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On the attainable set for a scalar nonconvex conservation law

Boris P. Andreianov ∗ Carlotta Donadello † Andrea Marson ‡

Abstract

We consider a Cauchy problem for a scalar conservation law in one space dimension with a
compactly supported initial datum,















∂tu+ ∂xf(u) = 0

u(0, x) =

{

uc(x) if x ∈ [a, b] ,

0 if x 6∈ [a, b] .

(∗)

Here a, b ∈ R are given, and the flux function f is assumed to be non convex, in particular
to have a single inflection point. We regard the function uc as a control. The main results
of the paper states sufficient conditions for a function v to be attained at time T by a
trajectory of (∗).

Mathematical Subject Classification: 35Q93, 35L65
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1 Introduction

Aim of this paper is to initiate the description of the set AT of profiles v in BV (R) which can
be attained at a fixed time t = T by the entropy admissible solution of

∂tu+ ∂xf(u) = 0, (1.1a)

u(0, x) =

{

uc(x) if x ∈ [a, b] ,

0 if x 6∈ [a, b] ,
(1.1b)

where a < b are given, and uc ∈ L∞(a, b) is regarded as a control. We assume the flux function
f to fulfill the set of conditions
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(F) a. f is of class C2,

b. f(0) = f ′(0) = f ′′(0) = 0 uf ′′(u) < 0 ∀u 6= 0,

c. f has superlinear growth at ±∞.

A family of classical examples is given by f(u) = −|u|mu, m ≥ 2. We stress that the condi-
tions in (F)b. are not necessary to achieve the results in this paper but allow for a lighter
presentation. In Section 4 we apply our results to the classical sedimentation model proposed
by Kynch in [17] and we consider the flux function f(u) = −u(1 − u)2 which does not satisfy
(F)b..

In the existing literature we can distinguish essentially three approaches toward the study
of exact controllability and characterization of the set of attainable profiles for the equation
(1.1a).

The pioneering paper by Ancona and the third author, [3], focuses on the exact control-
lability for the initial boundary value problem for (1.1a) in the case of strictly convex flux.
The authors use the theory of generalized characteristics introduced by Dafermos in [10], and
describe for any given time T > 0, the set of states which are attainable in time T starting
from the initial condition u0 = 0 by a control on the boundary data alone. Under similar hy-
pothesis, Adimurthi, Ghoshal and Gowda [1, 2] exploit the explicit representation of solutions
given by the Lax-Oleinik formula to construct an explicit backward solver and give a coincise
characterization of the set of attainable profiles for the initial value problem and the boundary
value problem in the half–space and in a strip with two boundaries. Using again the method
of generalized characteristics, Corghi and the third author characterize in [8] the attainable set
for a scalar balance law with strictly convex flux

ut + f(u)x = z(t, x), for t ∈ [0, T ], and x ∈ R , (1.2)

where the right hand side z acts as distributed control.

In the classical paper [15], Horsin obtains approximate controllability results for scalar
conservation laws by a different approach, which relies on the return method introduced by
Coron [9]. This technique is also an important ingredient in the result by Chapouly, [7],
concerning the attainability of C1 profiles for classical solutions of the balance law (1.2) on
the strip [0, T ] × [0, 1]. In this paper the boundary data at x = 0 and x = 1 act as controls
together with the source term z (distributed control) which only depends on the time variable
t. A similar result, in the setting of entropy weak solution is due to Perrollaz, [19].

The return method has been applied in combination with the vanishing viscosity approach
by Léautaud, [18], to study the uniform controllability of scalar conservation laws. This last
paper is also the only one, to our knowledge, in which the flux function f is allowed to have a
finite number of inflection points. Starting from an initial condition u0 in L∞([0, 1]) and using
the boundary data at x = 0 and x = 1 as controls, the author proves the attainability in time
T (depending on the L∞ norm of u0) of constant states.

Finally, let us mention that for the viscous Burgers equation, constant states reachable by
boundary controls has been studied using the Cole-Hopf transformation by Glass and Guerrero
[12], Guerrero and Imanuvilov [13].
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The results in the present paper are all obtained by an extensive application of the method
of generalized characteristics. This approach naturally leads to a very fine analysis of the struc-
ture of solutions which allows us to give a rather complete insight of the possible obstructions to
attainability. Moreover, we succeed in providing a complete explicit backward reconstruction
of the solution for a significant class of attainable profiles, which contains all basic situations.
However, even if it is certainly possible to use our results as building blocks toward the anal-
ysis of more complex cases, our work fails to provide an easy to check routine to distinguish
attainable states from non attainable ones.

1.1 Fine structure of solutions and obstacles to backward reconstruction

We recall the definition of entropy admissible solution to (1.1a)-(1.1b) (see [11]).

Definition 1.1. An entropy admissible solution to (1.1a)-(1.1b) in the time interval [0, T ]
is a continuous function u : [0, T ] → L1

loc(R) which assumes the initial datum (1.1b), is a
distributional solution to (1.1a) in ]0, T [×R, and satisfies an entropy admissibility condition
(see [11]), i.e. for any entropy-entropy flux pair (η, q), with u 7→ η(u) convex, there holds

∂tη(u) + ∂xq(u) ≤ 0, in ]0, T [×R, (1.3)

in the sense of distribution.

Throughout our paper, without loss of generality, we assume that the solutions are normal-
ized to be left continuous.

In general, distributional solutions to (1.1a) are not smooth, regardless the possible regu-
larity of the initial condition. The demise of classical solutions coincides with the appearance
of jump discontinuities. The method of generalized characteristics has been introduced by
Dafermos in [10] to investigate the fine structure of the solutions to (1.1a).

Definition 1.2. Let u ∈ C([0, T ];L1
loc(R)) be an entropy admissible solution of (1.1a).

• A classical characteristic associated to u is a curve ξ : [t0, t1] → R
2 such that for some u

and for all t ∈ [t0, t1] there holds

ξ(t) = ξ(t0) + f ′(u)(t− t0), u(t, ξ(t)) = u.

• A generalized characteristic associated to u is a Lipschitz continuous curve ξ : [t0, t1] →
R
2 which satisfies the differential inclusion

dξ

dt
(t) ∈ I

[

f ′(u(t, ξ(t)+)), f ′(u(t, ξ(t)))
]

,

where I[a, b] denotes the closed interval of extrema a and b.

Any classical characteristic is a generalized characteristic.
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Through any point of jump discontinuity of u passes a funnel of backward generalized
characteristic. The core of the results in [10, Section 2], concerns the study of the special
properties of minimal and maximal backward generalized characteristics through a point. To
limit the length of our manuscript, we decided not to recall all of these results but rather to
give precise references at any time we apply them.

We recall that the method of generalized characteristics is fully developed only for the case
in which the flux function f admits at most one inflection point. A classical observation due
to Hoff [14] is that, whenever the flux function f admits more than one inflection point, the
interaction between two discontinuity in the solution u to (1.1a) can produce outgoing centered
rarefaction waves at positive times, and this would make the analysis far more intricate

Once a jump discontinuity has appeared in the solution it persists, and its location describes
a Lipschitz continuous curve x = ϕ(t) in the (t, x)-plane. From the definition of distributional
solution, one can check that the values of the left and right traces of the solution u on the sides
of ϕ must satisfy the Rankine-Hugoniot conditions

f
(

u(t, ϕ(t)+)
)

− f
(

u(t, ϕ(t))
)

= ϕ̇(t)
[

u(t, ϕ(t)+) − u(t, ϕ(t))
]

. (1.4)

Additionally, if the solution u is entropy admissible, the following inequalities are satisfied
(Lax-Oleinik conditions)

f ′
(

u(t, ϕ(t))
)

≥ ϕ̇(t) ≥ f ′
(

u(t, ϕ(t)+)
)

, x = ϕ(t) . (1.5)

This imply that the curves of discontinuity are generalized characteristics.

If the flux function f in (1.1a) if strictly convex, then both the inequality in (1.5) are strict,
while a classical lemma due to Dafermos, [10, Lemma 2.2], specifies that under the assumptions
(F), only the second inequality above is strict. In this framework we can distinguish two kinds
of discontinuities propagating in the solution:

• genuine shocks (which we call shocks in the following), for which both inequalities in (1.5)
are strict;

• left contact discontinuities, for which there holds ϕ̇(t) = f ′
(

u(t, ϕ(t))
)

.

As in the convex case, characteristics run into genuine shocks from both sides, while it may
happen that characteristics radiate from one of the sides of a contact discontinuity.

The presence of contact discontinuities is responsible for the two major obstacles toward
the formulation of a fast and easy to apply attainability test. First recall that in the convex
case, whenever the target profile v suffers from an admissible jump at x = x̄ joining the states
vL and vR, there exist infinitely many ways to reconstruct backwardly a solution to (1.1a) in
the triangular region delimited by the minimal and the maximal backward characteristics

η−x̄ (t) = x̄+ f ′(vL)(t− T ) , η+x̄ (t) = x̄+ f ′(vR)(t− T ) ,

respectively. This fact can be exploited to produce convenient backward reconstructions, see
for example [4], and it is related to the dissipative properties of admissible shocks.
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On the contrary, since left contact discontinuities must satisfy the Rankine-Hugoniot con-
dition together with ϕ̇(t) = f ′(vL), it is clear that given the left state of a left contact discon-
tinuity, the corresponding right state is immediately determined from the fact that the chord
joining (vL, f(vL)) to (vR, f(vR)) needs to have slope exactly equal to f ′(vL). We call (vL)

♯

the unique possible right state connected to vL by a left contact discontinuity. This means
that there is no freedom in the backward reconstruction of the solution in an immediate right
neighbourhood of a contact discontinuity.

We are now ready to illustrate the first obstacle in our work.

• Assume that the target profile v suffers from a jump discontinuity at x = x̄, joining the
states vL and vR = (vL)

♯, and that the candidate backward characteristics from the points
in a left neighbourhood of x̄ cross one another at positive times. If v is admissible, their
tangent envelope must be a convex Lipschtz curve t 7→ ϕ(t) (see [10, Theorem 2.2]), and in
this case our backward reconstruction contains a left contact discontinuity traveling along
the curve ϕ. This geometric requirement translates into the fact that the attainability
of v may depend on the values of v, f ′(v) and (as we show in Section 2) f ′′(v) on a
whole left neighbourhood of x̄ and not just on the values of v(x̄−) and v(x̄+). Of course,
the presence of several jumps in the target profile may ask for additional compatibility
conditions.

The second difficulty we face is the following.

• Once we detect the presence of a left contact discontinuity ϕ in our backward reconstruc-
tion, we must trace back in a unique way the candidate backward characteristics from
(t, ϕ(t)), that we denote by ξϕ(t). It might happen that the curves ξϕ(t) cross one another
at positive times and have a convex tangent envelope t 7→ ϕ2(t). In this case we continue
our backward reconstruction including a second left contact discontinuity in the solution.
Again, the values on the left and on the right of ϕ2 are completely determined from the
values of v and we have no choice in our reconstruction. We know from the results in [10]
that, if v is an admissible target profile, this situation can occur a finite number of times
before we reach t = 0. We call this structure a nesting of contact discontinuities.

Even in the most simple case, which is briefly described in Section 5, the reconstruction of
a solution in presence of a nesting structure is a delicate matter, which leads us to look for
solutions of a characteristic boundary value problem in which the boundary datum is not to
be taken in the usual hyperbolic sense [5], but should be imposed as the value of the trace of
the solution along the boundary curve, see Section 5.2.

1.2 Outline of the paper

Notations are introduced in the last part of this Introduction. Section 4 contains an example
related to a model of sedimentation. A direction of perspective research is outlined in Sub-
section 5.3. In the hope to palliate the technicality of the presentation, we give here a rather
detailed summary of the results in Sections 2, 3 and 5.
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Section 2: necessary conditions. Theorem 1 states necessary conditions toward attain-
ability which are reminiscent of the classical necessary conditions for the convex flux case.
Proposition 2.1 rules out the presence of centered rarefaction waves focusing at positive time.

Proposition 2.2 is the first evidence of the strong rigid structure of solutions next to a left
contact discontinuity. Basically, on the right of any left contact discontinuity curve t 7→ ϕ(t)
we can define a “triangular” region delimited by ϕ, the maximal backward characteristic from
the point of jump of v, t 7→ η+x̄ (t), and the line t = 0. In this region the solution can be
reconstructed in a unique way by following the backward characteristics steaming from the
right side of the discontinuity. If nesting occurs, it must take place outside this region. Starting
from this point we limit our attention to situations in which nesting does not occur, deferring
to Section 5 some examples and comments concerning nesting.

Given a continuous target profile v and a time T we define (candidate) backward characteristics
lines as in (1.14c). Proposition 2.3 gives a necessary condition for this family of lines to have
a convex tangent envelope. This implies a geometric requirement for the attainability of v
because the characteristics associated to any solution to (1.1a) can cross only in a centered
rarefaction wave at time t = 0, or they can radiate from a left contact discontinuity, which is
a convex curve.

Proposition 2.4 puts together the results in Proposition 2.2 and Proposition 2.3 to formulate
a necessary condition for a contact discontinuity in v to be admissible. Observe that while the
admissibility of a shock discontinuity in the convex case is easily determined by the values of
v on the left and on the right sides of the jump, here we need to impose conditions on the first
and second derivatives of f ′(v) on a whole neighbourhood of the point of jump.

Section 3: sufficient conditions. The main result in this section is Theorem 2, which
collects a set of sufficient conditions for the attainability of a profile v in time T provided that
the points at which v is discontinuous do not accumulate and that no nesting occurs. The first
part of Section 3 consists of the statement of the theorem and of some remarks illustrating the
meaning of the conditions. In the hypothesis of Theorem 2 it is possible to determine whether
the profile v is attainable by checking that each of its discontinuities is admissible. Therefore
in Section 3.1 we detail the study of three basic situations which will be used as building blocks
in the proof of Theorem 2. Lemmas 3.1, 3.2 and 3.3 explain how to construct a control which
allows to reach the profile v in three basic situations. The last part of Section 3 contains the
proof of Theorem 2.

Section 5: one example of nesting, a different point of view. Section 5.1 contains the
analysis of the simplest possible case of nesting. Some conditions for attainability are states, in
a very smooth framework. One explicit example illustrates our results. Section 5.2 is devoted
to present a slightly different approach to the problem of nesting.

1.3 Notation

First of all, if a solution to (1.1a) suffers from jump discontinuity along a Lipschitz curve
x = ϕ(t), we denote by uL(t) and uR(t), respectively, the left and right limits of u(t, ·) at ϕ(t)
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whenever they exist, i.e.

uL(t) = lim
x→ϕ(t)−

u(t, ·) , uR(t) = lim
x→ϕ(t)+

u(t, ·) . (1.6)

Let f be a flux function satisfying the set of conditions (F). Given v ∈ R, v 6= 0, we let v♯ be
the solution to

f(v♯) = f(v) + f ′(v)(v♯ − v) , v♯ 6= v , (1.7)

so that

f ′(v) =
f(v)− f(v♯)

v − v♯
, (1.8)

holds for any v 6= 0. Symmetrically, we denote by v♭ the solution to

f(v) = f(v♭) + f ′(v♭)(v − v♭) , v♭ 6= v , (1.9)

so that

f ′(v♭) =
f(v)− f(v♭)

v − v♭
, (1.10)

holds for any v 6= 0. Observe that

v = (v♯)♭ = (v♭)♯, (1.11)

v · v♯ < 0 , v · v♭ < 0, (1.12)

hold for any v 6= 0.
Throughout our paper we assume that the target profile v is a left continuous BV function

with compact support. We define

α
.
= sup

{

x ∈ R : v(y) = 0 ∀ y ≤ x
}

, (1.13)

so that v(α) = 0. Moreover, if T is the fixed time at which v should be attained, we let

η−x (τ)
.
= x+ f ′

(

v(x)
)

(τ − T ) = x+ f ′
(

v(x−)
)

(τ − T ) , (1.14a)

η+x (τ)
.
= x+ f ′

(

v(x+)
)

(τ − T ) , (1.14b)

be respectively the (candidate) minimal and maximal backward characteristics lines from (T, x)
associated to a solution u of (1.1a) attaining the profile v at time T , i.e. u(T, x) = v(x). In
case v is continuous at x, minimal and maximal backward characteristics coincide in a left
neighbourhood ]T − δ, T ] of t = T , and therefore we can write

ηx(τ)
.
= x+ f ′

(

v(x)
)

(τ − T ) , (1.14c)

where τ ∈]T − δ, T ].

The notations D+ and D− stand for the right and left upper Dini derivatives respectively

D+g(x) = lim sup
y→x+

g(y)− g(x)

y − x
, D−g(x) = lim sup

y→x−

g(y) − g(x)

y − x
.

Given any two points a and b in R, we use the notation I(a, b) to indicate the open interval
of extrema a and b. This means that I(a, b) =]a, b[ if a < b and I(a, b) =]b, a[ if a > b.
Analogously, I[a, b] denotes the closed interval of extrema a and b.
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2 Necessary conditions for attainability

Throughout this section we assume that v is the value, at time t = T , of an entropy solution
to (1.1a) defined on [0, T ]. We analyze the necessary properties of v due to this fact, using
the backward characteristics as the main tool. The conditions in the following theorem are
the exact counterpart of the necessary conditions for attainability stated in [3] for the convex
flux case. They differ from all other conditions stated in this work because they depend on the
value (or the limit value) of the target profile at single points.

Theorem 1. Assume that v is a measurable, left continuous, bounded attainable profile, with
finite total variation, so that there exists uc ∈ L∞(a, b) such that the weak entropy solution
u = u(t, x) to (1.1a)-(1.1b) fulfills u(T, ·) = v. Let α be defined as (1.13). Then the following
properties hold.

1. Let x0 ∈ R be given and assume that v(x0+) 6= 0. Then the candidate maximal backward
characteristic from the point (T, x0), t 7→ η+x0

(t), satisfies

η+x0
(0) = x0 − f ′(v(x0+))T ≤ b . (2.1)

2. Assume that v(α+) 6= 0. Then the candidate maximal backward characteristic from the
point (T, α), t 7→ η+α (t), satisfies

η+α (0) = α− f ′
(

v(α+)
)

T ≥ a . (2.2)

3. Assume that v(α+) = 0. Then there exists a sequence {xn}n∈N such that xn ↓ α and
for any n ∈ N, the candidate maximal backward characteristic from the point (T, xn),
t 7→ η+xn

(t), satisfies
η+xn

(0) = xn − f ′(xn+)T > a . (2.3)

4. Assume that at x = x̄ the function v suffers from a jump discontinuity with left and right
states vL = v(x̄) and vR = v(x̄+), respectively. Then the following conditions on vL and
vR hold.

(a) f ′(vL) > f ′(vR);

(b) if vL · vR < 0, then let v♯L be as in (1.7) with v = vL. Then we have

vR /∈ I(vL, v
♯
L). (2.4)

Proof. 1. Assume that (2.1) fails, and let y = ζ+x0
(t) be the maximal generalized backward

characteristic from (T, x0) Since y = ζ+x0
(t) is a convex polygonal [10, Theorem 2.1], we

have
ζ+x0

(t) ≥ x0 + f ′
(

v(x0+)
)

(t− T ) = η+x0
(t) ,

with η+x0
(·) be defined at (1.14c) (candidate backward characteristic). Since u(0, x) = 0

for any x > b, in particular we have u(0, x) = 0 for all x ≥ ζ+x0
(0), so that u(t, x) = 0 for

any x ≥ ζ+x0
(t) and any t ≤ T . Hence v(x0+) = 0, contrary to the assumption.
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2. Assume by contradiction that (2.2) fails, and, to fix the ideas, assume v(α+) > 0. Let
x1 > α be such that v(x) > 0 for any α < x < x1. Then, there exists δ > 0 such that in
the region

{

(τ, x) : T − δ ≤ τ ≤ T , x ≤ x1 + f ′
(

(v(x1)
)

(τ − T )
}

there holds u(τ, x) ≥ 0. Hence u is a solution to a conservation law with convex flux.
Since arguing as before we get u(τ, x) = 0 for any x < α+ f ′

(

v(α+)
)

(τ −T ), it turns out
that u(T, ·) can not suffer from a jump discontinuity at x = α.

3. Again, we argue by contradiction, and assume that there exist x̄ > α such that

x− f ′
(

v(x+)
)

T ≤ a ∀α < x ≤ x̄ .

Let ηx(·) be defined as at (1.14c). Two cases may occur.

(a) All of the lines ηx(·), α < x ≤ x̄, focus at (0, a), i.e.

x− f ′
(

v(x+)
)

T = a ∀α < x ≤ x̄ .

In this case the solution u would contain a centered rarefaction wave with 0 left
state, leading to a contradiction.

(b) If some of the lines ηx(·), α < x ≤ x̄, do not focus at (0, a), we may assume that

x− f ′
(

v(x+)
)

T < a ∀α < x ≤ x̄

holds. But then, arguing as above, we can deduce that v(y) = 0 in a right neigh-
bourhood of x = α, contrary to definition (1.13).

4. The proof of such properties of admissible jump discontinuities for a weak entropy solution
to (1.1a) is classical (e.g., see [11, Chapter 8]).

As we limit our attention to the case in which the flux function f in (1.1a) has exactly
one inflection point we know that no rarefaction wave can be produced at positive time by
the interaction of two or more wave-fronts. Therefore, any candidate target profile v whose
candidate backward characteristics focus at a single point of R+ × R is not attainable. This
fact motivate the following Proposition.

Proposition 2.1. Assume that v is an attainable profile, continuous in an interval I, with
Dxf

′(v(x)) = c > 01 for any x ∈ I. Then c ≤ 1/T .

Proof. If Dxf
′(v(x)) = c for all x ∈ I then the lines ηx, defined as in (1.14c) for x ∈ I, take

the form
ηx(τ) = x+ c(x+ a)(τ − T ),

where a is a constant, and intersect at τ = T − 1/c, y = −a. Since in any solution to (1.1a) no
new rarefaction are created at positive times, τ ≤ 0 must hold.

1Here Dxf
′(v(x)) denotes the derivative of the function x 7→ f ′(v(x)).
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Now let u be a bounded weak entropy solution to (1.1a) suffering from a discontinuity
along a time-like curve x = ϕ(t), for t ∈ [t0, t1], with right state state uR(t) (see (1.6)). The
(candidate) maximal backward characteristic curve from the point (t, ϕ(t)) is given by the
equation

ξt(τ) = ϕ(t) + f ′
(

uR(t)
)

(τ − t). (2.5)

We stress that all through the paper, for the reader convenience, backward characteristics
originated at time T are denoted by the greek letter η, while backward characteristics originated
at earlier times, steaming from a curve of discontinuity in the solution u, are denoted by the
greek letter ξ. It is possible, of course, that some of the candidate backward characteristics
ξt, t ∈ [t0, t1], cross each other. This is at the origin of the nesting phenomenon evoked in the
Introduction. However, the next Proposition shows that the lines ξt do not intersect in the
region between ϕ and ξt1 .

Proposition 2.2. Assume that u is a bounded measurable weak entropy solution to (1.1a)
suffering from a left contact discontinuity x = ϕ(t), t ∈ [t0, t1], with right state uR(t). Let
ξt(·) be as at (2.5), and assume that ξt(τ) ≤ ξt1(τ) for any τ ∈]0, t] and t ∈ [t0, t1]. Then the
function

t 7→ ξt(0) = ϕ(t)− f ′
(

uR(t)
)

t

is increasing.

Proof. If t 7→ ξt(0) is not increasing, then lines (2.5) cross each other in the time interval ]0, T ].
Hence, the solution u has a (left contact) discontinuity x = ψ(t) such that

ϕ(τ) < ψ(τ) < ξt1(τ) ,

Since the discontinuity at x = ψ(t) can not be canceled [10, Theorem 2.3], and since it cannot
intersect the line x = ξt1(τ) due to the structure of minimal and maximal backward character-
istics [10, Theorems 2.1 and 2.2], it turns out that x = ψ(t) interacts with ϕ(t) at a time t̄ ≤ t1.
This can not occur, otherwise ϕ(t) would not be a left contact discontinuity for t ≥ t̄.

Lemma 2.4 from [10] states that any left contact discontinuity associated to a BV solution
u of (1.1a) propagates along a strictly convex curve. This fact translates into a geometric
condition on the lines ηx: If v is admissible and the candidate backward characteristic lines ηx
do not reach t = 0 without crossing each other, then their tangent envelope must necessarily be
a strictly convex curve. The following Proposition puts forward conditions on v which ensure
that this desirable geometry is realized.

Proposition 2.3. Let I ⊆ R be an interval, and v ∈ C0(I) be bounded. Assume that the
function I ∋ x 7→ f ′(v(x)) is differentiable with Dxf

′(v(x)) > 0 and D+(Dxf
′(v(x))) > 0 for

all x ∈ I. Then, the tangent envelope of the lines t 7→ ηx(t) defined at (1.14c) for x ∈ I is a
strictly convex C1 curve x = ϕ(τ), defined in a suitable interval [t0, t1] ⊆]−∞, T ]. Moreover,
if Dxf

′(v(x)) ≥ 1/T for all x ∈ I then the interval [t0, t1] is contained in [0, T ].

Proof. Observe that, if ϕ exists, then for any τ ∈ [t0, t1] there exists x(τ) ∈ I such that

ϕ(τ) = x(τ) + f ′
(

v(x(τ))
)

(τ − T ) and ϕ′(τ) = f ′
(

v(x(τ))
)

.
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Moreover, since we want ϕ to be strictly convex, the function τ 7→ x(τ) has to be strictly
increasing, and has a strictly increasing inverse, say I ∋ x 7→ t(x). Let us compute t(x) in
order to express ϕ in terms of the x-variable. For any x1, x2 ∈ I the time at which the lines
ηx1

and ηx2
intersect is given by

t(x1, x2) = T − x2 − x1
f ′(v(x2))− f ′(v(x1))

< T ,

where we have used that Dxf
′(v(x)) > 0 for all x ∈ I. It follows that

t(x1) = lim
x2→x−

1

t(x1, x2) = T − 1

Dxf ′(v(x1))
. (2.6)

Hence

ϕ(t(x)) = x+ f ′
(

v(x)
)(

t(x)− T
)

= x− f ′
(

v(x)
)

Dxf ′(v(x))
. (2.7)

By construction, beingD+(Dxf
′(v(x))) > 0 for all x ∈ I, t(x) turns out to be strictly increasing.

Moreover, as τ 7→ x(τ) is the inverse of x 7→ t(x) equation (2.6) implies that for a.e. t

ϕ′(τ) = x′(τ) +Dxf
′
(

v(x(τ))
)

x′(τ)(τ − T ) + f ′
(

v(x(τ))
)

= x′(τ)
[

1 +Dxf
′
(

v(x(τ))
)

(τ − T )
]

+ f ′
(

v(x(τ))
)

= f ′
(

v(x(τ))
)

.

Now one can easily conclude that the map ϕ at (2.7) fulfills the desired properties.

Remark 2.1. Observe that, having in mind an admissible profile v, Proposition 2.3 and equa-
tion (2.6) imply that, if v suffers from a left contact discontinuity at x = x̄ then

Dxf
′(v(x)) = − 1

t(x)− T
→ +∞ as x→ x̄− .

This behaviour is forecast by the general theory on non-convex conservation law, see [16,
Theorem 3.1].

Assume that an attainable profile v suffers form a jump discontinuity at point x = x̄
between the states v(x̄) and v(x̄+) = (v(x̄))♯, and satisfies the hypothesis of Proposition 2.3 in
a left neighbourhood I of x̄. In this framework we can define a curve τ 7→ ϕ(τ) and conclude
that any solution u of (1.1a) attaining the profile v at time T needs to suffer from a left
contact discontinuity along the curve ϕ. It is easy and extremely important to notice that
the values of u on the two sides of ϕ are completely determined as u(τ, ϕ(τ)) = v(x(τ)) and
u(τ, ϕ(τ)+) = (v(x(τ)))♯, the latter being defined as at (1.7) with v = v(x(τ)). Using the inverse
function x 7→ t(x) introduced in the proof of Proposition 2.3 and writing v♯(x) for (v(x))♯, we
can adapt the expression (2.5) to describe the candidate maximal backward characteristic from
(τ, x(τ)) = (t(x), ϕ(t(x))) in terms of the profile v only, see figure 1,

ξt(x)(τ) = ϕ(t(x)) + f ′
(

v♯(x)
)

(τ − t(x)) . (2.8)

For future reference, we notice here that equations (2.6) and (2.7) imply
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τ

x

x

x̄x̃
τ = T

τ = t(x)

ϕ(·)

ηx(·)

η+x̄ (·)

ξt(x)(·)

Figure 1: The lines ηx and ξt(x)

ξt(x)(0) = ϕ(t(x)) − f ′
(

v♯(x)
)

t(x) = x− f ′
(

v(x)
)

Dxf ′(v(x))
− f ′

(

v♯(x)
)

[

T − 1

Dxf ′(v(x))

]

= x+
f ′
(

v♯(x)
)

− f ′
(

v(x)
)

Dxf ′(v(x))
− f ′

(

v♯(x)
)

T .

(2.9)

The proof of the following proposition is omitted, since it follows easily from Propositions 2.2
and 2.3.

Proposition 2.4. Assume that v is a measurable, left continuous, bounded attainable profile,
with finite total variation. Assume that v suffers from a left contact discontinuity at x = x̄ with
right state vR. Assume that there exists an open interval I ⊂]−∞, x̄] such that

1. sup I = x̄;

2. v ∈ C0(I);

3. the function I ∋ x 7→ f ′(v(x)) is differentiable and Dxf
′(v(x)), D+(Dxf

′(v(x))) > 0 for
any x ∈ I.

Moreover, let η+x̄ (·) be defined as at (1.14b) with x = x̄, ξt(x)(·) be defined as at (2.8), and let

x̃ = sup
{

x ∈ I : ξt(x)(0) ≤ η+x̄ (0)
}

= sup

{

x ∈ I : x+
f ′
(

v♯(x)
)

− f ′
(

v(x)
)

Dxf ′(v(x))
− f ′

(

v♯(x)
)

T ≤ x̄− f ′(vR)T

}

(2.10)
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(see figure 1). Then, the function x 7→ ξt(x)(0) is increasing in I\]x̃, x̄[.

Remark 2.2. In the framework of Proposition 2.4, some properties of the attainable profile v
in the interval x ∈]x̃, x̄[ will be discussed in Section 5. We point out that Proposition 2.4 states
that, if a second left contact appears at the left of x = ϕ(t), then it is necessary located at the
left of x = η+x̄ (t).

3 Sufficient conditions for attainability

We start by formulating the main result of this paper, which provides a partial description of
the set UT . The meaning of the most technical hypotheses is explained in the three Remarks
following the statement.

Theorem 2. Let v ∈ BV (R) be a left continuous function with a nowhere dense set of points of
jump discontinuities. Let [α0, β0] be the support of v and let α be defined as at (1.13). Assume
that the following conditions hold.

1. v fulfills conditions 1-4 of Theorem 1.

2. We consider the partition of [α0, β0] into maximal subintervals in which v is continuous.
For any of these maximal subintervals, say I, the following conditions are fullfilled. Define

J
.
=
{

x ∈ I : Dxf
′(v(x)) > 1/T

}

. (3.1)

Assume that either J is an empty set, or that the following conditions hold

(a) J is a subinterval of I and supJ = sup I = x̄ is a point of jump of v. We let vL and
vR be the left and right states of v at x̄, respectively.

(b) vL
.
= v(x̄) is different from zero.

(c) Let v♯(x) be (v(x))♯ as it is defined by the formula (1.7). We have

D+(Dxf
′(v(x))) > 0 ∀x ∈ J ; (3.2)

D+

[

x+
f ′
(

v♯(x)
)

− f ′
(

v(x)
)

Dxf ′(v(x))
− f ′

(

v♯(x)
)

T

]

≥ 0 ∀x ∈ J . (3.3)

(d) Let (v♯L)
♯ be as v♯ in (1.7) with v = v♯L. If vR ∈ I(vL, (v

♯
L)

♯), there holds

(v♯L − vR)
[

f ′(vL)− f ′(v♯L)
]

f(vR)− f(vL)− (vR − vL)f ′(vL)

[

T − 1

D−
x f ′(v(x̄))

]

≤ T . (3.4)

Then, v is an attainable profile, and hence there exists uc ∈ L∞(a, b) such that the weak entropy
solution u = u(t, x) to (1.1a)-(1.1b) satisfies u(T, ·) = v.
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Remark 3.1. If J is empty all the candidate backward characteristics ηx for x ∈ I are classical
characteristics and reach t = 0 without crossing each other. The backward reconstruction of
v in this case is known, as it only contains genuine shocks and rarefaction waves, see also
Proposition 2.1. When J is not empty the backward reconstruction of v contains a left contact
discontinuity.

Conditions 2a and 2b are actually necessary conditions. In particular, 2b is related to a
property stated by Dafermos in [10, Theorem 2.2]. Indeed, if vL = 0, the minimal backward
characteristic from (t, x̄) is the straight line x = x̄ and no crossing of characteristics occurs.
This is in contradiction with the hypothesis that J is not empty.

Remark 3.2. Condition 2c tells us that the family of candidate backward characteristics
generated from the points (T, x), for x ∈ J , admits a convex tangent envelope τ 7→ ϕ(τ) and
that the candidate maximal backward characteristics ξt(x) defined as at (2.8) do not cross at
positive times. Indeed, condition (3.3) means that the function x 7→ ξt(x)(0), see (2.9), is
increasing for all x ∈ J . In other words this condition excludes the occurrence of nesting
phenomena. We postpone to Section 5 the analysis of some situations in which nesting takes
place.

Remark 3.3. In the setting of condition 2d, namely if vR ∈ I(vL, (v
♯
L)

♯), the discontinuity at
x = x̄ in the target profile v is not a left contact but a shock. However, given the structure of
the candidate backward characteristics (J is non empty), we expect that in any solution u of
(1.1a) attaining v at time T such a shock origins from an interaction at τ < T involving a left
contact discontinuity. Therefore we stress that D−

x f
′(v(x̄)) is finite, as we are not in the same

setting as Remark 2.1, and being D−
x f

′(v(x̄)) ≥ 1/T , condition (3.4) implies

(v♯L − vR)
[

f ′(vL)− f ′(v♯L)
]

f(vR)− f(vL)− (vR − vL)f ′(vL)
≥ 1 .

The precise form of inequality (3.4) comes from the construction in the proof of Lemma 3.3
below.

3.1 The building blocks of our construction

This section is devoted to the detailed analysis of three basic cases in which the existence of
a control function uc can be easily proved. These cases are used as building blocks in the
proof of Theorem 2. Indeed, under the assumptions of Theorem 2 the nesting effect can not be
observed, see Remark 3.2. Therefore, it is possible to split the support of v into subintervals Ik,
show the existence of controls ukc which allow to attain the truncated functions v|Ik

, and finally

“glue” together the functions ukc to obtain a control uc such that the weak entropy solution
u = u(t, x) to (1.1a)-(1.1b) satisfies u(T, ·) = v. This argument works because the domain of
dependence of u(T, ·) on each interval Ik, in absence of nesting, is delimited by the maximal
backward generalized characteristics from t = T , x = inf Ik and t = T , x = sup Ik.

For the reader’s convenience, we fix here the notation and the setting which will be used
all through this section. Roughly speaking, we isolate one of the intervals Ik.
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(V) Let v ∈ BV(R) satisfy all the hypothesis of Theorem 2 together with the following stronger
assumptions. Let v be left continuous, compactly supported on ]α0, β0[ and suffering of
a single jump discontinuity at the point x = x̄, connecting the values v(x̄) = vL and
vR. For definiteness we assume that vL < 0 (the case vL > 0 is symmetric) and that
v(x) = vR for all x in ]x̄, β0[

2. We assume, as prescribed by condition 1 of Theorem 2,
that the jump (vL, vR) is admissible in the sense of condition 4 of Theorem 1. Using the
same notation as in Theorem 2 we set I

.
=]α0, x̄[ and J

.
= {x ∈ I : Dxf

′(v(x)) > 1/T}.
If J is not empty, we define x̂

.
= inf J , while supJ has to be x̄ according to condition 2a

of Theorem 2.

We recall that the (candidate) backward characteristic lines η+x , η
−
x and ηx have been introduced

at (1.14). Whenever J is non empty, condition (3.2) ensures that the tangent envelope of the
lines τ 7→ ηx(τ), for x ∈ J , is a convex curve x = ϕ(τ), defined for τ ∈ [t0, t1] with t1 = t(x̄)
(see (2.6)) given by

t1 = sup
{

t ≤ T : ηx(t) = ηx̄(t) , x ∈ J , x < x̄
}

= sup
x∈I
x<x̄

{

T − x− x̄

f ′(v(x)) − f ′(vL)

}

= T − 1

D−
x f ′(v(x̄))

,
(3.5)

and t0 given by
t0 = max{0, t s.t. ϕ′(t) = f ′(v(x̂))}. (3.6)

The presentation articulates into three lemmas, focusing respectively on

Case 1: The profile v suffers from a shock discontinuity at x = x̄ and the candidate backward
characteristics ηx, for x ∈ I do not cross in the time interval ]0, T ].

Case 2: The set J is not empty, therefore the candidate backward characteristics ηx, for x ∈ J
cross in positive time. The state vR does not belong to the open interval with extrema v♯L
and (v♯L)

♯. This means that the profile v suffers either from a left contact discontinuity
at x = x̄, i.e. vR = (vL)

♯, or the discontinuity of v at x̄ can be solved backward as an
interaction occurring at time τ = T and involving a left contact discontinuity.

Case 3: The set J is not empty but the state vR lies in between vL and (v♯L)
♯. Therefore, on the

one hand the jump of v at x̄ can only be interpreted as a shock, on the other hand the
crossing of backward characteristics force the presence of a left contact discontinuity in
any entropy weak solution u such that u(T ) = v. This construction is the most intricate.

We stress that in Cases 1, 2 and 3 we can explicitly construct a control function uc.

Lemma 3.1 (Case 1). Assume that v is as in (V) and that J is empty. Then one can explicitly

provide an initial condition u1 ∈ L∞
(

η+α0
(0), η−β0

(0)
)

, and a weak entropy solution u (see (3.8)

below) to
{

∂tu+ ∂xf(u) = 0 ,

u(0, x) = u1(x) ,
0 ≤ t ≤ T , η+α0

(t) < x < η−β0
(t), (3.7)

2 Please notice that the constructions we perform are essentially the same under the (slightly) weaker hy-
pothesis that the set Jx>x̄

.
= {x ∈]x̄, β0[ : Dxf

′(v(x)) > 1/T} is empty.
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such that u(T, x) = v(x) a.e. in ]α0, β0[.

Proof. In this case we can explicitly construct a backward solution u, hence a control u1, in
the following classical way. The shock wave joining the states vL and vR propagates along the
line

s(τ) = x̄+ σ(vL, vR)(τ − T ),

where

σ(vL, vR) =
f(vR)− f(vL)

vR − vL

is the Rankine-Hugoniot speed of the jump (vL, vR). Then

u(τ, y) =











v(x) if η+α0
(τ) < y = ηx(τ) ≤ η−x̄ (τ) , τ ∈]0, T [

vL if ηx̄(τ) < y ≤ s(τ) ,

vR if s(τ) < y < η−β0
(τ) ,

(3.8)

that is obtained just following up to t = 0 the backward characteristics. Please notice that in
this case the backward reconstruction is far from being unique.

Now we turn our attention to the most interesting case J 6= ∅.

Lemma 3.2 (Case 2). Assume that v is as in (V), J is not empty and vR does not belong to

the open interval of extrema v♯L and (v♯L)
♯. Then one can explicitly provide an initial condition

u2 ∈ L∞
(

η+α0
(0), η−β0

(0)
)

, and a weak entropy solution u (see (3.9)-(3.10c) below) to

{

∂tu+ ∂xf(u) = 0 ,

u(0, x) = u2(x) ,
0 ≤ t ≤ T , η+α0

(t) < x < η−β0
(t) ,

such that u(T, x) = v(x) a.e. in ]α0, β0[.

Proof. As we assume that vL < 0, either 0 < v♯L ≤ vR or vR ≤ (v♯L)
♯ < 0. If vR = v♯L the

discontinuity of v at x = x̄ is a left contact discontinuity. If vR = (v♯L)
♯ the discontinuity of v

at x = x̄ can be solved backward as an interaction occurring at time T between the left contact
discontinuities from vL to v♯L and from v♯L to (v♯L)

♯. In all other cases the discontinuity of v at
x = x̄ can be solved backward as an interaction occurring at time T between the left contact
discontinuity from vL to v♯L and a shock joining v♯L to vR, see figure 2.
Once we fixed the structure of a backward resolution of the discontinuity, the construction
of a control becomes routine. Indeed, assumption (3.3) ensures that nesting does not occur,
therefore the backward reconstruction of the solution can be done up to t = 0 without the
appearance of unexpected waves.

In order to keep our presentation as light as possible, we limit the discussion to the case
vR /∈ {v♯L, (v

♯
L)

♯}, as the two other cases can be easily to inferred from this one.

Call s the line along which the shock joining v♯L to vR propagates in the backward solution

s(τ) = x̄+ σ(v♯L, vR)(τ − T ),
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where σ(v♯L, vR) is the Rankine-Hugoniot speed of the jump (v♯L, vR). We fix the values of t0
and t1 as in (3.6) and(3.5). A backward solution to (1.1a) with datum u(T, x) = v(x) takes the
form

u(τ, y) =























v(x) if (τ, y = ηx(τ)) ∈ Ω1 ,

(v(x))♯ if
(

τ, y = ξt(x)(τ)
)

∈ Ω2 ,

v♯L if (τ, y) ∈ Ω3 ,

vR if y ∈]s(τ), η−β0
[, τ ∈]0, T [.

(3.9)

where the regions Ωi, for i = 1, 2, 3, are defined as follows.

Ω1 =
{

(τ, y) ∈]t1, T [×]η+α0
(τ), η−x̄ (τ)]

}

∪
{

(τ, y) ∈]t0, t1]×]η+α0
(τ), ϕ(τ)]

}

(3.10a)

∪
{

(τ, y) ∈]0, t0[×]η+α0
(τ), ηx̂(τ)]

}

,

Ω2 =
{

(τ, y) ∈]t0, t1[×]ϕ(τ)+, ξt1(τ)]
}

∪ {(τ, y) ∈]0, t0]×]ηx̂(τ), ξt1(τ)]} , (3.10b)

Ω3 =
{

(τ, y) ∈]t1, T [×]η−x̄ (τ), s(τ)]
}

∪ {(τ, y) ∈]0, t1]×]ξt1(τ), s(τ)]} . (3.10c)

Then u2 can be constructed just following backwardly the backward characteristics up to t = 0.

τ

y

x x̄
τ = T

τ = t(x)

τ = t1

τ = t0

y = ϕ(τ)

y = ηx(τ)

y = ξt(x)(τ)

y = ξt1(τ)

u(τ, ξt(x)(τ)) = v(x)

u(τ, y) = v♯L

y = s(τ) = x̄+ σ(v♯L, vR)(τ − T )

y = η−x̄ (τ)

Figure 2: The function u at (3.9)

Lemma 3.3 (Case 3). Assume that v is as in (V), J is not empty and vR ∈ I(vL, (v
♯
L)

♯). Then

there exists an initial condition u3 ∈ L∞
(

η+α0
(0), η−β0

(0)
)

, such that the weak entropy solution

u to
{

∂tu+ ∂xf(u) = 0 ,

u(0, x) = u3(x) ,
0 ≤ t ≤ T , η+α0

(t) < x < η−β0
(t) , (3.11)
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satisfies u(T, x) = v(x) a.e. in ]α0, β0[.

Remark 3.4. Regarding Lemma 3.3, we provide at the end of the proof an explicit formulation
of the initial datum u3 and of the solution u to (3.11) attaining v at time T .

Proof. Our first step in this proof is to find a wave pattern which is compatible with the
information we have on the profile v. Here the jump of v at x̄ can only be interpreted as a
shock, and, since J 6= ∅, we can argue the presence of a left contact discontinuity ϕ in any
entropy weak solution u such that u(T ) = v. It is well known, see [10, Theorem 2.3], that once
a left contact discontinuity appears in a weak entropy solution of (1.1a), it can not disappear
but can interact with other waves. Therefore we conclude that the shock jump in v at x = x̄
corresponds to a shock wave s3 in u originated from the interaction between ϕ and another
discontinuity s0. The idea, roughly speaking, is the following. First, we use the values of v for
x < x̄ to perform a partial backward reconstruction of the left contact discontinuity ϕ and, in
particular, find the time t1 at which the candidate minimal backward characteristic from (T, x̄)
is tangent to ϕ, see equation (3.5). Second, we trace the maximal backward characteristic
ξt1 from (t1, ϕ(t1)) and we call x2 the point ξt1(0). We also trace the maximal backward
characteristic η+x̄ from (T, x̄) and we call (t∗, x∗) the intersection between ξt1 and η+x̄

ξt1(t
∗) = η+x̄ (t

∗) = x∗. (3.12)

The condition t∗ ≤ 0 turns out to be necessary for the attainability of v (see below).

Finally, we construct a one parameter family of initial conditions (w0
γ)γ∈[t∗,0] such that

1. the function γ 7→ w0
γ is continuous;

2. all corresponding forward solutions wγ to (1.1a) have the desired wave pattern (incoming
ϕ and s0, interaction, outgoing s3);

3. there exists a value γ∗ ∈ [t∗, 0] such that the solution wγ∗ associated to w0
γ∗ attains exactly

the profile v at time T .

The rigorous presentation of the proof divides into several steps.

Step 1: Partial backward reconstruction. We consider the case (v♯L)
♯ < vR < vL < 0.

With exactly the same notation as in the proof of Lemma 3.2 we use the method of character-
istics to reconstruct the solution backward in the regions Ω1 and Ω3, see (3.10a), (3.10c). We
call

x1
.
= η−x̄ (t1) = x̄+ f ′(vL)(t1 − T ) , (3.13)

x2
.
= ξt1(0) = x1 − f ′(v♯L)t1 . (3.14)
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Step 2: The Riemann problem with data (v♯
L, vR). In this step we introduce some no-

tations and describe the self similar solution to a Riemann problem with data (v♯L, vR) centered
at (t = t, x = a)











ut + f(u)x = 0 for t > t, and x ∈ R,

u(t, x) =

{

v♯L if x ≤ a,

vR if x > a.

(3.15)

Observe that our assumptions on f and the choice vL < 0 imply 0 < v♭R < v♯L. Therefore,

the solution to the problem (3.15) consists of a centered rarefaction wave with left state v♯L
and right state v♭R, followed by a left contact discontinuity joining v♭R to vR, τ 7→ s0(τ). More
precisely, we have

s0(τ) = a+ f ′(v♭R)(τ − t)

= a+
f(vR)− f(v♭R)

vR − v♭R
(τ − t)

τ ≥ t , (3.16)

We call r = r(τ, y) the rarefaction fan outcoming from (t, a) with left and right state v♯L and
v♭R, respectively. It is described as the unique solution to

f ′(r(τ, y)) =
y − a

τ − t
, r(τ, y) ≥ 0 ,

and v♭R ≤ r(τ, y) < v♯L.

Observe that in order to lighten the notation, the dependence of r and s0 on t, a is somehow
hidden, nevertheless it is absolutely essential to keep it in mind throughout the proof.

Step 3: A one parameter family of initial conditions. Let γ ∈ [t∗, 0] be fixed and set
t = γ, a = ξt1(γ). We define the initial condition w0

γ as follows

w0
γ(y) =























v(x) if y = ηx(0) ∈]η+α0
(0), ηx̂(0)] ,

(v(x))♯ if y = ξt(x)(0) ∈]ηx̂(0), x2]
r(0, y) if y ∈]x2, s0(0)]
vR if y > s0(0).

(3.17)

Observe that the value of w0
γ(y) for y ≤ x2 is fixed by following the backward characteristics

from the assigned profile v for all γ ∈ [t∗, 0]. As a consequence, the solution of the Cauchy
problem (1.1a)-(3.17), wγ , coincides with the backward reconstruction in regions Ω1 and Ω3.

For y > x2, w
0
γ coincides with the self similar solution of the Riemann problem between the

states (v♯L, vR) centered at (γ, ξt1(γ)). The solution wγ can be constructed by the method of
characteristics until at time τ = t1 the rarefaction fan r reaches the contact discontinuity ϕ
(which we obtained by backward reconstruction).
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Step 4: Forward construction of wγ for τ > t1. For τ > t1 the contact discontinuity ϕ
interacts with the rarefaction fan r. The result of this interaction is a contact discontinuity with
left state r♭(τ, s1(τ)) and right state r(τ, s1(τ)), traveling along the curve τ 7→ s1(τ), defined as
the unique solution of the Cauchy problem

{

s′1 = f ′
(

r♭(τ, s1)
)

s1(t1) = x1 ,
τ ≥ t1 . (3.18)

Observe that, thanks to (1.10), we have

s′1(τ) =
f
(

r♭(τ, s1(τ))
)

− f
(

r(τ, s1(τ))
)

r♭(τ, s1(τ))− r(τ, s1(τ))
.

Geometrical considerations show that the curve s1 approaches s0 until r attains the value v♭R.
Call t3 the time at which the interaction takes place, i.e. s1(t3) = s0(t3). Let

x3
.
= s1(t3) = s0(t3) = ξt1(γ) + f ′(v♭R)t3 , (3.19)

and observe that, by construction,

η−x̄ (τ) < s1(τ) < s0(τ) ∀ t1 < τ < t3 .

For future reference, we call Ω4 the region in the t-x plane delimited by ξt1 , s0 and s1

Ω4 =
{

(τ, y) ∈ R
2 : τ ∈]γ, t1], ξt1(τ) < y ≤ s0(τ)

}

∪
∪
{

(τ, y) ∈ R
2 : τ ∈]t1, t3], s1(τ) < y ≤ s0(τ)

}

. (3.20)

The interaction between s0 and s1, taking place at (t3, x3), generates a single outgoing shock
discontinuity traveling along the curve τ 7→ s3(τ). We use again the method of characteristics
to precise the definition of s3. For any (τ, y) such that τ ∈ [t1, t3], η

−
x̄ (τ) ≤ y ≤ s1(τ) or τ > t3

and η−x̄ (τ) ≤ y < x3 + f ′(v♭R)(τ − t3), let s = s(τ, y) ∈ [t1, t3] be such that

y = s1(s) + s′1(s)(τ − s) ,

and define

q(τ, y) = r♭
(

s(τ, y), s1(s(τ, y))
)

.

In such a way q = q(τ, y) is a Lipschitz continuous solution to (1.1a) within its domain of
definition. Then, we let τ 7→ s3(τ) be the solution to the Cauchy problem











s′3(τ) =
f(vR)− f(q(τ, s3(τ)))

vR − q(τ, s3(τ))
,

s3(t3) = x3 ,

(3.21)

so that y = s3(τ) is a shock curve joining the left state q(τ, s3(τ)) to the right state vR.
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The solution to (3.21) is defined starting from τ = t3 and until the point (τ, s3(τ)) reaches
the line η−x̄ . This happens in finite time since the slope of η−x̄ is larger that s′3(τ) for all τ > t3.
We call t̄ the time at which the crossing takes place. This allows for the following definition

Ω5 =
{

(τ, y) ∈ R
2 : τ ∈]t1, t3], η−x̄ (τ) < y < s1(τ)

}

∪
∪
{

(τ, y) ∈ R
2 : τ ∈]t3, t̄], η−x̄ (τ) < y < s3(τ)

}

. (3.22)

The solution of the Cauchy problem (1.1a), (3.17), wγ , is the piecewise Lipschitz continuous
function defined as follows for τ ∈]0, t̄], see figure 3 for the case γ = 0,

τ

y

x̄
T

x1 x2x3

t1

t3

t̄

wγ(τ, y) = r(τ, y)

wγ(τ, y) = q(τ, y)

wγ(τ, y) = vR

y = ϕ(τ)

y = ξt1(τ)

y = s0(τ)

y = s1(τ)

y = s3(τ)

y = η−x̄ (τ)

Figure 3: The case (v♯L)
♯ < vR < vL < 0

wγ(τ, y) =















































v(x) if (τ, y = ηx(τ)) ∈ Ω1 ,

(v(x))♯ if
(

τ, y = ξt(x)(τ)
)

∈ Ω2 ,

r(τ, y) if (τ, y) ∈ Ω4

q(τ, y) if (τ, y) ∈ Ω5

vR if y ∈]s0(τ), η−β0
(τ)] and τ ≤ t3

or y ∈]s3(τ), η−β0
(τ)] and τ ∈]t3, t̄] .

(3.23)

The Lemma is proved if we can show that there exists a value of γ for which t̄ is exactly equal
to T . Observe that, as the hypotheses of the Lemma exclude the occurrence of nesting, we
are not allowed to consider initial conditions suffering from a jump discontinuity at a point
y ∈]ηx̂(0), x2[. Therefore, when we consider γ = 0 we obtain the solution of (1.1a) with the
desired wave pattern (incoming ϕ and s0, interaction, outgoing s3) in which the curves s3 and
ηx̄ earlier than for any larger value of γ.
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Remark 3.5. We remark that a necessary condition toward the attainability of the profile v
is t∗ < 0, i.e.

x2 < η+x̄ (0) = x̄− f ′(vR)T . (3.24)

Indeed, assume (3.24) does not hold (see figure 4). Since f ′(v♭R) > f ′(vR), we get

x3 > x̄+ f ′(vR)(t3 − T ) . (3.25)

Notice that s′3(τ) > f ′(vR) for any τ due to the admissibility conditions for shock discontinuities,
and that vR is the right state of s3. Due to (3.25) we have s3(T ) > x̄. Hence, s3 and η−x̄ do not
interact in the time interval [t3, T ], contrary to the fact that t̄ ≤ T . A similar argument shows
that if γ = t∗ then for sure t̄ > T .

The next step in this proof shows that if our original target profile satisfies the hypothe-
sis (3.4) of Theorem 2 then in wγ=0, s3(t̄) = ηx̄(t̄) at time t̄ < T .

τ

y

x̄
T

x1

x2

x3

t1

t3
wγ=0(τ, y) = vR

y = ϕ(τ)

y = ξt1(τ)

y = s0(τ)

y = s1(τ)

y = s3(τ)

x = η−x̄ (τ)

η+x̄ (0)

Figure 4: The Remark 3.5

Step 5: Under assumption (3.4), in wγ=0 there holds t̄ < T . Now we use conservation
in the region Ω5, defined at (3.22), in order to determine t̄. We have

∫∫

Ω5

∂tu+ ∂xf(u) dxdt = 0 ,
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so that, by the divergence theorem

0 =

∫ t̄

t3

−q(t, s3(t))s
′
3(t) + f

(

q(t, s3(t))
)

dt (3.26a)

+

∫ t3

t1

−q(t, s1(t))s
′
1(t) + f

(

q(t, s1(t))
)

dt (3.26b)

+

∫ t̄

t1

q(t, η−x̄ (t))(η
−
x̄ )

′(t)− f
(

q(t, η−x̄ (t))
)

dt . (3.26c)

Let us compute the three integrals in (3.26). Regarding (3.26a), since Rankine-Hugoniot con-
ditions hold along x = s3(t), we get

−q(t, s3(t))s
′
3(t) + f

(

q(t, s3(t))
)

= −vRs′3(t) + f(vR) ∀ t3 < t < t̄ ,

and hence

∫ t̄

t3

−q(t, s3(t))s
′
3(t) + f

(

q(t, s3(t))
)

dt = −vR
(

s3(t̄)− x3
)

+ f(vR)(t̄− t3) =

= −vR(x̄− x3) + vRf
′(vL)T − f(vR)t3 +

[

f(vR)− vRf
′(vL)

]

t̄ .

Now we compute (3.26b). Since Rankine-Hugoniot conditions hold along s1, we get

−q(t, s1(t))s
′
1(t) + f

(

q(t, s1(t))
)

= −r(t, s1(t)+)s′1(t) + f
(

r(t, s1(t)+)
)

∀ t ∈]t1, t3[ .
Using again conservation in the region Ω4, see (3.20) we get

∫ t3

t1

−q(t, s1(t))s
′
1(t) + f

(

q(t, s1(t))
)

dt =

∫ t3

t1

−r(t, s1(t)+)s′1(t) + f
(

r(t, s1(t)+)
)

dt =

=

∫ t3

γ
−r(t, s0(t))s

′
0(t) + f

(

r(t, s0(t))
)

dt+

∫ t1

γ
r(t, ξt1(t)+)ξ′t1(t)− f

(

r(t, ξt1(t)+)
)

dt ,

and being
∫ t3

γ
−r(t, s0(t))s

′
0(t) + f

(

r(t, s0(t))
)

dt =

∫ t3

γ
−v♭Rs′0(t) + f(v♭R) dt

=
[

− v♭Rf
′(v♭R) + f(v♭R)

]

(t3 − γ)
∫ t1

γ
r(t, ξ′t1(t)+)ξ′t1(t)− f

(

r(t, ξ′t1(t)+)
)

dt =

∫ t1

γ
v♯Lξ

′
t1(t)− f(v♯L) dt

=
[

v♯Lf
′(v♯L)− f(v♯L)

]

(t1 − γ) ,

and using Rankine-Hugoniot conditions along s0, we obtain

∫ t3

t1

−q(t, s1(t))s
′
1(t) + f

(

q(t, s1(t))
)

dt =

=
[

− vRf
′(v♭R) + f(vR)

]

(t3 − γ) +
[

v♯Lf
′(v♯L)− f(v♯L)

]

(t1 − γ) .
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Regarding (3.26c), observe that q(t, η−x̄ (t)) = vL, so that we obtain

∫ t̄

t1

q(t, η−x̄ (t))(η
−
x̄ )

′(t)− f
(

q(t, η−x̄ (t))
)

dt =

∫ t̄

t1

vL(η
−
x̄ )

′(t)− f(vL) dt

=
[

vLf
′(vL)− f(vL)

]

(t̄− t1) .

From (3.26), and observing that by construction of x1, ξt1(γ) and x3

x3 − x̄ = γf ′(v♯L)− f ′(vL)T + f ′(v♭R)t3 +
[

f ′(vL)− f ′(v♯L)
]

t1 ,

we obtain

[

f(vR)− f(vL)− (vR − vL)f
′(vL)

]

t̄+

+
[

f(vL)− f(v♯L) + vR
(

f ′(vL)− f ′(v♯L)
)

+ v♯Lf
′(v♯L)− vLf

′(vL)
]

t1+

+
[

vRf
′(v♯L) + vRf

′(v♭R)− v♯Lf
′(v♯L) + f(v♯L)− f(vR)

]

γ = 0 . (3.27)

Since
f(vR)− f(vL)−

(

vR − vL
)

f ′(vL) 6= 0 ,

due to the fact that (v♯L)
♯ < vR < vL, and being

f(vL)− f(v♯L) = f ′(vL)(vL − v♯L) ,

we recover

t̄ = − (vR − v♯L)
[

f ′(vL)− f ′(v♯L)
]

f(vR)− f(vL)− (vR − vL)f ′(vL)
t1+

− vRf
′(v♯L) + vRf

′(v♭R)− v♯Lf
′(v♯L) + f(v♯L)− f(vR)

f(vR)− f(vL)− (vR − vL)f ′(vL)
γ . (3.28)

Using the expression of t1 at (3.5) and due to (3.4), we get t̄ ≤ T if γ = 0. As vR < 0 < v♭R < v♯L
the assumption (F).b ensures that the coefficient in front of γ is negative. Then it is possible
to find γ = γ∗ ∈ [t∗, 0] in order to get t̄ = T . It follows that u3 = w0

γ with γ = γ∗ in (3.17),
and u = wγ with γ = γ∗ in (3.23) are, respectively, the explicit formulation of an initial datum
u3 and a solution u to (3.11) attaining v at time T .

3.2 Proof of Theorem 2

Assume that v satisfies to all conditions in the statement of Theorem 2. We consider the
partition of [α0, β0] into maximal subintervals in which v is continuous, namely [α0, β0] =
∪n≥1In], In =]xn, xn+1]. Define Jn = {x ∈ In : Dxf

′(v(x)) > 1/T}. Consider now the
function

vn(x) =











v(x+n ) if α0 ≤ x ≤ xn,

v(x) if x ∈ In
v(x+n+1) if xn+1 < x ≤ β0,

(3.29)
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and observe that vn satisfies the hypothesis of one of the three Lemmas 3.1, 3.2 or 3.3. Therefore,
there exist a control unc which we can use as initial condition in (1.1) to attain the profile vn at
time T . Under the hypothesis of Theorem 2, in particular, in absence of nesting structure, we
are sure that the control function unc is constant outside the interval Yn = [ηx+

n
(0), ηx+

n+1

(0)[.

Therefore, the function

uc(y) =

N
∑

n=0

unc (y)1Yn
(y), (3.30)

can be used as initial condition in (1.1) to attain the profile v at time T . �

4 Application to Kynch’s sedimentation model

In this section we give an explicit example on the application of Lemma 3.3 to a real life
problem. We consider the classical model for sedimentation proposed by Kynch in [17], see
also [6] for an introduction to the model from an historical point of view and a short account
of the related literature.

The model describes the sedimentation of the solid part of a suspension in a cylindrical batch
of height L. The unknown function in the equation is the local solid fraction of the suspension,
u, which varies between 0 and a maximal value umax. For technical reasons (presence of a
suitable mixing device) the only relevant space dimension in the problem is the height above the
bottom of the batch, x ∈ [0, L]. The Ansatz used by Kynch is that the velocity of sedimentation,
V , at any level x depends on the value of the local solid fraction u, so that the flux function
is given by f(u) = V (u)u. If we write t for the time variable, the model takes the form of a
scalar conservation law in one space dimension

∂tu+ ∂x
(

V (u)u
)

= 0 . (4.1)

Given the parametrization of the batch it is natural to impose that f is negative for u ∈ [0, umax]
and attains zero for u = 0 and u = umax. One can find many different constitutive equations
for V in the existing literature. In this example, to allow for explicit computations, we take
umax = 1 and we consider V (u) = −(1−u)2, which leads to the flux function f(u) = −u(1−u)2,
so that (4.1) becomes

∂tu− ∂x
(

u(1− u)2
)

= 0 . (4.2)

Such flux function suffers from an inflection point at u = 2/3, but it does not satisfy the
conditions we fixed in (F).b in order to simplify our presentation. Nevertheless all the results
in the previous sections apply to this case. In analogy with the notation introduced in (1.7)-
(1.9), for any v we have

v♯ = 2(1− v) , (v♯)♯ = 2(2v − 1) , v♭ = 1− v

2
. (4.3)

Since the volume fraction of solid u varies in the interval [0, 1], we need v ∈ [1/2, 3/4] in order
to have v♯ and (v♯)♯ in the same interval [0, 1].
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Fix T = 2, and consider the final profile

v2(x) =



























1/2 if x ≤ 1/2 ,

4
√
7−

√

4 + 3
√
15 − 28x

6
√
7

if 1/2 < x ≤ 59

112
,

224 − 13
√
154

84
if x >

59

112
.

(4.4)

We illustrate how the backward reconstruction exploited in the proof of Lemma 3.3, allows to
construct an initial datum u0 such that the solution u = u(t, x) to (4.2) with u(0, ·) = u0
fulfills u(2, ·) = v2.

The target profile suffers from a jump discontinuity at x̄ = 59/112. In the following we call

vL
.
= v(59/112) =

56−
√
154

84
, vR

.
= v(59/112+) =

224− 13
√
154

336
.

A straightforward computation, see (4.3), gives us

v♯L =
28 +

√
154

42
, (v♯L)

♯ =
14−

√
154

21
,

so we can check that vR ∈ [(v♯L)
♯, vL]. For future use we also compute

v♭R =
448 + 13

√
154

672
.

Observe that, beingDxf
′(v(x)) = (2

√
15− 28x)−1, the interval J at (3.1) is non empty, supJ =

x̄ and inf J = x̂ = 1/2, and t1 = 1, see (3.5). The convex envelope of the lines ηx defined
at (1.14c) for x ∈ J =]1/2, 59/112] is

ϕ(t) =
1

112
t2 +

1

4
t , t ≤ 1

.
= t1 ,

Moreover, being (v♯L)
♯ < vR < vL and

− (vR − v♯L)
[

f ′(vL)− f ′(v♯L)
]

f(vR)− f(vL)− (vR − vL)f ′(vL)
t1 =

16

9
< 2 = T ,

the assumption (3.4) is satisfied. Hence, all hypotheses of Lemma 3.3 are fulfilled. Plugging
t̄ = T = 2 and t1 = 1 in equation (3.28), we easily find the value γ = γ∗ which allows us to
construct the initial condition

γ∗ = −
[

f(vR)− f(vL)− (vR − vL)f
′(vL)

vRf ′(v
♯
L) + vRf ′(v

♭
R)− v♯Lf

′(v♯L) + f(v♯L)− f(vR)

]

·

·
[

2 +
(vR − v♯L)

[

f ′(vL)− f ′(v♯L)
]

f(vR)− f(vL)− (vR − vL)f ′(vL)

]

=

= −6823432 + 5667200
√
154

391268487
≈ −0.197183 . (4.5)
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From equations (3.13) and (3.14) we get

x1 =
29

112
, x2 =

3

16
.

With the choice (4.5) of γ = γ∗ and using (3.16), we get

a = x1 + f ′(v♯L)(γ
∗ − 1) =

1166007253 − 6476800
√
154

6260295792
≈ 0.173415

s0(0) = a− f ′(v♭R)γ
∗ =

4734091037 + 32282800
√
154

25041183168
≈ 0.205051 .

Hence, from (3.17), we get that an initial datum by means of which we get v2 at time T = 2 is
given by

u0(x) =















































1/2 if x ≤ 0 ,

2
√
7 +

√

4 + 3
√
1− 4x

3
√
7

if 0 < x ≤ 3/16 ,

2

3
+

√

γ∗ + 3x− 3a

γ∗
if 3/16 < x ≤ s0(0) ,

224− 13
√
154

336
if x > s0(0) .

5 More complex structures

This section consists of two parts. First, in Section 5.1 we present a simple case of nesting
in a very smooth framework. We state some conditions for attainability and we provide an
explicit example. This presentation is of course far from being exhaustive but it is sufficient to
illustrate the main features of the problem.

In section 5.2 we present some ideas toward the construction of a recursive procedure which
could be used to simplify the problem in more general situations. The recursive procedure
naturally leads to state an open problem in the general theory of scalar conservation laws.

5.1 Two nested contact discontinuities

Let v be an attainable profile suffering from a jump discontinuity at x = x̄, connecting the
states vL = v(x̄−), and vR = v(x̄+) = v♯L. We assume that tracing back the candidate backward
characteristics ηx, one finds that there exist x1 and x2 such that

• for all x ∈ JL
x̄ =]x1, x̄] the lines ηx, graze from the left contact discontinuity τ 7→ ϕ1(τ);

• for all x ∈ JR
x̄ =]x̄, x2] the lines ηx, graze from the left contact discontinuity τ 7→ ϕ2(τ).

It is well known that once a left contact discontinuity appears in the solution it persists until
it interact with second left contact or with a shock. This means that the admissible profile v
must suffer from a second jump discontinuity, taking place at x = x2. The Proposition below,
whose proof is straightforward in the light of the analysis in the preceding Sections, formalizes
these necessary conditions.
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Proposition 5.1. In the hypothesis above there exists ¯̄x ∈ R, such that

• ¯̄x > x̄ and v(¯̄x−) 6= v(¯̄x+);

• (v(¯̄x−), v(¯̄x+)) is an admissible jump in the sense of condition 4 of Theorem 1.

• The set J¯̄x
.
=
{

x̄ < x ≤ ¯̄x : Dxf
′(v(x)) > 1/T

}

, analogous to the set J defined in (3.1),
is exactly ]x̄, ¯̄x] and for all x ∈ J¯̄x there holds D+ (Dxf

′(v(x))) > 0.

Regarding the lines τ 7→ ξt(x)(τ) defined as in (2.8) as the candidate backward characteristics
from (t(x), ϕ1(t(x))), two configurations are possible. If they do not cross each other in positive
time, it means that the left contact discontinuities ϕ1 and ϕ2 are essentially disconnected one
from the other. Otherwise, we conclude that the lines ξt(x) graze from ϕ2 and nesting occurs
(see figure 5). This second case is the one we are interested in. Without surprise, we have that

τ

x

T
x̄

s(x̄)

x1 x2

x = η−x̄ (τ)

x = η+x̄ (τ)

x = ηx1
(τ)

x = ηx2
(τ)

x = ϕ1(τ)

x = ϕ2(τ)

x = ξ1,t(τ)

Figure 5: Configuration with two consecutive contact discontinuities

in a configuration like the one at figure 5 not only the jump in x̄ must be admissible in the
sense of Theorem 1, but there is also a compatibility condition among the values of v in a left
and in a right neighbourhood of x̄.

Theorem 3. Let v be a piecewise C2 attainable profile at time T , suffering from a jump at
x = x̄ with left and right states vL and vR = v♯L, respectively. Assume that in a neighbourhood
of (T, x̄) the configuration described above and illustrated in figure 5 occurs. Then

lim
x→x̄+

Dxf
′(v(x) = lim

x→x̄−

[

Dxf
′(v(x))

]2
Dxf

′(v♯(x))

D2
xxf

′(v(x))
[

f ′(vL)− f ′(vR)
] . (5.1)
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Proof. Let s(x̄) ∈]0, T [ be such that η+x̄ (s(x̄)) = ϕ2(s(x̄)). Due to (2.6) it turns out that

s(x̄) = T − lim
x→x̄+

1

Dxf ′(v(x))
. (5.2)

Now we compute s(x̄) using the fact that there exists t0 < s(x̄) such that for τ ∈]t0, s(x̄)] the
curve x = ϕ2(τ) is the convex envelope of the maximal characteristics grazing from x = ϕ1(τ).
Let I be a suitable left neighbourhood of x̄ such that x = ϕ1(τ) is the tangent envelope of the
backward characteristics grazing from (T, x), x ∈ I, so that (2.7) holds with ϕ = ϕ1. Hence,
we can write the maximal backward characteristics from ϕ1 as

ξt(x)(τ) = ϕ1(t(x)) + f ′(v♯(x)))(τ − t(x)) . (5.3)

Such a line intersect η+x̄ at time

s(x̄, x) = −ϕ1(t(x))− x̄−
(

f ′(v♯(x))t(x) − f ′(vR)T
)

f ′(v♯(x))− f ′(vR)
.

Letting x→ x̄− we get

s(x̄) = T + lim
x→x̄−

D2
xxf

′(v(x))
[

(f ′(vR)− f ′(vL)
]

[

Dxf ′(v(x))
]2
Dxf ′(v♯(x))

,

that together with (5.2) gives (5.1) �

In the spirit of Proposition 2.3 and having in mind the configuration at figure 5, one can
easily formulate conditions on the values of v on JL

x̄ in order that the tangent envelope of the
the family of lines {ξt(x)}x∈JL

x̄
at (5.3), turns out to be a convex, Lipschitz continuous curve.

This is the object of the remaining part of this Section. Please notice that the analysis is only
meaningful in an extremely smooth setting.

We add here, for the reader’s convenience, the expression of the derivative of the function
x 7→ ξt(x)(0) at (2.9). We write ξx for ξt(x) to simplify the notation.

dξx
dx

(0) = −Dxf
′(v♯(x))t(x)− D2

xxf
′(v(x))

[Dxf ′(v(x))]
2

(

f ′(v♯(x))− f ′(v(x))
)

(5.4)

From the basic hypothesis in Proposition 2.4 we deduce that the first term in the expression
above is positive, while the second is negative. This justify the following definitions

• Let x̃ be defined as in (2.10). J = [x̃, x̄] contains JL
x̄ . We call x the first point of local

maximum of x 7→ ξx(0) inJ
L
x̄

x = min

{

x ∈ J :
dξx
dx

(0) = 0 ,
d2ξx
dx2

(0) < 0

}

. (5.5)

This point exists by Rolle’s theorem and the fact that the function x 7→ ξx(0) cannot take
values smaller that η+x̄ (0) in the interval J = [x̃, x̄] otherwise given y in the interior of J
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the line ξy would cross ξx̃ on the left of η+x̄ and this contradicts the necessary condition
for attainability stated in Proposition 2.2. This argument actually proves that x is the
only point of maximum of x 7→ ξx(0) in the interval J . Assume by contradiction that
there exists a second local maximum at y, y > x. Then if, for example, ξy(0) > ξx(0) we
have that some of the lines ξx, originated at time t(x) < t(y), cross on the left of ξy and
this is not admissible because of Proposition 2.2. If ξy(0) < ξx(0) the situation is similar.

• If some of the lines ξx cross η+x̄ at positive time then the function x 7→ ξx(0) has to be
decreasing in a left neighbourhood of x̄. Then we call (x̄, v) 7→ t̄(x̄, v) the function which
associates to a final profile v and one of its points of jumps x̄ the latest time at which
the backward characteristic lines ξx may cross η+x̄

t̄(x̄, v) = T + lim
x→x̄−

D2
xxf

′(v(x))

[Dxf ′(v(x)]
2Dxf ′(v♯(x))

(

f ′(v♯(x))− f ′(v(x))
)

. (5.6)

Proposition 5.2. Assume that T > t̄(x̄, v), that all the hypothesis of Proposition 2.4 are
verified and that

d2ξx
dx2

(0)− D2
xxf

′(v♯(x))

Dxf ′(v♯(x))

dξx
dx

(0) < 0, for x ∈ [x, x̄], (5.7)

with x defined in (5.5) here above. Then the tangent envelope of the lines

ξx(t) = ϕ1(t(x)) + f ′(v♯(x))(t− t(x)), x ∈ [x, x̄], 0 ≤ t ≤ t(x), (5.8)

is a strictly convex C1 curve x = ϕ2(s), defined in a suitable interval [s0, s1] ⊆ [0, T ].

The proof is omitted, as it follows exactly the same lines as the proof of Proposition 2.4.

5.1.1 An example

Consider again the Kynch model for sedimentation (4.2), and let

v3(x) =



















































1/2 if x ≤ 3

4
,

1

6

[

4−
√

5

14
+

3

14

√
93− 112x

]

if
3

4
< x ≤ 93

112
,

14 +
√

10 + 3
√
169 − 196x

21
if

93

112
< x ≤ 165

196
,

2

7
if x >

165

196
,

(5.9)

be a candidate final profile at time T = 3 for a solution to (4.2). In order to reconstruct an
initial datum for (4.2) from v3, we trace backwardly the lines {ηx}x∈]3/4,165/196] (see figure 5,
where x̄ = 93/112)

ηx(t) = x+ f ′(v3(x))(t− 3) =















x+
17−

√
93− 112x

56
(t− 3) if 3/4 < x ≤ 93

112
,

x+
13−

√
169− 196x

49
(t− 3) if

93

112
< x ≤ 165

196
.
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The tangent envelope of ηx for x ∈]3/4, 93/11] can be easily computed by means of (2.6)-(2.7),
and it turns out to be the convex curve

ϕ1(t) =
1

112
t2 +

1

4
t , 0 ≤ t ≤ 3 .

Such a curve is a candidate left contact discontinuity in the (candidate) solution u = u(t, x)

to (4.2) attaining v3 at time T = 3. The left and right states of x = ϕ1(t), say u1(t) and u
♯
1(t),

respectively, must fulfil

f ′(u1(t)) = ϕ′
1(t) =

f(u♯1(t)) − f(u1(t))

u♯1(t)− u1(t)
,

and hence we obtain that

u1(t) =
1

6

(

4−
√

14− 3t

14

)

, u♯1(t) =
1

3

(

2 +

√

14− 3t

14

)

hold. Now, trace backwardly the lines {ξ1,t}t∈[0,3] (see figure 5),

ξ1,t(τ)
.
= ϕ1(t) + f ′(u♯1(t))(τ − t) = − 1

16
t2 +

1

4
t+

1

14
tτ ,

that are the candidate backward maximal characteristics from (t, ϕ1(t)) in the candidate solu-
tion u = u(t, x) that we would like to reconstruct. It turns out that

ξ1,3(7/4) = lim
x→93/112+

ηx(7/4) ,

where 7/4 = s(x̄) in figure 5. Hence we can consider the tangent envelope of the family of lines
{

ηx : x ∈]93/112, 165/196]
}

∪
{

ξ1,t : t ∈ [2, 3]
}

.

With an easy computation we get the convex curve

ϕ2(t) =

(

1

7
t+

1

2

)2

, t ∈ [0, 2] ,

which is another candidate left contact discontinuity in the solution u (see figure 5 again). The
(candidate) forward left characteristics grazing from (t, ϕ2(t)) for t ∈ [0, 7/4] are exactly the
(candidate) backward maximal characteristics from (t, ϕ1(t)) for t ∈ [2, 3] (nesting configura-
tion). Now, observe that

f(v3(165/196+)) − f(v3(165/196))

v3(165/196+) − v3(165/196)
=

11

49
= ϕ′

2(2) .

Hence, we can redefine ϕ2(·) as

ϕ2(t) =















(

1

7
t+

1

2

)2

if t ∈ [0, 2] ,

11

49
t+

33

196
if t > 2 ,
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and it turns out to be a (candidate) left contact discontinuity with left and right states

u2(t) =











14 + 2
√

2(14 − 3t)

21
if 0 ≤ t < 2 ,

6

7
if t ≥ 2 ,

u♯2(t) =











14− 4
√

2(14 − 3t)

21
if 0 ≤ t < 2 ,

2

7
if t ≥ 2 ,

respectively. The lines {ξ1,t}t∈[0,2[ do not intersect each other in the time interval [0, 2[, and
the same happens for the family of lines

ξ2,t(τ) = ϕ2(t) + f ′(u♯2(t))(τ − t) =















(

1

7
t+

1

2

)2

+
8t− 21

49
(τ − t) if t ∈ [0, 2[ ,

33

196
+

16

49
t− 5

49
τ if t ≥ 2 ,

that are the candidate backward maximal characteristics from (t, ϕ2(t), t ∈ [0, 3]. It follows
that we can reconstruct the initial datum u0 which is driven to v3 by means of (4.2) by using
the method of characteristics, and thus obtain

u0(x) =











































1/2 if x ≤ 0 ,

2
√
7 +

√

4 + 3
√
1− 4x

3
√
7

if 0 < x ≤ 1/4 ,

14− 2
√

16 + 3
√
23− 28x

21
if 1/4 < x ≤ 23/28 ,

2/7 if x > 23/28 .

5.2 A recursive procedure

In this section we reformulate the problem of the backward reconstruction of a nesting of
contact discontinuities in terms of a recursive procedure. This different point of view leads to
a very natural necessary condition for attainability and makes clear the relation between the
description of attainable states and an open problem for general scalar conservation laws.

The main idea in the recursive procedure is the following. Let v be a candidate admissible
profile suffering from a jump discontinuity at x = x̄ between the states vL and vR. Moreover,
assume that backward characteristic from a left neighbourhood J of x̄ do intersect, and that
their tangent envelope is a convex curve x = ϕ1(τ), defined in a left neighbourhood of t1 ≤ T ,
with t1 given by (3.5). Call u1,R(t) the state at the right of ϕ1 at time t and let ξ1,t be the
candidates backward characteristics from (t, ϕ1(t)), defined as ξt in (2.5) with ϕ = ϕ1 and
uR(t) = u1,R(t). This implies that using the parametrization (2.8) we have u1,R(t(x)) = v♯(x).

We are interested in the case in which the lines ξ1,t admit a convex tangent envelope
τ 7→ ϕ2(τ), along which any possible backward reconstruction of v experiences a contact
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discontinuity. However, in this different approach we do not try to construct ϕ2 directly.
The idea is to construct on a left closed neighbourhood of ϕ1(t1), J1, a fictious profile w1 at
t = t1 in which the discontinuity at ϕ1(t1) does not appear, and then try to iterate the method.
We proceed in the following way (see figure 6).

τ

x

T
x̄

t1

t2

t

ξ1,t

ξ2,t

η−x̄

w1 = u1,R(t)

w2 = u2,R(t)

w1 = u1,R(t1) = v♯(x̄)

ϕ1

ϕ2

Figure 6: The recursive procedure at Subsection 5.2

1. First step. We define
w1(ξ1,t(x)(t1)) = v♯(x) ,

so that
w1(ξ1,t(t1)) = u1,R(t) .

In such a way, considering w1 as a part of a final profile at time t = t1, the candidate
maximal backward characteristics from (t1, x), x ∈ J1, do coincide with ξ1,t, i.e., if x =
ξ1,t(t1), then

x+ f ′(w1(x))(τ − t1) = ξ1,t(τ) ∀ τ .

2. Second step. By construction, the tangent envelope of the maximal backward character-
istics from (t1, x), x ∈ J1, is exactly x = ϕ2(τ), and hence t2 can be expressed in terms
of w1 as

t2 = t1 −
1

D−
x f ′(w1(x))

∣

∣

x=ϕ1(t1)

.

At time t2 we are now able to construct a candidate final profile w2 defined in a left
neighbourhood J2 of ϕ2(t2) using the same method exploited to construct w1, and hence
considering the lines

ξ2,t(τ) = ϕ2(t) + f ′(u2,R(t))(τ − t) ,
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where u2,R(t) is the state at the right of ϕ2 choose so that, if ϕ′
2(t) = f ′(u2,L(t)), then

u2,R(t) = (u2,L(t))
♯. Then w2 is defined as

w2(ξ2,t(t2)) = u2,R(t) .

3. Now it is clear how we can proceed. Once we reconstruct the convex curve x = ϕn(τ),
that turns out to be a left contact discontinuity with left state un,L(t) and right state
un,R(t) = (un,L(t))

♯, we can define the lines

ξn,t(τ) = ϕn(t) + f ′(un,R(t))(τ − t) ,

and then wn as
wn(ξn,t(tn)) = un,R(t) .

If the lines ξn,t do intersect in ]0, T ], then their tangent envelope is a convex curve x =
ϕn+1(τ) starting at time

tn+1 = tn − 1

D−
x f ′(wn(x))

∣

∣

x=ϕn(tn)

.

Since in a solution u to (1.1a) the maximal backward characteristic starting from a point (T, x̄)
with u(T, x̄+) 6= 0 is a polygonal line with a finite number of nodes [10, Theorem 2.1], see
Figure 7, we can hope to obtain a control uc in (1.1b) only if there exists N ∈ N such that

tN < 0 and ϕ1(t1) +

N
∑

i=1

(

ϕi+1(ti+1)− ϕi(ti)
)

< b . (5.10)

Using the expression for ti, such conditions can be rewritten as

1

Dxf ′(v(x̄))
+

N
∑

n=1

1

D−
x f ′(wn(x))

∣

∣

x=ϕn(tn)

> T (5.11)

and

x̄+
f ′(v(x̄−))

D−
x f ′(v(x̄))

+

N
∑

n=1

f ′
(

wn(ϕn(tn)−)
)

D−
x f ′(wn(x))

∣

∣

x=ϕn(tn)

< b . (5.12)

Notice that the recursive procedure above does not allow for a complete treatment of the
problem. This is related to the fact that, even at the first iteration of the procedure, we are
not able to define the fictious profile w1 on the right of ϕ1(t1), see the proof Lemma 3.3 for an
example in this direction. More in general the recursive procedure appears to be related to the
a non-standard boundary value problem.

Let N the minimum positive integer such that (5.10) (or, similarly, (5.11)-(5.12)) holds.
Call x = γ(τ) the polygonal line defined by (see figure 7, where N = 4)

γ(τ) =















ηx̄(τ) if t1 < τ ≤ T ,

ξn,tn(τ) if tn+1 < τ ≤ tn , n ≤ N − 2 ,

ξN−1,tN−1
(τ) if 0 ≤ τ ≤ tN−1 .
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τ

x
bβ

T
x̄

t1

t2

t3

x = γ(τ)

ξ1,t

ξ2,t

ξ3,t

η−x̄

uγ = u1,R(t1)

uγ = u2,R(t2)

uγ = u3,R(t3)

Figure 7: An open problem

Let β = γ(0), so that condition (5.10) ensures that β < b. Observe that, once such a backward
construction is done, the values that a candidate solution u assume along γ are fixed. Let

uγ(t) =















v(x̄−) if t1 < τ ≤ T ,

un,R(tn) if tn+1 < τ ≤ tn , n ≤ N − 2 ,

uN−1,R(tN−1) if 0 ≤ τ ≤ tN−1 .

We must find conditions on v, γ and uγ such that there exists a control function uc : [β, b] → R

such that the solution u = u(t, x) to































∂tu+ ∂xf(u) = 0

u(0, x) =

{

uc(x) if x ∈ [β, b]

0 if x > b

lim
x→γ(t)+

u(t, x) = uγ(t) ,

t ∈ [0, T ] , x > γ(t) , (5.13)

fulfills u(T, x) = v(x) for any x > x̄. Observe that (5.13) is not a standard hyperbolic boundary
value problem, since we do not prescribe simply a Dirichlet datum along the characteristic
boundary x = γ(τ), but we impose the value of the trace of the solution. It is straightforward
that some kind of compatibility conditions on v, γ and uγ must hold. Indeed, at each node
(tnγ(tn)) of the polygonal line a left contact discontinuity must arise, and hence v has to suffer
from jump discontinuities in the half line ]x̄,+∞[. Moreover, in the limit case β = b, there
can only be only one final profile v defined on ]x̄,+∞[ compatible with uγ , since in such a
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case the solution u to (5.13) turns out to be unique, and can be computed, e.g., by means of a
front-tracking algorithm (e.g., see [11, Section 14.1]).

5.3 A perspective research direction

The solvability of problem (5.13) in the general setting is a challenge well beyond the scope
of this paper. However, starting from the recursive procedure introduced above, it should be
possible to obtain a numerical algorithm testing attainability of profiles associated to simple
cases of nesting.

For any T > 0, we consider the set AT of all profiles verifying the assumptions of Theo-
rem 2 for attainability at t = T . Obviously, if T1 < T2, then AT2

⊂ AT1
. Assume that v is

an attainable profile associated to a nested structure (see figure 6). We start the backward
reconstruction of the profile v, as described in Section 3 up to the fist time at which nesting
occurs, τ1 ∈]0, T [ (t2 in figure 6). Of course, there holds v ∈ AT−τ1 . Assume now that the
nesting structure detected at time τ1 occurs on the right of a left contact discontinuity traveling
along the curve t 7→ ϕ1(t) (see figure 6) and that (this is a crucial hypothesis)

(NH) no nesting occurs in the portion of plane {(t, x) : t ∈ [0, T ], x ≤ ϕ1(t)}.

Then we can use the idea of the recursive procedure to construct a fictitious profile v1 at time
t = T . The profile v1 is defined piecewisely as

1. v1(ξ1,t(x)(T )) = v♯(x), for x ≤ ξ1,t1(T );

2. v1(x) = v♯(x̄) for x ∈]ξ1,t1(T ), x̄].

3. v1(x) = v(x) for all x > x̄;

In such a way, if we apply the procedure of the backward reconstruction of Section 3 starting
from the profile v1, we obtain a solution u which does not contain the left contact discontinuity
x = ϕ1(t), and no nesting occurs at the left of x = ϕ2(t). Such a solution u is defined up
to τ2 < τ1, where a nesting configuration may well appear again. In any case, v1 belongs to
AT−τ2 . w We can iterate this procedure, and, if the analogous of the (NH) hypothesis holds at
each step, we obtain a decreasing sequence of times τk, and a sequence of profiles vk belonging
to AT−τk .

The explicit verification of the set of properties imposed by this construction (basically, one
should check the assumptions of Theorem 2 at each step, plus a condition similar to (NH))
seems extremely expensive in practice. Nonetheless, these assumptions illustrate well the nature
of the backward resolution of the non-convex conservation law (1.1a), where solutions should
be constructed by piecing together patches of backward and forward solutions, as in the proof
of Lemma 3.3. Numerical experiments with this version of the recursive procedure will be
considered elsewhere.
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