ be the natural map and prδ :

Morr,sδ+1 → Morr,sδ the truncation map. We know that Pr∞δ = πδ ◦ ϕ. Pick

a point y ∈ lim
←−δ

Morr,sδ and consider πδ(y) ∈ Morr,sδ . Consider the set Kδ

consisting of all the points α ∈ Morr,s∞ such that Pr∞δ (α) = πδ(y). By
surjectivity of the maps Pr∞δ , the subset Kδ is non-empty. Clearly, we have
that Kδ+1 ⊆ Kδ. Every Kδ is compact and so the intersection ∩δ≥0Kδ is
non-empty. This shows that ϕ is surjective.

For the injectivity, let α,α′ be two points in Morr,s∞ having the same
image in lim

←−δ
Morr,sδ . We have to check that |g(α)| = |g(α′)| for every

g ∈ T r,s
∞ , that by density reduces to the case where g ∈ T r,s. We know

that Pr∞δ (α) = Pr∞δ (α′) ∈ Morr,sδ for all δ. Given g ∈ T r,s observe that it
lies in k{al,I}|I|≤δ,1≤l≤s for some δ ≥ 0. Thus,

|g(α)| = |g(Pr∞δ (α))| = |g(Pr∞δ (α′))| = |g(α′)|.

�

Recall from §2 the definition of the complete residue field H(α) of a point
α ∈ Morr,s∞ . To simplify notation, we write αδ = Pr∞δ (α).
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Proposition 4.4. Let α be a point in Morr,s∞ . For every δ ∈ N the inclusion
of Banach k-algebras k{al,I}1≤l≤s,|I|≤δ ⊂ T

r,s
∞ induces an extension of valued

fields H(α)/H(αδ).
The complete residue field H(α) is isomorphic to the completion of the

inductive limit of valued fields lim
−→δ
H(αδ).

Proof. A point α ∈ Morr,s∞ corresponds to a seminorm on the k-algebra T r,s
∞ ,

whose restriction to k{al,I}|I|≤δ,1≤l≤s is the seminorm αδ. The kernel of αδ

is the intersection of k{al,I}|I|≤δ,1≤l≤s with ker(α). This induces inclusions

k{al,I}|I|≤δ,1≤l≤s/ ker(αδ) ⊂ T
r,s
∞ / ker(α). (4.1)

It follows that there are inclusions H(αδ) ⊂ H(α), and thus the direct
limit of the H(αδ) is naturally contained in H(α). In order to show that
H(α) is isomorphic to the completion of lim

−→δ
H(αδ), it suffices to show that

lim
−→δ
H(αδ) is dense in H(α).

Consider the field K := lim
−→δ

Frac
(
k{al,I}|I|≤δ,1≤l≤s/ ker(αδ)

)
. Clearly, K

is contained in lim
−→δ
H(αδ). By (4.1) and by the definition of T r,s

∞ 8, we also

know that K is dense in Frac (T r,s
∞ / ker(α)). The latter is by definition dense

in H(α), which proves that lim
−→δ
H(αδ) is dense in H(α). �

4.2. Universal property of the space Morr,s∞ . Let us specify in which
sense Morr,s∞ parametrizes the space of analytic maps from Dr

k to D̄s
k. Recall

from §2.2 that a morphism between the spectra of two Banach k-algebras
is by definition a continuous map induced by a bounded morphism between
the underlying algebras.

Theorem 4.5. The association (T1, . . . , Ts) 7→
(∑

a1,IT
I , . . . ,

∑
as,IT

I
)

where I ranges over Nr, induces a bounded morphism of Banach k-algebras

k{T1, . . . , Ts} → T∞{ρ
−1T1, . . . , ρ

−1Tr}

for every ρ < 1.
The induced morphism Φ : Morr,s∞ × Dr

k → D̄s
k satisfies the following uni-

versal property. For any strictly k-affinoid space X and for any analytic map
F : X × Dr

k → D̄s
k there exists a unique morphism g : X → Morr,s∞ such that

F (x, z) = Φ(g(x), z) for all x ∈ X(k) and z ∈ Dr(k).

Proof. Let X be a strictly k-affinoid space with affinoid algebra A. Let
F : X × Dr

k → D̄s
k be an analytic map, which is given by

(T1, . . . , Ts) 7→
(∑

b1,IT
I , . . . ,

∑
bs,IT

I
)
,

where bl,I ∈ A are such that supl,I |bl,I(x)| ≤ 1 for all x ∈ X. Let g :
X → Morr,s∞ be the analytic map given by al,I 7→ bl,I for all I ∈ Nr and all
1 ≤ l ≤ s. Given a rigid point x ∈ X together with a rigid point z ∈ Dr,
they define a rigid point in the product X×Dr and by construction we have
F (x, z) = Φ(g(x), z).
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Conversely, let h : X → Morr,s∞ be an analytic map sending al,I to cl,I ∈ A
and satisfying F (x, z) = Φ(h(x), z) for all x ∈ X(k) and all z ∈ Dr(k). For
every fixed x ∈ X(k), consider the analytic map z ∈ Dr 7→ Φ(h(x), z). By
hypothesis, it agrees with the map z ∈ Dr 7→ Φ(g(x), z), and so bl,I(x) =
cl,I(x) for every I ∈ Nr and 1 ≤ l ≤ s. As the equalities hold for every rigid
x ∈ X, we conclude that h = g. �

Recall that a point α ∈ Morr,s∞ is rigid if and only if its complete residue
field H(α) is equal to k. When α is rigid, then Φ(α, ·) defines an analytic
map from Dr to D̄s. The previous theorem shows in particular that the set
of analytic maps from Dr to D̄s is in bijection with the set {Φ(α, ·) : α ∈
Morr,s∞ (k)}, hence with the set of rigid points in Morr,s∞ .

The following theorem is a generalization of Proposition 3.3 to analytic
maps.

Theorem 4.6. There exists a map Ev from Morr,s∞ to the space of continuous
functions C0(Dr, D̄s) such that the following holds:

(1) The map Ev(α) is analytic if and only if the point α ∈ Morr,s∞ is
rigid. In that case, it is of the form Ev(α) = Φ(α, ·).

(2) For any fixed z ∈ Dr and for any sequence {α(n)} ⊂ Morr,s∞ converging
to some α ∈ Morr,s∞ , we have Ev(α(n))(z)→ Ev(α)(z).

(3) For every z ∈ Dr and for every α ∈ Morr,s∞ we have Ev(αδ)(z) →
Ev(α)(z) as δ goes to infinity, where αδ := Pr∞δ (α).

Proof. The map Ev : Morr,s∞ → C
0(Dr, D̄s) is given as follows. Fix a point

α ∈ Morr,s∞ and consider the first projection π1 : Morr,s∞ ×Dr
k → Morr,s∞ . The

fibre π−1
1 (α) is isomorphic to Dr

H(α) (cf. §2.2). We can thus consider the

inclusion map ιH(α) : D
r
H(α) → Morr,s∞ ×Dr

k, given by

T r,s
∞ {ρ

−1T1, . . . , ρ
−1Tr} → H(α){ρ−1T1, . . . , ρ

−1Tr}

Ti 7→ Ti (4.2)

al,I 7→ χα(al,I)

for ρ < 1, where χα : T r,s
∞ → H(α) denotes the character associated to the

point α. Let σH(α)/k : Dr
k → Dr

H(α) be the continuous map discussed in §2.6.

Let Φ be the analytic map from Theorem 4.5. We set:

Ev(α) = Φ ◦ ιH(α) ◦ σH(α)/k.

Clearly, Ev(α) is a continuous map from Dr
k to D̄s

k. Specifically, for any

z ∈ Dr and for any g =
∑

J gJT
J in k{T1, . . . , Ts}, we have

|g(Ev(α)(z))| =

∣∣∣∣∣
∑

J

gJ

s∏

l=1

(∑

I

χα(al,I) · T
I
)jl(σH(α)/k(z))

∣∣∣∣∣ . (4.3)

(1) The point α ∈ Morr,s∞ is rigid if and only if H(α) = k. In this
situation, ιH(α) is in fact an analytic map between k-analytic spaces
and σH(α)/k is the identity on Dr

k. If α is not rigid, then χα(al,I) does
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not belong to k for some I ∈ Nr and for some 1 ≤ l ≤ s. It follows
from (4.3) that the Ev(α) is not defined over k.

In addition, observe that if α is rigid then the fibre π−1
1 (α) is

homeomorphic to Dr
k. Then, for every z ∈ Dr

k the data (α, z) define
a point in Morr,s∞ ×Dr

k, and so ιk(z) = (a, z). Thus, Ev(α) = Φ(α, ·).
(2) Fix a point z ∈ Dr

k and consider the projection π2 : Morr,s∞×D
r
k → Dr

k.

The fibre π−1
2 (z) is isomorphic to Morr,s∞,H(z). Consider the inclusion

ιH(z) : Morr,s∞,H(z) → Morr,s∞ × Dr
k, given by

T r,s
∞ {ρ

−1T1, . . . , ρ
−1Tr} → T r,s

∞ ⊗̂kH(z)

Ti 7→ χz(Ti)

al,I 7→ al,I

for ρ < 1, where χz : k{ρ−1T1, . . . , ρ
−1Tr} → H(z) denotes the

character associated to the point z. A computation analogous to
(3.5) shows that for all fixed z ∈ Dr

k and α ∈Morr,s∞ ,

ιH(α) ◦ σH(α)/k(z) = ιH(z) ◦ σH(z)/k(α).

Consider the continuous map Ψ(z) : Morr,s∞ → D̄s
k, defined as the

composite Ψ(z) = Φ ◦ ιH(z) ◦σH(z)/k. For every fixed α ∈Morr,s∞ and
every fixed z ∈ Dr, we have

Ψ(z)(α) = Ev(α)(z).

If α(n) is a sequence of points in Morr,s∞ converging to α, then the
continuity of Ψ(z) implies that Ψ(z)(α(n)) converges to Ψ(z)(α) as
n goes to infinity, and so

Ev(α(n))(z)
n→∞
−→ Ev(α)(z).

(3) Fix α ∈ Morr,s∞ and set αδ := Pr∞δ (α) ∈ Morr,sδ . For every δ, consider
the inclusion iδ : Morr,sδ → Morr,s∞ .

By the previous item it suffices to prove that iδ(αδ)→ α in Morr,s∞

as δ tends to infinity. Pick g =
∑

M∈S gM · a
M ∈ T r,s

∞ and compute:

|g(iδ(αδ))− g(α)| =

∣∣∣∣∣∣
( ∑

M∈Sδ

gM · a
M
)
(αδ)−

( ∑

M∈S

gM · a
M
)
(α)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
( ∑

M∈S\Sδ

gM · a
M
)
(α)

∣∣∣∣∣∣
≤ max

M∈S\Sδ

|gM|,

which tends to 0 as δ goes to infinity.

�
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4.3. The space Morr,s∞ is Fréchet-Urysohn. We prove a technical result
that is a key step in the proof of Theorem B.

Theorem 4.7. The space Morr,s∞ is Fréchet-Urysohn.

We follow Poineau’s proof of the fact that analytic spaces are Fréchet-
Urysohn [Poi13, Proposition 5.2], which relies on [Poi13, Théorème 4.22].

Recall that the Shilov boundary of the analytic spectrum of a k-Banach
algebra A is the smallest closed subset of M(A) where every g ∈ A reaches
its maximum. It is a non-empty closed subset ofM(A). In the following we
deal with subfields l of k that are of countable type over the prime subfield
kp of k, in the sense of [BGR84]. Observe that this amounts for l to have a
dense countable subset.

The following proposition is an infinite dimensional analogue of [Poi13,
Théorème 4.22].

Proposition 4.8. For every point α in Morr,s∞ there exists a subfield l of
k that is of countable type over the prime subfield kp of k and satisfying
the following property. Let l′ be any subfield of k with l ⊂ l′ ⊂ k and let
π∞
k/l′ : Morr,s∞,k → Morr,s∞,l′ be the base change morphism. Then α is the

unique point in the Shilov boundary of the fibre (π∞
k/l′)

−1(π∞
k/l′(α)).

Proof of Proposition 4.8. The space Morr,s∞,k is the projective limit of Morr,sδ,k

with the morphisms Pr∞δ,k : Morr,s∞,k → Morr,sδ,k for δ ∈ N∗ (cf. Theorem

4.3). A point α in Morr,s∞,k is thus determined by a sequence (αδ)δ≥0, where

each αδ lies in Morr,sδ,k and satisfies prδ+1(αδ+1) = αδ for the projections

prδ+1 : Morr,sδ+1,k → Morr,sδ,k.

To every αδ we apply [Poi13, Théorème 4.22]. We obtain a field lδ ⊂ k
that is of countable type over the prime subfield kp of k and such that for any
subfield l ⊂ l′ ⊂ k the point αδ is the only point in the Shilov boundary of
(πδ

k/l′)
−1(πδ

k/l′(αδ)), where πδ
k/l′ : Morr,sδ,k → Morr,sδ,l′ denotes the base change

morphism.
Let l be the smallest field containing all the lδ. By construction, l is

contained in k and is of countable type over kp. We may assume in addition
that l is algebraically closed.

The equality πδ
k/l′ ◦ Pr

∞
δ,k = Pr∞δ,l′ ◦ π

∞
k/l′ implies that Pr∞δ,k maps the fibre

(π∞
k/l′)

−1(π∞
k/l′(α)) to the fibre (πδ

k/l′)
−1(πδ

k/l′(αδ)). We show that α belongs

to the Shilov boundary of (π∞
k/l′)

−1(π∞
k/l′(α)). Pick an element g ∈ T r,s

∞ . As

T r,s is dense in T r,s
∞ , we may assume that g lies in k{al,I}|I|≤δ,1≤l≤s for some

δ ≥ 0. Thus, |g(α)| = |g(αδ)|, which is the maximum value of g, since αδ

belongs to the Shilov boundary of (πδ
k/l′)

−1(πδ
k/l′(αδ)).

Pick a point β ∈ (π∞
k/l′)

−1(π∞
k/l′(α)) different from α, i.e. such that βδ 6= αδ

for some δ ≥ 0. If g ∈ k{al,I}|I|≤δ, we see that

|g(β)| = |g(βδ)| < |g(αδ)| = |g(α)|,
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showing that α is the unique point in the Shilov boundary of the space
(π∞

k/l′)
−1(π∞

k/l′(α)). �

Proof of Theorem 4.7. Let A be any subset of Morr,s∞ and let α be a point in
the closure of A. Let l be the subfield of k associated to α from Proposition
4.8. Let l ⊂ l′ ⊂ k be any subfield of k that is of countable type over l. Every
polydisk Morr,sδ,l′ is first countable, and as a consequence so is the countable

product of all the Morr,sδ,l′ . The space Morr,s∞ is a subspace of the product∏
δ Morr,sδ,l′ by Proposition 4.3, and thus is first countable.

Copying Poineau’s proof of [Poi13, Proposition 5.2] and using Proposition
4.8, we may find a sequence of points α(n) in A converging to α. �

4.4. Lifting properties of limit maps. Continuous maps of the form
Ev(α) : Dr → D̄s are very special, as they exhibit properties that are dis-
tinctive of analytic functions. We shall prove that they lift to analytic maps
after a suitable base change and that the graph of Ev(α) is well-defined in the
analytic product Dr× D̄s and not just in the topological product |Dr|× |D̄s|.

Recall from §2.6 the definition of the continuous map σK/k : X → XK .

Theorem 4.9. Let α be a point in Morr,s∞ . Then there exists a closed subset
Γα of Dr×D̄s such that the first projection π1 : Γα → Dr is a homeomorphism
and such that for every z ∈ Dr the image under of Γα ∩ π−1

1 (z) under the
second projection is equal to Ev(α)(z) ∈ D̄s.

Moreover, there exist a complete extension K/k and a K-analytic map
Fα : Dr

K → D̄s
K such that Ev(α) = πK/k ◦ Fα ◦ σK/k.

Proof. Fix α in Morr,s∞ and denote by H(α) its complete residue field. We
define Γα as the image of a continuous map ϕ : Dr → Dr × D̄s, that we
construct as follows.

Let ιH(α) : Dr
H(α) → Morr,s∞ × Dr

k be the inclusion map defined in (4.2).

Let Υ : Morr,s∞ × Dr
k → Dr

k × D̄s
k be given by

k{ρ−1T1, . . . , ρ
−1Tr}{S1, . . . , Ss} → T r,s

∞ {ρ
−1T1, . . . , ρ

−1Tr}

Ti 7→ Ti

Sl 7→
∑

I

al,IT
I .

Let σH(α)/k : Dr
k → Dr

H(α). We set ϕ = Υ ◦ ιH(α) ◦ σH(α). Explicitly, for

any z ∈ Dr and every g =
∑

J gJS
J , where J = (j1, . . . , js) and gJ ∈

k{ρ−1T1, . . . , ρ
−1Tr} are such that |gJ | → 0 as |J | → 0, we have:

|g(ϕ(z))| =

∣∣∣∣∣
∑

J

gJ

s∏

l=1

(∑

I

χα(al,I) · T
I
)jl(σH(α)/k(z))

∣∣∣∣∣ . (4.4)

Consider the projections π1 and π2 on Dr× D̄s to the first and second factor
respectively. It is an immediate consequence of the previous computation
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and (4.3) that

π2(ϕ(z)) = Ev(α)(z).

If no variables Sl appear in the expression of g, then g lies in the algebra
k{ρ−1T1, . . . , ρ

−1Tr}. Thus, by (4.4) we see that |g(ϕ(z))| = |g(z)|, and so

π1(ϕ(z)) = z.

It remains to check that the image Γα of ϕ is a closed subset of Dr × D̄s.
Let zn be a sequence of points in Dr such that ϕ(zn) converges to some point
x in Dr × D̄s. As π1(ϕ(zn)) = zn, we see that zn converges to π1(x) ∈ Dr,
and by continuity of ϕ we have that x = ϕ(π1(x)) lies in Γα.

Let K be the complete residue field H(α). Consider the H(α)-analytic
map

Fα =

(
∑

I

χα(a1,I) · T
I , . . . ,

∑

I

χα(as,I) · T
I

)
,

where I ranges over Nr. A direct computation together with (4.3) show that
Ev(α) = πH(α)/k ◦ Fα ◦ σH(α)/k. �

4.5. Proof of Theorem B. We may always assume Y = D̄s
k. Suppose first

that X = Dr
k. Each analytic map fn is of the form fn = Ev(α(n)) for some

rigid point α(n) ∈ Morr,s∞ by Theorem 4.6. It was shown in Proposition 4.3
that the space Morr,s∞ is Fréchet-Urysohn so that we may assume that α(n)

converges to some point α ∈ Morr,s∞ . The limit map f is precisely Ev(α) (cf.
Theorem 4.6) and we conclude by Theorem 4.9.

Let now X be any good, reduced, σ-compact k-analytic space. Pick a point
x ∈ X and an affinoid neigbourhood Z of x containing x in its interior. Fix
a distinguished closed immersion of Z into some closed unit polydisk D̄r.
For every n we may find an analytic map f̂n : D̄r → D̄s such that f̂n|Z = fn
applying the same argument as in the proof of Theorem 3.1. We are thus
reduced to the previous case, and this concludes the proof of Theorem B. �

5. Weakly analytic maps

In this section we look more precisely at the properties of continuous
limits of analytic functions. As before, k is any complete valued field which
is algebraically closed.

5.1. Definition and first properties. We begin with a definition.

Definition 5.1. Let X and Y be any two good k-analytic spaces, and let
f : X → Y be a continuous map.

We say that f is weakly analytic if for every point x ∈ X there exist
an affinoid neighbourhood U of x, a complete field extension K/k and an
analytic map F : UK → YK such that f|U = πK/k ◦ F ◦ σK/k.
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It will be convenient to denote by WA(X,Y ) the set of all weakly analytic
maps from X to Y .

Clearly, the set Mor(X,Y ) of analytic maps from X to Y is a subset
of WA(X,Y ). It is also a strict subset since any constant map is weakly
analytic, but it is analytic only if the constant is a rigid point.

Proposition 5.2. Weakly analytic maps are stable under composition.

Proof. Since being weakly analytic is a local notion, it suffices to argue in
the affinoid case.

Let X, Y and Z be k-affinoid spaces. Consider f ∈ WA(X,Y ) and g ∈
WA(Y,Z). Pick a point x ∈ X. Let U be an affinoid neighbourhood of x
and let K be an extension of k such that f|U = πK/k ◦ F ◦ σK/k for some
K-analytic map F . Pick an affinoid neighbourhood V of f(x). After maybe
reducing U and taking a larger extension of k, we may assume that f(U) ⊂ V
and g|V = πK/k ◦G ◦ σK/k for an analytic map G. One concludes using the
fact that σK/k is a section of πK/k. �

Proposition 5.3. Let X be a basic tube and Y be a k-affinoid space. Let
f : X → Y be a continuous map. The following two conditions are equivalent.

i) For any point x ∈ X there exist an affinoid neighbourhood Z of x
and a sequence of analytic maps fn : Z → Y pointwise converging to
f |Z .

ii) For any point x ∈ X there exist an affinoid neighbourhood Z of x, a
complete extension K of k and an analytic map F : ZK → YK such
that f |Z = πK/k ◦ F ◦ σK/k.

A consequence of the previous result is that when X has no boundary then
a continuous map f : X → Y is weakly analytic whenever for every point
x ∈ X there exists a basic tube U containing x and a sequence of analytic
maps fn from U to Y that converge pointwise to f .

Proof. The implication i) ⇒ ii) is precisely Theorem B.
Suppose that ii) is satisfied. As usual, we may assume Y = D̄s

k. Pick a
point x ∈ X and an affinoid neighbourhood Z of x such that there exists
a complete extension K/k and a K-analytic map F : ZK → D̄s

K such that
f |Z = πK/k ◦ F ◦ σK/k. As in the proof of Theorem 3.7, we may find an

analytic map F̂ : Dr
K → D̄s

K that agrees with F on ZK ∩ Dr
K . By Theorem

4.6, there exists a rigid point a ∈ Morr,s∞,K such that F̂ = Φ(a, ·). The

point α = π∞
K/k(a) in Morr,s∞ is not rigid in general, but we may find points

α(n) ∈ Morr,s∞ (k) converging to α. The analytic maps Ev(α(n)) converge
pointwise to Ev(α) : Dr

k → D̄s
k by Theorem 4.6, and by construction we have

that Ev(α) = πK/k ◦ F̂ ◦ σK/k , see Theorem 4.9. We conclude the proof by
applying the previous case. �

5.2. Rigidity of weakly analytic maps. We prove here the following
statement
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Proposition 5.4. Suppose f : X → Y is a weakly analytic map, where Y is
a curve. If x is a rigid point that is mapped to a non-rigid point by f , then
f is locally constant near x.

Proof. Let x ∈ X be a rigid point such that y = f(x) is not rigid. Since this
is a local statement, we may replace X and Y by affinoid neighbourhoods of
x and y respectively. In particular, we may assume that X = DN

k and x = 0.
After maybe reducing X, there exists an extension K of k and a K-analytic
map F : XK → YK such that f = πK/k ◦ F ◦ σK/k. Observe that F (x) is a
rigid point of YK .

Suppose first that Y = D̄k. The fact that y is not rigid means that y has
positive diameter, i.e.

inf
a∈k◦
|(T − a)(y)| = r > 0.

By continuity, we can find a polyradius ǫ > 0 such that every rigid point z in
DN
K(0; ǫ) satisfies |F (z)− F (0)|K < r, where |.|K denotes the absolute value

on K. Pick a point a ∈ k◦. For every rigid point z ∈ DN
K(0; ǫ), we get

|(T − a)(y)| = max {|F (z)− F (0)|K , |(T − a)(y)|}

= max
{
|F (z) − F (0)|K , |(T − a)(πK/k ◦ F (0))|

}

= max {|F (z)− F (0)|K , |F (0) − a|K}

= |F (z) − a|K

= |(T − a)(πK/k ◦ F (z))| .

Thus, F maps the polydisk DN
K(0; ǫ) into the fibre π−1

K/k(y). As

σK/k(D
N
k (0; ǫ)) ⊆ DN

K(0; ǫ),

we conclude that f is locally constant near 0.

For Y any affinoid of dimension 1 there exists a finite morphism ϕ : Y →
D̄k by Noether’s Lemma. By what precedes, the composite map ϕ ◦ f is
locally constant near 0, and by finiteness so is f . �

Example 5.5. The previous result does not hold if Y has dimension greater
than 2. Consider for instance the weakly analytic map f : D̄ → D̄2 given by
f = πK/k ◦ F ◦ σK/k, where K = H(xg) and F (z) = (xg, z). No rigid point

in D̄ has rigid image under f , but f is not locally constant at these points.

5.3. Weakly analytic maps from curves.

Proposition 5.6. Let f : X → Y be a weakly analytic map, where X is a
curve. If there exists a converging sequence of rigid points of X whose images
under f are rigid points, then f is analytic.

Proof. Pick any sequence xn ∈ X(k) such that f(xn) are also rigid, and
assume that limn xn = x. Here x may be non-rigid. We may replace X
by some affinoid neighbourhood of x and assume that f = πK/k ◦ F ◦ σK/k

for some complete extension K/k and some K-analytic map F . Observe
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that f(xn) = F (xn) ∈ Y (k). We may as well replace Y by an affinoid
neighbourhood of f(x) and embed it in some polydisk D̄N

k .

Let A be the underlying k-affinoid algebra of X. The map F is then
determined by elements F1, · · · , FN in the K-affinoid algebra AK . We may
assume that the extension K/k is of countable type [BGR84, §2.7], since
the expression of F contains at most countably many elements of K. Pick
any real number α > 1. By [BGR84, Proposition 2.7.2/3] there is an α-
cartesian Schauder basis {ej}j∈N of K, and we may choose e0 = 1 by [BGR84,
Proposition 2.6.2./3].

Fix an epimorphism TM → AK and lift every Fl to an element Gl in TM .
Then for every l = 1, · · · , N we can develop Gl =

∑
I a

l
IT

I with alI ∈ K

and such that |alI |K → 0 as |I| goes to infinity. Using the Schauder basis we

obtain Gl =
∑

j

(∑
I a

l
I,jT

I
)
ej , with alI,j ∈ k. The series Aj

l =
∑

I a
l
I,jT

i

defines an element in TM , since

|alI,j |k ≤ max
j
|alI,j|k ≤ α|alI |K → 0

as |I| goes to infinity. Recall that Fl(xn) ∈ k for all n, and so Gl(xn) ∈ k.

We infer that for j ≥ 1 and for all n, Aj
l (xn) = 0. Each of these Aj

l defines in
turn an analytic map on X that vanishes at every xn, and hence is constant
equal zero on X by the principle of isolated zeros. It follows that Fl|X = A0

l

for every 1 ≤ i ≤ N , thus they are defined over k. �

We observe that the previous result does not hold in higher dimension.

Example 5.7. Let ζn ∈ k, |ζn| = 1, |ζn − ζm| = 1 for n 6= m. Let f be
the weakly analytic map obtained as the limit of the sequence fn : D2 → D̄1,
given by T 7→ ζnS + T . The map f is not analytic, but the set {0} × D1(k)
that is mapped to the set of rigid points.

A consequence of the previous result is the following statement that can
be viewed as the principle of isolated zeroes for weakly analytic maps.

Proposition 5.8. Let f : X → Y be a non constant weakly analytic map
where X is a curve without boundary. Then the fibre of any rigid point in Y
contains no accumulation point.

Proof. Let y ∈ Y (k) and suppose there exist points xn ∈ X converging to a
point x and such that f(xn) = y for all n. In this situation, we may assume
Y = D̄N

k , y = (0, · · · , 0) and replace X with some affinoid neighbourhood
of x such that f lifts to a K-analytic map F over some complete extension
K/k. This map F is given by some elements F1, · · · , FN in the underlying
affinoid algebra of XK .

The point y is rigid and so it has only one preimage under πK/k. Thus,

(0, · · · , 0) = f(xn) = F ◦ σK/k(xn) ∈ D̄N
K

for all n. Since X is a curve and F is non-constant (otherwise f would be
so), F−1(0) is included in the set of rigid points of X. It follows that every
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σK/k(xn) is rigid. Each component Fi of F defines an analytic map between

the curves XK and D̄K and admits a sequence of zeros with an accumulation
point σK/k(x). It follows that every Fi is identically zero, hence so is f . �

5.4. A conjecture on weakly analytic maps. On basic tubes, we con-
jecture that weakly analytic maps can be globally lifted to analytic maps.

Conjecture 1. Let Y be a k-affinoid space and X a basic tube. Let f : X →
Y be a weakly analytic map. Then, there exist a complete extension K/k and
F : XK → YK analytic such f = πK/k ◦ F ◦ σK/k.

Notice that a weakly analytic map can be locally lifted to an analytic
map over some complete extension of k. Conjecture 1 means that this can
be done globally.

Remark 5.9. In the case when X and Y are polydisks, Conjecture 1 amounts
to saying that the map Ev is surjective onto the set WA(X,Y ).

The map Ev becomes closed by Theorem 4.6 for the topology of the point-
wise convergence, and so WA(X,Y ) becomes Fréchet-Urysohn for this topol-
ogy.

Observe that if Conjecture 1 holds, then using Theorem 4.7 we have:

Theorem 5.10. Suppose that Conjecture 1 holds.
Let X be a boundaryless σ-compact k-analytic space and Y a k-affinoid

space. Then, every sequence of weakly analytic maps fn : X → Y admits a
subsequence that is pointwise converging to a weakly analytic map f .

As a consequence, we have:

Corollary 5.11. Suppose that Conjecture 1 holds. Let X be a boundaryless
σ-compact k-analytic space and Y a k-affinoid space. Let {fn} ⊂WA(X,Y )
be a sequence converging to some continuous map f . Then, f is weakly
analytic.

6. Applications to dynamics

In this section, we define the Fatou set of an endomorphism of PN,an and
study its geometry, which exhibits similar properties to the complex case.

6.1. Strongly pluriharmonic functions. We recall the definition from
[CL11]:

Definition 6.1. Let X be an open subset of PN,an. A continuous function
u : X → R is strongly pluriharmonic if for every x ∈ X there exist an open
neighbourhood U of x, a sequence of invertible analytic functions hn on U
and real numbers bn such that

u = lim
n→+∞

bn · log |hn|

locally uniformly on U .
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Harmonic functions have been widely studied in dimension 1. Baker-
Rumely [BR10] and Favre-Rivera Letelier [FRL10], and Thuillier [Thu05]
have defined non-Archimedean analogues of the Laplacian operator, on P1,an

and on general analytic curves respectively.
If X is an analytic curve, strongly harmonic functions are harmonic in the

sense of Thuillier. It is not known yet whether the converse holds, see [CL11].
However, if X is a connected open subset of P1,an, then all definitions agree
by [BR10, Corollary 7.32].

Observe that over C, pluriharmonic functions are in fact locally the loga-
rithm of the norm of an invertible function, whereas this is not true in the
non-Archimedean setting. Counterexamples appear already for curves, see
[CL11, §2.3].

Remark 6.2. Strongly pluriharmonic functions form a sheaf by definition.

Proposition 6.3. Let X be an open subset of PN,an. The set of all strongly
pluriharmonic functions on X forms a R-vector space.

6.2. Harmonic functions on open subsets of P1,an. Recall from [Ber90,
§4.2] that the analytic projective line P1,an is the one-point compactification
of A1,an. The points in A1,an can be explicitly described as follows [Ber90,
§1.4.4].

Pick a ∈ k and r ∈ R+ and denote by B̄(a; r) the closed ball in k centered
at a and of radius r. To B̄(a; r) we can associate a point ηa,r ∈ A1,an by
setting |P (ηa,r)| := sup|y−a|≤r |P (y)| for every polynomial P ∈ k[T ]. Points
of the form ηa,0 are called type I points, and these are precisely the rigid
points of A1,an. Consider the point ηa,r with r > 0. If r ∈ |k×| we say that
ηa,r is of type II and if r /∈ |k×| of type III. A decreasing sequence of closed
balls B̄(ai; ri) in k with empty intersection defines a converging sequence of
points ηai,ri ∈ A1,an. The limit point is called a type IV point. Any point in
A1,an is of one of these four types.

It is a fundamental fact that the Berkovich projective line carries a tree
structure. Roughly speaking, it is obtained by patching together one-dimensional
line segments in such a way that it contains no loop. We refer to [Jon15, §2]
for a precise definition. Suffice it to say that for any two points x, y ∈ P1,an

there exists a closed subset [x, y] ⊂ P1,an containing x and y that can be
endowed with a partial order making it isomorphic to the real closed unit
interval [0, 1] or to {0}. These ordered sets are required to satisfy a suitable
set of axioms. For instance, for any triple x, y, z there exists a unique point
w such that [z, x] ∩ [y, x] = [w, x] and [z, y] ∩ [x, y] = [w, y]. Any subset of
the form [x, y] is called a segment.

As a consequence, P1,an is uniquely path-connected, meaning that given
any two distinct points x, y ∈ P1,an the image of every injective continuous
map γ from the real unit interval [0, 1] into P1,an with γ(0) = x and γ(1) = y
is isomorphic to the segment [x, y].
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A closed subset Γ ⊆ P1,an is called a subtree if it is connected. An endpoint
of Γ is a point x ∈ Γ such that Γ \{x} remains connected. For every subtree
Γ of P1,an there is a canonical retraction rΓ : P1,an → Γ, which sends a point
x ∈ P1,an to the unique point in Γ such that the intersection of the segment
[x, rΓ(x)] with Γ consists only of the point rΓ(x).

A strict finite subtree Γ of P1,an is the convex finitely many type II points
x1, . . . , xn. As a set, it is the union of all the paths [xi, xj ], i = 1, . . . , n.

Recall that an open (resp. closed) disk of P1,an is by definition either
an open (resp. closed) disk in A1,an or P1,an with a closed (resp. open)
disk in A1,an removed. Basic tubes in P1,an are strict simple domains in the
terminology of [BR10]. They are either P1,an or strict open disks in P1,an

with a finite number of strict closed disks of P1,an removed. In particular,
basic tubes different from P1,an and strict open disks can be obtained as an
inverse image r−1

Γ (Γ0), where Γ is a strict finite subtree of P1,an and Γ0 the
open subset of Γ consisting of Γ with its endpoints removed.

Similarly, every affinoid subset of P1,an is either a closed disk or a closed
disk in P1,an with a finite number of open disks of P1,an removed. In partic-
ular, an affinoid subset of the form D̄(a; r) \

⋃n
i=1D(ai; ri) is homeomorphic

to the Laurent domain of underlying affinoid algebra

k{r−1(T − a), r1S1, . . . , rnSn}/(S1(T − a1)− 1, . . . , Sn(T − an)− 1).

Given a subset W ⊂ P1,an, denote by W its closure and by ∂topW its
topological boundary. If W is a basic tube strictly contained in P1,an, then
∂topW consists of a finite set of type II points.

Proposition 6.4. Let U be a proper connected open subset of P1,an. Then
there exist a sequence Wm of basic tubes of P1,an exhausting U and a sequence
of strictly affinoid subspaces Xm of P1,an satisfying

Wm ⊂ Xm ⊂Wm+1 ⊂ U

for every m ∈ N∗.

The proof makes extensive use of the tree structure of P1,an. Recall from
[BR10, Appendix B] that the tangent space at a point x ∈ P1,an is defined
as the set Tx of paths leaving from x modulo the relation having a common
initial segment. The space Tx is in bijection with the connected components
of P1,an \ {x}. Given any tangent direction ~v ∈ Tx, we denote by U(~v) the
corresponding connected component of P1,an \ {x}.

Proof. By [BR10, Corollary 7.11] there exists a sequence of basic tubes Wm

exhausting U and such that Wm ⊂Wm+1 ⊂ U for every m ∈ N∗.
Fix a positive integer m > 0. As we have assumed that U is strictly

contained in P1,an, the topological boundary of Wm is a non-empty finite set
of type II points of P1,an. The convex hull Γm of ∂topWm is thus a subgraph
of P1,an with finitely many endpoints.
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If Wm is an open disk, we set Xm to be the closed disk of same centre and
same radius as Wm. Otherwise, consider the following strict finite subtree Γ
of P1,an. Let Γ0

m be the open subset of Γm consisting of Γm with its endpoints
removed. Pick a point x in Γm\Γ

0
m. There are at most finitely many tangent

directions at x containing points of the complement in U and not contained
in Γm. For every such tangent direction, attach a segment to Γm in that
direction and in such a way that it is contained in Wm+1 and such that its
endpoint is a type II point. If no such tangent direction exists, lengthen that
edge ending at x such that the new endpoint is again of type II and belongs
to Wm+1. Denote by Γ the strict finite subtree obtained this way. Observe
that all the boundary points of Γm are contained in Γ0.

Let rΓ : P1,an → Γ be the natural retraction map. The basic tube Wm

is precisely r−1
Γ (Γ0

m). Setting Xm = r−1
Γ (Γm), clearly one has Wm ⊂ Xm ⊂

Wm+1. Let xi1 , . . . , xim be the endpoints of Γm, where xij = ηaij ,rij are of

type II. The set Xm is homeomorphic to P1,an minus the strict open disks
D(aij ; rij ), j = 1, . . . ,m, and is thus strictly affinoid. �

The following lemma will be essential for the proof of Theorem C.

Proposition 6.5. Let U be a basic tube in P1,an. There exists a positive
constant C depending only on U such that for every harmonic function g :
U → R there exists an analytic function h : U → A1,an \ {0} such that

sup
U

∣∣g − log |h|
∣∣ ≤ C.

Proof. If U is either P1,an or D, the assertion is trivial, because every har-
monic function on D or on P1,an is constant by [BR10, Proposition 7.12].
We may thus assume that U is of the form D \ ∪mi=1D̄(ai, ri) with ri ∈ |k

×|,
0 < ri < 1 and |ai| < 1 for i = 1, . . . ,m. The topological boundary of U
consists of a finite number of type II points {x1, . . . , xm}.

By the Poisson formula [BR10, Proposition 7.23], we may find real num-
bers c0, . . . , cm with

∑m
i=1 ci = 0 such that for all z ∈ U

g(z) = c0 +
m∑

i=1

ci · log |(T − ai)(z)|.

Pick non-zero integers n1, . . . , nm such that |ci−ni| < 1 and b ∈ k such that
| log |b| − c0| < 1. Consider the map h : U → A1,an \ {0},

h(z) = b

m∏

i=1

(T − ai)
ni(z).

Since ai /∈ U , the function log |h| is harmonic on U and we have

sup
U
|g − log |h|| ≤ |c0 − log |b||+

m∑

i=1

|ci − ni| · sup
U

log |(T − ai)(z)|.

The functions log |(T − ai)(z)| are bounded on U and it follows that the
right-hand side of the inequality is bounded. �
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6.3. Green functions after Kawaguchi-Silverman. Consider an endo-

morphism of the N -dimensional projective analytic space f : PN,an
k → P

N,an
k

of degree d ≥ 2. Denote by fn its n-th iterate. Fixing homogeneous coordi-
nates, such a map can be written as f = [F0 : · · · : FN ], with Fi homogeneous
polynomials of degree d without non-trivial common zeros.

Denote by ρ : AN+1,an \ {0} → PN,an the natural projection map. An
endomorphism f of PN,an can be lifted to a map F : AN+1,an → AN+1,an

such that ρ ◦F = f ◦ ρ. One can take for instance F = (F0, · · · , FN ). In the
sequel, we will always choose lifts of f such that all the coefficients of the
Fi’s lie in k◦ and at least one of them has norm 1.

Given T0, . . . , TN affine coordinates of AN+1,an and a point z ∈ AN+1,an,
we define its norm as |z| = max0≤i≤N |Ti(z)|. Analogously, we set |F (z)| =
max0≤i≤N |Fi(z)|. With these norms in hand, we may now define the Green
function associated to f following Kawaguchi and Silverman [KS07, KS09],
see [Sib99] for the complex case.

Proposition-Definition 6.6. The sequence of functions

Gn(z) =
1

dn
log |Fn(z)|

converges uniformly on AN+1,an.
One defines the dynamical Green function associated to f as Gf (z) =

limn→∞Gn.

Proof. The inequality |F (z)| ≤ |z|d is clear, and by the homogeneous Null-
stellensatz there exists some constant C > 0 such that for all z

C · |z|d ≤ |F (z)| ≤ |z|d,

and so
C · |Fn(z)|d ≤ |Fn+1(z)| ≤ |Fn(z)|d.

Set C1 = | logC|. Taking logarithms, one obtains

|Gn+1 −Gn| ≤
C1

dn
.

By the ultrametric inequality, |Gn+j −Gn| ≤
C1
dn for all j ≥ 0 and for all n.

Letting j go to infinity, one obtains

|Gf −Gn| ≤
C1

dn
. (6.1)

�

Theorem 6.7 ([KS07]). i) The function Gf is continuous.

ii) For every λ ∈ k∗ and for every z ∈ AN+1,an,

Gf (λ · z) = Gf (z) + log |λ|.

iii) There exists a positive constant C such that

sup
z∈AN+1,an

|Gf (z)− log |z|| ≤ C.
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6.4. Fatou and Julia sets. Let us first discuss the one-dimensional situa-
tion. The Fatou and Julia sets have been widely studied, both in the complex
and in the non-Archimedean setting.

Recall that there are several characterizations of the Fatou and Julia sets
of an endomorphism f of P1

C. The Fatou set Ff can be defined as the
normality locus of the family of the iterates of f , and the Julia set Jf as its
complement. Equivalently, one can set Jf to be the support of the canonical
measure, see [Sib99]. One can also show that the Julia set is the closure of
the repelling periodic points.

Some of these equivalences have a non-Archimedean counterpart. There
is a well-defined notion of the canonical measure of an endomorphism f (see
[FRL04, FRL06] and [BR10, §10.1]), and so one sets Jf to be its support and
Ff its complement. Using a similar definition of normality as ours, it can be
showed that the Fatou set agrees with the normality locus of the family of
the iterates of f [FKT12, Theorem 5.4].

We now explore the higher dimensional case.

Definition 6.8. The Fatou set of an endomorphism f : PN,an → PN,an of
degree at least 2 is

Ff = {z ∈ PN,an; {fn} is normal in some neighbourhood of z}.

The Julia set Jf is the complement of Ff .

Remark 6.9. In [KS09], the authors define the Fatou set of an endomophism
of the N -th projective space PN

k as the equicontinuity locus of the family of
iterates, which they prove to be the same as the locus where it is locally
uniformly Lipschitz. However, the definition of the Fatou set in terms of
equicontinuity presents some difficulties already in dimension one [BR10,
Example 10.53].

The proof of the next theorem follows its complex counterpart.

Theorem 6.10. Let f : PN,an → PN,an be an endomorphism of degree d ≥ 2.
An open subset U of PN,an lies in the Fatou set of f if and only if its Green

function Gf is strongly pluriharmonic on ρ−1(U) ⊂ AN+1,an.

Remark 6.11. Chambert-Loir has constructed a natural invariant probabil-
ity measure µf on PN,an and shown that its support is contained in the locus
where Gf is strongly pluriharmonic, see [CL11, Proposition 2.4.4]. Theorem
6.10 shows that the support of µf is included in the Julia set of f .

Proof of Theorem 6.10. Consider a lift F = (F0, · · · , FN ) of f , where Fi ∈
k[T0, · · · , TN ] are homogeneous of degree d without trivial common zeros.
We may assume that supD |F (z)| = 1. Recall from (6.1) that there exists a

positive contant C1 such that |Gf −Gn| ≤
C1
dn for all n ∈ N.

Let U be a basic tube on which Gf is strongly pluriharmonic. Let hn ∈

O×
AN+1(U) and bn non-zero real numbers be such that Gf is the uniform
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limit of the sequence bn · log |hn|. After maybe extracting a subsequence and
renumbering it, we may assume that

|Gf − bn · log |hn|| ≤
C1

dn
∀n≫ 0.

Thus,
∣∣∣∣
1

dn
log |Fn| − bn · log |hn|

∣∣∣∣ =

∣∣∣∣
1

dn
log

(
|Fn|

|hn|bn·d
n

)∣∣∣∣
≤ max {|Gf − bn · log |hn|| , |Gf −Gn|}

≤
C1

dn
.

So we see that for n≫ 0

e−C1 ≤
|Fn|

|hn|bn·d
n ≤ eC1 . (6.2)

Since the functions hn have no zeros on U , each F̃n = Fn

hbn·dn
n

is a lift of fn.

Theorem 3.7 together with (6.2) imply that there is a subsequence of F̃n

that is pointwise converging to some continuous map F̃ , and thus the family
{fn

|U
} is normal.

Let z be a point in the Fatou set Ff and let U be a neighbourhood of
z contained in Ff on which the family of iterates {fn

|U
} is normal. Let fnj

be a subsequence of the iterates of f that is pointwise converging on U to
some continuous map. Let x̄ = limnj f

nj(z). Recall that the projective

space PN can be covered by a finite number of N -dimensional polydisks.
After maybe rescaling the sequence, we may assume that x̄ lies in the chart
{z0 = 1, |zi| < 2, i = 1, · · · , N}, and hence that so do all the fnj(U)’s. We
thus have

Gnj =
1

dnj
log
∣∣(Fnj

0 , · · · , F
nj
m )
∣∣

=
1

dnj
log
∣∣Fnj

0

∣∣+ 1

dnj
log max

1≤i≤m

∣∣∣∣
F

nj

i

F
nj

0

∣∣∣∣ .

The second term converges uniformly to 0. On the open set ρ−1(U), the
function Gf is thus the uniform limit of the sequence 1

dnj log
∣∣Fnj

0

∣∣, hence
strongly pluriharmonic. �

6.5. Hyperbolicity of the Fatou components. Recall that Mor(X,Y )
denotes the set of analytic maps from X to Y .

Definition 6.12. Let Ω be a relatively compact subset of an analytic space
Y and U a basic tube.

The family Mor(U,Ω) is said to be normal if for every sequence of analytic
maps {fn} ⊂ Mor(U,Ω) there exists a subsequence fnj that is pointwise
converging to a continuous map f : U → Y .
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Remark 6.13. In the complex setting, the previous definition corresponds to
the family Mor(U,Ω) being relatively compact in Mor(U, Y ). The definition
of normality for a non-compact target is slightly different, since it allows for
a sequence to be compactly divergent [Kob98, §I.3].

Theorem C can now be reformulated in the following terms:

Theorem 6.14. Let Ω be a Fatou component of an endomorphism f :
PN,an → PN,an of degree at least 2. Let U be a connected open subset of
P1,an. Then the family Mor(U,Ω) is normal.

Proof. The projective space PN,an can be covered by N+1 charts V0, . . . , VN

homeomorphic to DN . For every i = 0, · · · , N , let si : {z ∈ PN,an : zi 6=
0} → AN+1,an be the analytic local section of ρ sending z = [z0 : . . . : zN ] to
(z0zi , . . . ,

zi−1

zi
, 1, zi+1

zi
, . . . , zNzi ). Let g : U → Ω be an analytic map. We claim

that for any compact subset K ⊂ U the map g|K admits a lift to ρ−1(Ω).

Suppose first that U is not the whole P1,an. By Proposition 6.4, there
exists a sequence of basic tubes Wm exhausting U and a sequence of affinoid
subspaces Xm satisfying

Wm ⊂ Xm ⊂ U.

Pick any compact subset K ⊂ U . For m sufficiently large, K is contained

in some Xm. Fix m ∈ N∗. Cover Xm by {U
(m)
i = ρ−1(Vi) ∩ Xm}

N
i=0. On

every U
(m)
ij = ρ−1(Vi) ∩ ρ−1(Vj) ∩Xm, we know that ρ ◦ si ◦ g = ρ ◦ sj ◦ g,

and thus si ◦ g = ϕ
(m)
ij · (sj ◦ g) for some ϕ

(m)
ij ∈ O×(U

(m)
ij ). Since Xm is an

affinoid of P1,an we have that H1(Xm,O×) = 0 by [Put80]. We may thus

find ϕi ∈ O
×(U

(m)
i ) and ϕj ∈ O

×(U
(m)
j ) such that ϕ

(m)
ij =

ϕ
(m)
i

ϕ
(m)
j

. On Xm

consider the following local lifts of g:

ĝi
m : U

(m)
i → ρ−1(Ω), ĝi

m =
si ◦ g

ϕ
(m)
i

.

It follows that ĝi
m = ĝj

m on U
(m)
ij , and hence we have a lift ĝm : Xm →

ρ−1(Ω) of g as required. By Theorem 6.10 the Green function Gf of f is
strongly pluriharmonic on ρ−1(Ω), and thus Gf ◦ ĝ

m is harmonic on Xm.

Let gn : U → Ω be a sequence of analytic maps. For every Xm consider
the lifts ĝn

m : Xm → ρ−1(Ω) of the restriction of gn to Xm constructed
above.

Fix a real number C > 0 and consider the set M = {z ∈ AN+1,an :
|Gf (z)| ≤ C}. By Theorem 6.7, the set M is compact. By Lemma 6.5, for
every n and every m there exists an analytic map hmn : Wm → A1,an \ {0}
such that

sup
Wm

∣∣Gf ◦ ĝn
m − log |hmn |

∣∣ ≤ C.

We set g̃n
m = ĝn

m

hm
n

. Each g̃n
m : Wm → ρ−1(Ω) is a lift of gn and its

image lies in the compact M. By Theorem 3.7, there exists a subsequence
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of g̃n
m converging pointwise to a continuous map. By a diagonal extraction

argument, we conclude that the family Mor(U,Ω) is normal.

The case U = P1,an follows by writing P1,an as a finite union open disks.
�

The following two propositions are closely related. Proposition 6.16 is
stronger, but Proposition 6.15 will be needed for its proof.

Proposition 6.15. Let Y be a compact k-analytic space and Ω an open
subset of Y .

If the family Mor(A1,an,Ω) is normal, then every analytic map A1,an → Ω
is constant.

Proof. Assume that the family Mor(A1,an,Ω) is normal. Suppose that there
exists a non-constant analytic map g : A1,an → Ω. Consider the sequence of
analytic maps from A1,an into Ω given by fn(z) = g(zn). By normality there
is a subsequence {fnj} that is pointwise converging to a continuous map f .

The Gauss point xg is fixed by all the maps z 7→ zn, and so f(xg) = g(xg).
For every integer m > 0 let zm = η0,1− 1

m
∈ A1,an. Since every zm lies in the

open unit disk D, we have that

f(zm) = lim
nj→∞

fnj(zm) = lim
nj→∞

g ((zm)nj ) = g(0)

for all m. The continuity of f implies that the f(zm) tend to f(xg) as m
goes to infinity. It follows that g(xg) = g(0) is a rigid point of Ω. As the
source A1,an is one-dimensional, g must be constant. �

Proposition 6.16. Let Ω be an open subset of PN,an.
If the family of analytic functions Mor(A1,an\{0},Ω) is normal, then every

analytic map A1,an \ {0} → Ω is constant.

Let us recall some basic topological facts. We refer to [BR10, §9] for
further details. Recall from §6.2 that given a point x ∈ P1,an, we denote by
U(~v) the connected component of P1,an \ {x} corresponding to the tangent
direction ~v ∈ Tx.

Let g : U ⊆ P1,an → P1,an be a non-constant analytic non-constant map.
For every point x ∈ U , the map g induces a tangent map Tg between Tx and
Tg(x). Let ~v be a tangent direction at x that is mapped to ~v′ ∈ Tg(x) by Tg.

Then either g(U(~v)) = U(~v′) or g(U(~v)) = P1,an. This follows from the fact
that the map g is open [BR10, Corollary 9.10].

Of special interest for us is the case when x is a type II point. Assume
for simplicity that both x and g(x) are the Gauss point. The space Tx is
isomorphic to P1

k̃
, and the tangent map Tg : P1

k̃
→ P1

k̃
and can be described

as follows. In homogeneous coordinates g can be written as g = [G0 : G1]
with G0, G1 ∈ O(A

1,an) without common zeros by [FvdP04, Theorem 2.7.6],
where all the coefficients of G0 and G1 are of norm less or equal than one
and least one has norm one. Thus, we may consider the reduction map of g,
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which is a non-constant rational map from P1
k̃

to itself, and hence surjective.

One can show that Tg is given by the reduction of g [BR10, Corollary 9.25].
The tangent space and the tangent map can be defined analogously for

A1,an \ {0}.

Proof of Proposition 6.16. Suppose that the family Mor(A1,an \ {0},Ω) is
normal. We first deal with the case where Ω is contained in P1,an. Let
g : A1,an \ {0} → P1,an be a non-constant analytic map. We may assume
that it is of the form g = [G0 : G1] with Gi : A

1,an \ {0} → A1,an analytic
without common zeros by [FvdP04, Theorem 2.7.6]. Our goal is to construct
sequence of analytic maps from A1,an\{0} to itself such that the composition
with g gives a sequence gn : A1,an \ {0} → Ω that admits no converging
subsequence with continuous limit.

Suppose first that there exists a type II point in P1,an having infinitely
many preimages in the segment T = {η0,r ∈ A1,an : 0 < r <∞}. Composing
with an automorphism of P1,an, we may assume that this point is the Gauss
point. Let thus {η0,rn} be a sequence of preimages of xg.

Denote by Vn the compact set containing η0,rn consisting of A1,an \ {0}
minus the open sets U(~v0) and U(~v∞), where ~v0 and ~v∞ are the tangent
directions at η0,rn pointing at 0 and at infinity respectively. As Tg is surjec-
tive, we deduce that g(Vn) avoids at most two tangent directions at xg. After
maybe extracting a subsequence, we may find a connected component B of
P1,an \ {xg} that is contained in g(Vn) for all n ≫ 0. As a consequence, we
may pick a rigid point a0 in B and rigid points xn ∈ Vn such that g(xn) = a0
for every n ∈ N.

Consider the sequence in Mor(A1,an\{0},P1,an) given by gn(z) = g(xn!z
n!).

By normality, we may assume that gn converges to a continuous map g∞.
The Gauss point xg is fixed by g∞, as gn(xg) = xg for all n ∈ N. For every
fixed n ∈ N and every m ≤ n, the map gn sends the set of all the m-th roots
of unity Rm to a0, and so g∞ is maps every Rm to a0. For every m ∈ N pick
a point ζm ∈ Rm such that ζm → xg as m tends to infinity. We have that

g∞(xg) = lim
m→∞

g∞(ζm) = a0,

contradicting the continuity.

Suppose next that every type II point in P1,an has at most finitely many
preimages in the segment T . Pick a sequence of type II points {η0,rn} with
rn → +∞ as n goes to infinity. By compactness, we may assume that the
points g(η0,rn) converge to some point y∞ ∈ P1,an. We claim that the points
g(η0,r) converge to a point y∞ as r tends to infinity. To see this, fix a basic
tube V containing y∞. Recall that ∂topV is a finite set of type II points. By
assumption, we have that g(η0,r) does not belong to ∂topV for sufficiently
large r. For n≫ 0 we have that g(η0,rn) lies in V . Thus, g(η0,r) must belong
to V for r≫ 0.
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Pick any r ∈ R+ and consider the tangent direction ~v at η0,r pointing
towards infinity. We may assume that g(U(~v)) avoids at most one rigid point
in P1,an, as otherwise Picard’s Big theorem [CR04] asserts that g admits an
analytic extension at infinity and we conclude by Proposition 6.15. After
maybe varying the rn, we may find a rigid point a0 ∈ P1,an and rigid points
xn with |xn| = rn such that g(xn) = a0 for all n.

Consider the sequence gn(z) = g(xn!z
n!) and assume that it admits a

continuous limit g∞. Our previous argument shows that g∞ maps every set
Rm to a0. The points gn(xg) converge to y∞ by our claim, and hence g∞ is
not continuous.

Assume now that Ω is an open subset of PN,an. Let g : A1,an \ {0} → Ω
be a non-constant analytic map. As in the one-dimensional case, this map
can be written in homogeneous coordinates as g = [G0 : . . . : GN ], with
Gi ∈ O

×(A1,an \ {0}). As g is not constant we may assume that G0 is
non-constant and that G1 is not a scalar multiple of G0. We may assume
by [FvdP04, Theorem 2.7.6] that G0 and G1 have no common zeros. As a
consequence, the map defined on the image of g by

π : [G0(z) : . . . : GN (z)] 7→ [G0(z) : G1(z)]

is well-defined and analytic. By construction π ◦ g is non-constant and ana-
lytic. By the previous case we may find xn ∈ k× such that no subsequence
of {π ◦ g(xn!z

n!)} has a continuous limit, and thus neither {g(xn!z
n!)}. �

Proof of Corollary D. It follows from Theorem 6.14 and Proposition 6.16.
�
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