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of Sequential Consistency

Matthieu Perrin, Matoula Petrolia, Achour Mostéfaoui, and Claude Jard
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Abstract. To implement a linearizable shared memory in synchronous
message-passing systems it is necessary to wait for a time linear to the
uncertainty in the latency of the network for both read and write oper-
ations. Waiting only for one of them suffices for sequential consistency.
This paper extends this result to crash-prone asynchronous systems,
proposing a distributed algorithm building a sequentially consistent shared
snapshot memory on top of an asynchronous message-passing system
where less than half of the processes may crash. We prove that waiting is
needed only when a process invokes a read/snapshot right after a write.
We also show that sequential consistency is composable in some cases
commonly encountered: 1) objects that would be linearizable if they were
implemented on top of a linearizable memory become sequentially consis-
tent when implemented on top of a sequential memory while remaining
composable and 2) in round-based algorithms, where each object is only
accessed within one round.
Key Words. Asynchronous message-passing system, Crash-failures,
Composability, Sequential consistency, Shared memory, Snapshot.

1 Introduction

A distributed system is abstracted as a set of entities (nodes, processes, agents,
etc) that communicate through a communication medium. The two most used
communication media are communication channels (message-passing system)
and shared memory (read/write operations). Programming with shared objects
is generally more convenient as it offers a higher level of abstraction to the pro-
grammer, therefore facilitates the work of designing distributed applications. A
natural question is the level of consistency ensured by shared objects. An intu-
itive property is that shared objects should behave as if all processes accessed the
same physical copy of the object. Sequential consistency [1] ensures that all the
operations in a distributed history appear as if they were executed sequentially,
in an order that respects the sequential order of each process (process order).

Unfortunately, sequential consistency is not composable: if a program uses
two or more objects, despite each object being sequentially consistent individu-
ally, the set of all objects may not be sequentially consistent. Linearizability [2]
overcomes this limitation by adding constraints on real time: each operation ap-
pears at a single point in time, between its start event and its end event. As
a consequence, linearizability enjoys the locality property [2] that ensures its
composability. Because of this composability, much more effort has been focused
on linearizability than on sequential consistency so far. However, one of our
contributions implies that in asynchronous systems where no global clock can
be implemented to measure real time, a process cannot distinguish between a



linearizable and a sequentially consistent execution, thus the connection to real
time seems to be a worthless — though costly — guarantee.

In this paper we focus on message-passing distributed systems. In such sys-
tems a shared memory is not a physical object; it has to be built using the
underlying message-passing communication network. Several bounds have been
found on the cost of sequential consistency and linearizability in synchronous dis-
tributed systems, where the transit time for any message is in a range [d− u, d],
where d and u are called respectively the latency and the uncertainty of the net-
work. Let us consider an implementation of a shared memory, and let r (resp.
w) be the worst case latency of any read (resp. write) operation. Lipton and
Sandberg proved in [3] that, if the algorithm implements a sequentially consis-
tent memory, the inequality r + w ≥ d must hold. Attiya and Welch refined
this result in [4], proving that each kind of operations could have a 0-latency
implementation for sequential consistency (though not both in the same imple-
mentation) but that the time duration of both kinds of operations has to be at
least linear in u in order to ensure linearizability.

Therefore the following questions arise. Are there applications for which the
lack of composability of sequential consistency is not a problem? For these ap-
plications, can we expect the same benefits in weaker message-passing models,
such as asynchronous failure-prone systems, from using sequentially consistent
objects rather than linearizable objects?

To illustrate the contributions of the paper, we also address a higher level
operation: a snapshot operation [5] that allows to read in a single operation a
whole set of registers. A sequentially consistent snapshot is such that the set of
values it returns may be returned by a sequential execution. This operation is
very useful as it has been proved [5] that linearizable snapshots can be wait-
free implemented from single-writer/multi-reader registers. Indeed, assuming a
snapshot operation does not bring any additional power with respect to shared
registers. Of course this induces an additional cost: the best known simulation
needs O(n log n) basic read/write operations to implement each of the snapshot
operations and the associated update operation [6]. Such an operation brings a
programming comfort as it reduces the “noise” introduced by asynchrony and
failures [7] and is particularly used in round-based computations [8] we consider
for the study of the composability of sequential consistency.

Contributions. This paper has three major contributions. (1) It identifies two
contexts that can benefit from the use of sequential consistency: round-based
algorithms that use a different shared object for each round, and asynchronous
shared-memory systems, where programs can not differentiate a sequentially
consistent memory from a linearizable memory. (2) It proposes an implementa-
tion of a sequentially consistent memory where waiting is only required when a
write is immediately followed by a read. This extends the result presented in [4],
which only applies to synchronous failure-free systems, to failure-prone asyn-
chronous systems. (3) The proposed algorithm also implements a sequentially
consistent snapshot operation the cost of which compares very favorably with
the best existing linearizable implementation to our knowledge (the stacking of



the snapshot algorithm of Attiya and Rachman [6] over the ABD simulation of
linearizable registers).

Outline. The remainder of this article is organized as follows. In Section 2, we
define more formally sequential consistency, and we present special contexts in
which it becomes composable. In Section 3, we present our implementation of
shared memory and study its complexity. Finally, Section 4 concludes the paper.

2 Sequential Consistency and Composability

2.1 Definitions

In this section we recall the definitions of the most important notions we discuss
in this paper: two consistency criteria, sequential consistency (SC, Def. 2, [1])
and linearizability (L, Def. 3, [2]), as well as composability (Def. 4). A consistency
criterion associates a set of admitted histories to the sequential specification of
each given object. A history is a representation of an execution. It contains a
set of operations, that are partially ordered according to the sequential order
of each process, called process order. A sequential specification is a language,
i.e. a set of sequential (finite and infinite) words. For a consistency criterion C

and a sequential specification T , we say that an algorithm implements a C(T )-
consistent object if all its executions can be modelled by a history that belongs
to C(T ), that contains all returned operations and only invoked operations. Note
that this implies that if a process crashes during an operation, then the operation
will appear in the history as if it was complete or as if it never took place at all.

Definition 1 (Linear extension). Let H be a history and T be a sequential
specification. A linear extension ≤ is a total order on all the operations of H,
that contains the process order, and such that each event e has a finite past
{e′ : e′ ≤ e} according to the total order.

Definition 2 (Sequential Consistency). Let H be a history and T be a se-
quential specification. The history H is sequentially consistent regarding T , de-
noted H ∈ SC(T ), if there exists a linear extension ≤ such that the word com-
posed of all the operations of H ordered by ≤ belongs to T .

Definition 3 (Linearizability). Let H be a history and T be a sequential spec-
ification. The history H is linearizable regarding T , denoted H ∈ L(T ), if there
exists a linear extension ≤ such that (1) for two operations a and b, if operation
a returns before operation b begins, then a ≤ b and (2) the word formed of all
the operations of H ordered by ≤ belongs to T .

Let T1 and T2 be two sequential specifications. We define the composition of
T1 and T2, denoted by T1 × T2, as the set of all the interleaved sequences of a
word from T1 and a word from T2. An interleaved sequence of two words l1 and
l2 is a word composed of the disjoint union of all the letters of l1 and l2, that
appear in the same order as they appear in l1 and l2. For example, the words ab
and cd have six interleaved sequences: abcd, acbd, acdb, cabd, cadb and cdab.

A consistency criterion C is composable (Def. 4) if the composition of a
C(T1)-consistent object and a C(T2)-consistent object is a C(T1×T2)-consistent
object. Linearizability is composable, and sequential consistency is not.
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(c) An asynchronous process cannot differentiate this history from
the one on Figure 1b.

Fig. 1: In layer based program architecture running on asynchronous systems,
local clocks of different processes can be distorted such that it is impossible to
differentiate a sequentially consistent execution from a linearizable execution.

Definition 4 (Composability). For a history H and a sequential specification
T , let HT be the sub-history of H containing only the operations belonging to T .

A consistency criterion C is composable if, for all sequential specifications
T1 and T2 and all histories H containing only events on T1 and T2, (HT1

∈
C(T1) and HT2

∈ C(T2)) imply H ∈ C(T1 × T2).

2.2 From Linearizability to Sequential Consistency

Software developers usually abstract the complexity of their system gradually,
which results in a layered software architecture: at the top level, an application
is built on top of several objects specific to the application, themselves built on
top of lower levels. Such an architecture is represented in Fig. 1a. The lowest
layer usually consists of one or several objects provided by the system itself,
typically a shared memory. The system can ensure sequential consistency glob-
ally on all the provided objects, therefore composability is not required for this
level. Proposition 1 expresses the fact that, in asynchronous systems, replacing
a linearizable object by a sequentially consistent one does not affect the cor-
rectness of the programs running on it circumventing the non composability of
sequential consistency. This result may have an impact on parallel architectures,
such as modern multi-core processors and, to a higher extent, high performance
supercomputers, for which the communication with a linearizable central shared
memory is very costly, and weak memory models such as cache consistency [9]
make the writing of programs tough. The idea of the proof is that in any se-
quentially consistent execution (Fig. 1b), it is possible to associate a local clock
to each process such that, if these clocks followed real time, the execution would
be linearizable (Fig. 1c). In an asynchronous system, it is impossible for the
processes to distinguish between these clocks and real time, so the operations
of the objects of the upper layers are not affected by the change of clock. The
complete proof of this proposition can be found in [10].



Proposition 1. Let A be an algorithm that implements an SC(Y )-consistent
object when it is executed on an asynchronous system providing an L(X)-
consistent object. Then A also implements an SC(Y )-consistent object when it
is executed in an asynchronous system providing an SC(X)-consistent object.

An interesting point about Proposition 1 is that it allows sequentially consis-
tent — but not linearizable — objects to be composable. Let AY and AZ be two
algorithms that implement L(Y )-consistent and L(Z)-consistent objects when
they are executed on an asynchronous system providing an L(X)-consistent ob-
ject, like on Fig. 1a. As linearizability is stronger than sequential consistency,
according to Proposition 1, executing AY and AZ on an asynchronous system
providing an SC(X)-consistent object would implement sequentially consistent
— yet not linearizable — objects. However, in a system providing the lineariz-
able object X , by composability of linearizability, the composition of AY and AZ

implements an L(Y × Z)-consistent object. Therefore, by Proposition 1 again,
in a system providing the sequentially consistent object X , the composition also
implements an SC(Y × Z)-consistent object. In this example, the sequentially
consistent versions of Y and Z derive their composability from an anchor to a
common time, given by the sequentially consistent memory, that can differ from
real time, required by linearizability.

2.3 Round-Based Computations

Even at a single layer, a program can use several objects that are not composable,
but that are used in a fashion so that the non-composability is invisible to the
program. Let us illustrate this with round-based algorithms. The synchronous
distributed computing model has been extensively studied and well-understood
leading the researchers to try to offer the same comfort when dealing with asyn-
chronous systems, hence the introduction of synchronizers [11]. A synchronizer
slices a computation into phases during which each process executes three steps:
send/write, receive/read and then local computation. This model has been ex-
tended to failure prone systems in the round-by-round computing model [8] and
to the Heard-Of model [12] among others. Such a model is particularly inter-
esting when the termination of a given program is only eventual. Indeed, some
problems are undecidable in failure prone purely asynchronous systems. In or-
der to circumvent this impos sibility, eventually or partially synchronous systems
have been introduced [13]. In such systems the termination may hold only after
some finite but unbounded time, and the algorithms are implemented by the
means of a series of asynchronous rounds each using its own shared objects.

In the round-based computing model the execution is sliced into a sequence of
asynchronous rounds. During each round, a new data structure (usually a single-
writer/multi-reader register per process) is created and it is the only shared
object used to communicate during the round. At the end of the round, each
process destroys its local accessor to the object, so that it can no more access it.
Note that the rounds are asynchronous: the processes do not necessarily start
and finish their rounds at the same time. Moreover, a process may not terminate
a round and keep accessing the same shared object forever or may crash during
this round and stop executing. A round-based execution is illustrated in Fig. 2b.
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Fig. 2: The composition of sequentially consistent objects used in different rounds
is sequentially consistent.

In Proposition 2, we prove that sequentially consistent objects of different
rounds behave well together: as the ordering added between the operations of two
different objects always follows the round numbering, that is consistent with the
program order already contained in the linear extension of each object, the com-
position of all these objects cannot create loops (Figure 2b). The complete proof
of this proposition can be found in [10]. Putting together this result and Proposi-
tion 1, all the algorithms that use a round-based computation model can benefit
of any improvement on the implementation of an array of single-writer/multi-
reader register that sacrifices linearizability for sequential consistency. Note that
this remains true whatever is the data structure used during each round. The
only constraint is that a sequentially consistent shared data structure can be
accessed during a unique round. If each object is sequentially consistent then
the whole execution is consistent.

Proposition 2. Let (Tr)r∈N be a family of sequential specifications and (Xr)r∈N
be a family of shared objects such that, for all r, Xr is SC(Tr)-consistent. Let H
be a history that does not contain two operations Xr.a and Xr′ .b with r > r′ such
that Xr.a precedes Xr′ .b in the process order. Then H is sequentially consistent
with respect to the composition of all the Tr.

3 Implementation of a Sequentially Consistent Memory

3.1 Computation Model

The computation system consists of a set Π of n sequential processes, denoted
p0, p1, . . . , pn−1. The processes are asynchronous, in the sense that they all pro-
ceed at their own speed, not upper bounded and unknown to all other processes.

Among these n processes, up to t may crash (halt prematurely) but otherwise
execute correctly the algorithm until the moment of their crash. We call a process
faulty if it crashes, otherwise it is called correct or non-faulty. In the rest of the
paper we will consider the above model restricted to the case t < n

2 .
The processes communicate with each other by sending and receiving mes-

sages through a complete network of bidirectional channels. A process can di-
rectly communicate with any other process, including itself (pi receives its own
messages instantaneously), and can identify the sender of the message received.
Each process is equipped with two operations: send and receive.

The communication channels are reliable (no losses, no creation, no dupli-
cation, no alteration of messages) and asynchronous (finite time needed for a



message to be transmitted but there is no upper bound). We also assume the
channels are FIFO: if pi sends two messages to pj , pj will receive them in the or-
der they were sent. As stated in [14], FIFO channels can always be implemented
on top of non-FIFO channels. Therefore, this assumption does not bring addi-
tional computational power to the model, but it allows us to simplify the writing
of the algorithm. Process pi can also use the macro-operation FIFO broadcast,
that can be seen as a multi-send that sends a message to all processes, including
itself. Hence, if a faulty process crashes during the broadcast operation some
processes may receive the message while others may not, otherwise all correct
processes will eventually receive the message.

3.2 Single-Writer/Multi-Reader Registers and Snapshot Memory

The shared memory considered in this paper, called a snapshot memory, con-
sists of an array of shared registers denoted REG[1..n]. Each entry REG[i] rep-
resents a single-writer/multi-reader (SWMR) register. When process pi invokes
REG.update(v), the value v is written into the SWMR register REG[i] associated
with process pi. Differently, any process pi can read the whole array REG by in-
voking a single operation namely REG.snapshot(). According to the sequential
specification of the snapshot memory, REG.snapshot() returns an array contain-
ing the most recent value written by each process or the initial default value if
no value is written on some register. Concurrency is possible between snapshot
and writing operations, as soon as the considered consistency criterion, namely
linearizability or sequential consistency, is respected. Informally in a sequentially
consistent snapshot memory, each snapshot operation must return the last value
written by the process that initiated it, and for any pair of snapshot operations,
one must return values at least as recent as the other for all registers.

Compared to read and write operations, the snapshot operation is a higher
level abstraction introduced in [5] that eases program design without bringing
additional power with respect to shared registers. Of course this induces an
additional cost: the best known simulation, above SWMR registers proposed
in [6], needs O(n logn) basic read/write operations to implement each of the
snapshot and the associated update operations.

Since the seminal paper [15] that proposed the so-called ABD simulation
that emulates a linearizable shared memory over a message-passing distributed
system, most of the effort has been put on the shared memory model given that
a simple stacking allows to translate any shared memory-based result to the
message-passing system model. Several implementations of linearizable snap-
shot have been proposed in the literature some works consider variants of snap-
shot (e.g. immediate snapshot [16], weak-snapshot [17], one scanner [18]) oth-
ers consider that special constructions such as test-and-set (T&S) [19] or load-
link/store-conditional (LL/SC) [20] are available, the goal being to enhance time
and space efficiency. In this paper, we propose the first message-passing sequen-
tially consistent (not linearizable) snapshot memory implementation directly
over a message-passing system (and consequently the first sequentially consis-
tent array of SWMR registers), as traditional read and write operations can be
immediately deduced from snapshot and update with no additional cost.



3.3 The Proposed Algorithm

Algorithm 1 proposes an implementation of the sequentially consistent snap-
shot memory data structure presented in Section 3.2. The complete proof of
correctness of this algorithm can be found in the technical report [10]. Pro-
cess pi can write a value v in its own register REG[i] by calling the operation
REG.update(v), implemented by the lines 6-9. It can also call the operation
REG.snapshot(), implemented by the lines 10-11. Roughly speaking, the prin-
ciple of this algorithm is to maintain, on each process, a local view of the object
that reflects a set of validated update operations. To do so, when a value is
written, all processes label it with their own timestamp. The order in which pro-
cesses timestamp two different update operations define a dependency relation
between these operations. For two operations a and b, if b depends on a, then pi
cannot validate b before a.

More precisely, each process pi maintains five local variables:

– Xi ∈ Nn represents the array of most recent validated values written on each
register.

– ValClocki ∈ Nn represents the timestamps associated with the values stored
in Xi, labelled by the process that initiated them.

– SendClocki ∈ N is an integer clock used by pi to timestamp all the update
operations. SendClocki is incremented each time a message is sent, which
ensures all timestamps from the same process are different.

– Gi ⊂ N3+n encodes the dependencies between update operations that have
not been validated yet, as known by pi. An element g ∈ Gi, of the form
(g.v, g.k, g.t, g.cl), represents the update operation of value g.v by process
pg.k labelled by process pg.k with timestamp g.t. For all 0 ≤ j < n, g.cl[j]
contains the timestamp given by pj if it is known by pi, and ∞ otherwise.
All updates of a history can be uniquely represented by a pair of integers
(k, t), where pk is the process that invoked it, and t is the timestamp associ-
ated to this update by pk. Considering a history and a process pi, we define
the dependency relation →i on pairs of integers (k, t), by (k, t) →i (k

′, t′) if
for all g, g′ ever inserted in Gi with (g.k, g.t) = (k, t), (g′.k, g′.t) = (k′, t′),
we have |{j : g′.cl[j] < g.cl[j]}| ≤ n

2 (i.e. the dependency does not exist if
pi knows that a majority of processes have seen the first update before the
second). Let →⋆

i denote the transitive closure of →i.
– Vi ∈ N ∪ {⊥} is a buffer register used to store a value written while the

previous one is not yet validated. This is necessary for validation (see below).

The key of the algorithm is to ensure the inclusion between sets of validated
updates on any two processes at any time. Remark that it is not always neces-
sary to order all pairs of update operations to implement a sequentially consis-
tent snapshot memory: for example, two update operations on different registers
commute. Therefore, instead of validating both operations on all processes in
the exact same order (which requires Consensus), we can validate them at the
same time to prevent a snapshot to occur between them. Thus, it is sufficient to
ensure that, for all pairs of update operations, there is a dependency agreed by
all processes (possibly in both directions). This is expressed by Lemma 1.



Algorithm 1: Implementation of a sequentially consistent memory (for pi)

/* Local variable initialization */

1 Xi ← [0, . . . , 0]; // Xi[j] ∈ N: last validated value written by pj

2 ValClocki ← [0, . . . , 0]; // ValClocki[j] ∈ N: stamp given by pj to Xi[j]
3 SendClocki ← 0; // used to stamp all the updates
4 Gi ← ∅; // contains a g = (g.v, g.k, g.t, g.cl) per non-val. update

5 Vi ← ⊥; // Vi ∈ N ∪ {⊥}: stores postponed updates

operation update(v) /* v ∈ N: written value; no return value */

6 if ∀g ∈ Gi : g.k 6= i then // no non-validated update by pi

7 SendClocki++;
8 FIFO broadcast message(v, i, SendClocki, SendClocki);

9 else Vi ← v; // postpone the update

operation snapshot() /* return type: N
n */

10 wait until Vi = ⊥ ∧ ∀g ∈ Gi : g.k 6= i ; // make sure pi’s updates are validated

11 return Xi;

when a message message(v, k, t, cl) is received from pj

// v ∈ N: written value, k ∈ N: writer id, t ∈ N: stamp by pk, cl ∈ N: stamp by pj

12 if t > ValClocki[k] then // update not validated yet

13 if ∃g ∈ Gi : g.k = k ∧ g.t = t then // update already known
14 g.cl[j]← cl;
15 else // first message for this update

16 if k 6= i then

17 SendClocki++ ; // forward with own stamp

18 FIFO broadcast message(v, k, t, SendClocki);

19 var g ← (g.v = v, g.k = k, g.t = t, g.cl = [∞, . . . ,∞]); g.cl[j]← cl;
20 Gi ← Gi ∪ {g}; // create an entry in Gi for the update

21 var G′ = {g ∈ Gi : |{l : g′.cl[l] <∞}| > n
2
}; // G′ contains validable updates

22 while ∃g ∈ Gi \ G
′, g′ ∈ G′ : |{l : g′.cl[l] < g.cl[l]}| 6= n

2
do G′ ← G′ \ {g′};

23 Gi ← Gi \ G
′; // validate updates of G′

24 for g ∈ G′ do

25 if ValClocki[g.k] < g.t then ValClocki[g.k] = g.t; Xi[g.k] = g.V;

26 if Vi 6= ⊥ ∧ ∀g ∈ Gi : g.k 6= i then // start validation process for

27 SendClocki++ ; // postponed update if any
28 FIFO broadcast message(Vi, i, SendClocki, SendClocki);
29 Vi ← ⊥;

Lemma 1. Let pi, pj be two processes and ti, tj be two time instants, and let us

denote by ValClock
ti
i (resp. ValClock

tj
j ) the value of ValClocki (resp. ValClockj)

at time ti (resp. tj). We have either, for all k, ValClocktii [k] ≤ ValClock
tj
j [k] or

for all k, ValClock
tj
j [k] ≤ ValClock

ti
i [k].

This is done by the mean of messages of the form message(v, k, t, cl) contain-
ing four integers: v the value written, k the identifier of the process that initiated
the update, t the timestamp given by pk and cl the timestamp given by the pro-
cess that sent this message. Timestamps of successive messages sent by pi are
unique and totally ordered, thanks to variable SendClocki, that is incremented
each time a message is sent by pi. When process pi wants to submit a value v for
validation, it FIFO-broadcasts a message message(v, i, SendClocki, SendClocki)
(lines 8 and 28). When pi receives a message message(v, k, t, cl), three cases are
possible. If pi has already validated the corresponding update (t > ValClocki[k]),
the message is simply ignored. Otherwise, if it is the first time pi receives a



p4

p3

p2

p1

p0

∅ {a} {a, b}a : REG[4].update(1)

b : REG[0].update(1)

Fig. 3: An execution of Algorithm 1. An update is validated by a process when
it has received enough messages for this update, and all the other updates it
depends of have also been validated.

message concerning this update (Gi does not contain any piece of information
concerning it), it FIFO-broadcasts a message with its own timestamp and adds
a new entry g ∈ Gi. Whether it is its first message or not, pi records the times-
tamp cl, given by pj , in g.cl[j] (lines 14 or 19). Note that we cannot update
g.cl[k] at this point, as the broadcast is not causal: if pi did so, it could miss
dependencies imposed by the order in which pk saw concurrent updates. Then,
pi tries to validate update operations: pi can validate an operation a if it has
received messages from a majority of processes, and there is no operation b →⋆

i a

that cannot be validated. For that, it creates the set G′ that initially contains all
the operations that have received enough messages, and removes all operations
with unvalidatable dependencies from it (lines 21-22), and then updates Xi and
ValClocki with the most recent validated values (l ines 23-25).

This mechanism is illustrated in Fig. 3, featuring five processes. Processes p0
and p4 initially call operation REG.update(1). Messages that have an impact in
the algorithm are represented by arrows, and messages that do not appear on
the figure are received later. Several situations may occur. The simplest case is
process p3, that received three messages concerning a (from p4, p3 and p2, with
3 > n

2 ) before its first message concerning b, allowing it to validate a. The case of
process p4 is similar: even if it knows that process p1 saw b before a, it received
messages concerning a from three other processes, which allows it to ignore the
message from p1. At first sight, the situation of processes p0 and p1 may look
similar to the situation of p4. However, the message they received concerning a

and one of the messages they received concerning b come from the same process
p2, which forces them to respect the dependency a →0 b. Note that the same
situation occurs on process p2 so, even if a has been validated before b by other
processes, p2 must respect the dependency b →2 a.

Sequential consistency requires the total order to contain the process order.
Therefore, a snapshot of process pi must return values at least as recent as its
last updated value. In other words, it is not allowed to return from a snapshot
between an update and the time when it is validated (grey zones in Fig. 3). There
are two ways to implement this: we can either wait at the end of each update until
it is validated, in which case all snapshot operations are done for free, or wait
at the beginning of all snapshot operations that immediately follow an update
operation. This extends the remark of [4] to crash-prone asynchronous systems:
to implement a sequentially consistent memory, it is necessary and sufficient to



a ⇋ b ⇋ c ⇋ d ⇋ e ⇋ f ⇋ g ⇋ h ⇋ . . .

p3

p2

p1

p0

a c e g . . .

b d f h . . .

Fig. 4: If we are not careful, infinite chains of dependencies may occur. We must
avoid infinite chains of dependencies in order to ensure termination.

wait either during read or during write operations. In Algorithm 1, we chose
to wait during read/snapshot operations (line 10). This is more efficient for
two reasons: first, it is not necessary to wait between two consecutive updates,
which can not be avoided if we wait at the end of the update operation, and
second the time between the end of an update and the beginning of a snapshot
counts in the validation process, but it can be used for local computations. Note
that when two snapshot operations are invoked successively, the second one also
returns immediately, which improves the result of [4] according to which waiting
is necessary for all the operations of one kind.

In order to obtain termination of the snapshot operations (and progress in
general), it is necessary to ensure that all update operations are eventually val-
idated by all processes. This property is expressed by Lemma 2. Figure 4 il-
lustrates what could happen. On the one hand, process p2 receives a message
concerning a and a message concerning c before a message concerning b. On the
other hand, process p1 receives a message concerning b before messages concern-
ing a and c. Therefore, it may create dependencies a →i b →i c →i b →i a on
some process pi, which means pi will be forced to validate a and c at the same
time, even if they are ordered by the process order. The pattern in Fig. 4 shows
that it can result in an infinite chain of dependencies, blocking validation of any
update operation. To break this chain, we force process p3 to wait until a is
validated locally before it proposes c to validation, by storing the value written
by c in a local variable Vi until a is validated (lines 6 and 9). When a is vali-
dated, we start the same validation process for c (lines 26-29). Remark that, if
several updates (say c and e) happen before a is validated, the update of c can
be dropped as it will eventually be overwritten by e. In this case, c will happen
just before e in the final linearization required for sequential consistency.

Lemma 2. If a message message(v, i, t, t) is sent by a correct process pi, then

beyond some time t′, for each correct process pj, ValClock
t′

j [i] ≥ t.

Given Lemmas 1 and 2 we can now prove that Algorithm 1 implements a
sequentially consistent snapshot memory (Proposition 3). The idea is to order
snapshot operations according to the order given by Lemma 1 on the value
of ValClocki when they were made and to insert the update operations at the
position where ValClocki changes because they are validated. This order can be
completed into a linear extension, by Lemma 2, and to show that the execution
of all the operations in that order respects the sequential specification of the
snapshot memory data structure. The complete proof can be found in [10].

Proposition 3. All histories admitted by Algo. 1 are sequentially consistent.



Remark that this algorithm could be adjusted to implement multi-
writer/multi-reader registers. Only three points must be changed. First, the
identifier of the register written should be added to all messages and all g ∈ Gi.
Second, concurrent updates on the same register must be ordered; this can be
done, for example, by replacing SendClocki by a Lamport Clock, that respects
the order in which updates are validated, and using a lexicographic order on
pairs (cl, k). Third, variable Vi must be replaced by a set of update operations,
and so does the value contained in the messages. All in all, this greatly com-
plexifies the algorithm, without changing the way concurrency is handled. This
is why we only focus on collections of SWMR registers in this paper.

3.4 Complexity

In this section, we analyze the algorithmic complexity of Algorithm 1 in terms
of the number of messages and latency for snapshot and update operations.
We compare the complexity of our algorithm with the standard implementation
of linearizable registers in [15] with unbounded messages. Note that [15] also
proposes an implementation with bounded messages, but at a much higher cost
in terms of latency, which is the parameter we are really interested in improving
in this paper. As our algorithm also implements the snapshot operation, we
compare it to the construction of a snapshot object [6] implemented on top of
registers. Fig. 5 sums up these complexities.

In asynchronous systems as the one we consider, the latency d and the un-
certainty u of the network cannot be expressed by constants. Hence we measure
the complexity as the length of the longest chain of causally related messages
to expect before an operation can complete, e.g. if a process sends a message to
another process and then waits for its answer, the complexity will be 2.

Each update operation generates at most n2 messages. The time complexity
of an update operation is 0, as update operations return immediately. No message
is sent for snapshot operations. Considering its latency, in the worst case, a
snapshot operation is called immediately after two update operations a and b.
In this case, the process must wait until its own message for a is received by the
other processes, then to receive their acknowledgements, and then the same two
messages must be routed for b, which leads to a complexity of 4. However, in
the case of two consecutive snapshots, or if enough time has elapsed between a
snapshot and the last update, the snapshot can also return immediately.

In comparison, the ABD simulation uses solely a linear number of messages
per operation (reads as well as writes), but waiting is necessary for both kinds
of operations. Even in the case of the read operation, our worst case corresponds
to the latency of the ABD simulation. Moreover, our solution directly imple-
ments the snapshot operation. Implementing a snapshot operation on top of a
linearizable shared memory is in fact more costly than just reading each register
once. The AR implementation [6], that is (to our knowledge) the implementa-
tion of the snapshot that uses the least amount of operations on the registers,
uses O(n log n) operations on registers to complete both a snapshot and an up-
date operation. As each operation on memory requires O(n) messages and has
a latency of O(1), our approach leads to a better performance in all cases.
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Fig. 5: Complexity of several algorithms to implement a shared memory

Algorithm 1, like [15], uses unbounded integer values to timestamp mes-
sages. Therefore, the complexity of an operation depends on the number m of
operations executed before it, in the linear extension. All messages sent by Al-
gorithm 1 have a size of O (log(nm)). In comparison, ABD uses messages of size
O (log(m)) but implements only one register, so it would also require messages
of size O (log(nm)) to implement an array of n registers.

Considering the use of local memory, due to asynchrony, it is possible in
some cases that Gi contains an entry g for each value previously written. In that
case, the space occupied by Gi may grow up to O(mn logm). Remark however
that, according to Lemma 1, an entry g is eventually removed from Gi (in a syn-
chronous system, after 2 time units if g.k = i or 1 time unit if g.k 6= i). Therefore,
this maximal bound is not likely to happen. Moreover, if all processes stop writ-
ing (which is the case in the round based model we discussed in Section 2.3),
then eventually Gi becomes empty and the space occupied by the algorithm
drops down to O(n logm), which is comparable to ABD. In comparison, the AR
implementation keeps a tree containing past values from all registers, in each
register, which leads to a much higher size of messages and local memory.

4 Conclusion

In this paper, we investigated the advantages of focusing on sequential consis-
tency. We show that in many applications, the lack of composability is not a
problem. The first case concerns applications built on a layered architecture and
the second example concerns round-based algorithms where processes access to
one different sequentially consistent object in each round.

Using sequentially consistent objects instead of their linearizable counterpart
can be very profitable in terms of execution time of operations. Whereas waiting
is necessary for all operations when implementing linearizable memory, we pre-
sented an algorithm in which waiting is only required for read operations when
they follow directly a write operation. This extends the result of Attiya and
Welch to asynchronous systems with crashes. Moreover, the proposed algorithm
implements a sequentially consistent snapshot memory for the same cost.

Exhibiting such an algorithm is not an easy task for two reasons. First, as
write operations are wait-free, a process may write before its previous write
has been acknowledged by other processes, which leads to “concurrent” write
operations by the same process. Second, proving that an implementation is se-
quentially consistent is more difficult than proving it is linearizable since the
condition on real time that must be respected by linearizability highly reduces
the number of linear extensions that need to be considered.
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