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Abstract—In this paper, we propose a combined feature
approach which takes full advantages of local structure
information and the more global one for improving texture
image classification results. In this way, Local Binary
Pattern is used for extracting local features, whilst the
Scattering Transform feature plays the role of a global
descriptor. Intensive experiments conducted on many texture
benchmarks such as ALOT, CUReT, KTH-TIPS2-a, KTH-
TIPS2b, and OUTEX show that the combined method
outweigh each one which stands alone in term of classification
accuracy. Also, our method outperforms many others, whilst
it is comparable to state of the art on the experimented
datasets.

1. Introduction
Texture is the fundamental appearance element of ma-

terials or objects which has attracted a great attention of
researchers in computer vision. This is due to the fact that
texture classification is an important problem in computer
vision and image processing, playing a significant role in
many applications such as medical image analysis, object
recognition, content-based image retrieval.

Texture images can be discriminated based on filter
banks through the statistical distributions of their responses
or within small scale neighborhoods using the pixel inten-
sities. While the former attracts a more global structure
information of images, the latter demonstrates that a good
discrimination is able to be achieved through exploiting the
distributions of pixel neighborhoods.

Local Binary Pattern (LBP) [1] has drawn considerable
attention since its proposal, and has already been used
in many other applications, such as image retrieval, face
image analysis [2], and so on. However, the conventional
version has some limitations, such as small spatial support
region, loss of global textural information, also sensitive
to noise. Many LBP variants was proposed to overcome
those, Completed LBP (CLBP) [3] is one of them. Even
though, these variants struggle to get high performance on
image dataset with variant in scale, translation, and defor-
mation. On the other hand, Scattering transform introduced

in Scattering NetWork (ScatNet) by Mallat et al. [4], which
applies wavelet transform in a deep convolution network,
copes well with those characteristics of data. However these
scattering transform features do not capture well the small
local structure information.

In this paper, we propose to make use the strength of
both LBP and Scattering transform in a ”Hybrid” descriptor
for texture classification, CLPB [3] is used instead of the
original version because of its higher performance.

The rest of paper is organized as follows. Section 2 is the
proposed approach. Section 3 presents experimental results,
and conclusions are given in Section 4.

2. Related Work

In this section, LBP, CLBP, scattering transform, and
PCA classifier are reviewed.

2.1. Brief view of the LBP and CLBP

The LBP method, first proposed by Ojala et al. [1],
which encodes the pixel-wise information in textured im-
ages. LBP encoding is:

LBPP,R =

P−1∑
p=0

s(gp − gc)2p, s(x) =

{
1, x ≥ 0
0, x < 0

(1)

Where gc represents the grey value of the center pixel
whereas gp (p = 0, ..., P − 1) denotes the grey value of
the neighbor pixel on a circle of radius R, and P is the
total number of the neighbors. A given texture image is
then represented by histogram of LBP codes. Ojala et al.
introduced rotation invariant complement called uniform
patterns LBP riu2 which have less than two ”one-to-zero
or vice versa” transitions.

Guo et al. [3] suggested a variant called CLBP by which
the image local differences are decomposed into two com-
plementary components, the signs (sp) and the magnitudes
(mp):

sp = s(gp − gc), mp = |gp − gc| (2)



where gp, gc and s(x) are defined as in (1). Two opera-
tors called CLBP-Sign (CLBP S) and CLBP-Magnitude
(CLBP M ), respectively, are proposed to encode them,
where the CLBP S is equivalent to the conventional LBP,
and the CLBP M measures the local variance of magni-
tude. The CLBP M is defined as follows:

CLBP MP,R =

P−1∑
p=1

t(mp, c)2
p, t(x, c) =

{
1, x ≥ c
0, x < c

where threshold c is the mean value of mp of the whole
image. CLBP-Center (CLBP C) operator extracts the local
central information as CLBP CP,R = t(gc, cI) where
threshold cI is set as the average grey level of the whole
image. Over all descriptor gained by combining the three
operators CLBP S, CLBP M and CLBP C.

2.2. Review of Scattering Transform

Scattering transform was introduced by Mallat in [5]
as a Scattering Network (ScatNet). It is implemented by a
deep convolution network, in which wavelet transformation
followed by modulus non-linearities operators are consec-
utively computed. A Scattering presentation of a texture
image which preserves enough information so that the in-
variance to rotation, translation, deformation, and shear can
be obtained with linear projection at the classifying level
using PCA classifier as stated in [6].

Figure 1. Scattering representation is computed by a cascade of wavelet-
modulus operators W̃m. Every W̃m has one input and two outputs which
are the invariant scattering coefficients Smx and the next layer of covari-
ant wavelet modulus coefficients Um+1x. The latter is used for further
transformations.

An input image x (Figure 1) is used to calculate S0x and
U1x, which in turn form the first wavelet modulus operator
W̃1,

with W̃1(x) = (S0(x), U1(x))

where S0x(u) = x?φj(u) =
∑
v

x(v)φj(u− v)

and U1(x) = x?ψj,θ(x)

φj(u) = 2−2jφ(2−ju) is a Gaussian low pass filter.
This leads to the averaged image S0x is almost invariant
to rotations and translations up to 2j pixels, while it loses
the high frequencies of x. These will be gotten back by
the convolution with high pass wavelet filters. Then the
wavelet ψ is rotated by θ angles and dilated by 2j in order
to obtain rotation covariant coefficients.

Where S(x) is called scattering coefficient of the net-
work, U(x) is the wavelet coefficient, and ? is a convolution
operator. Finally, the scattering features vector of an image
are obtained by concatenating scattering coefficients of all
network layers S(x) = (S0(x), S1(x), S2(x)).

Sifre et al. showed in [4] that maximum number layers
of the network is 3, if this number exceeds 3 then the energy
will decay, and so no more useful signal for discrimination.

2.3. PCA Classifier

A generative classifier called Principal Component Anal-
ysis (PCA) [6] was proved to have decent performance for
ScatNet in case of small training dataset. PCA Classifier is
described as following.

Given a test image X , S̃X denotes the scattering trans-
from of X and its dilated version DjX .

S̃X =

 ∑
0≤j<H

1

−1 ∑
0≤j<H

S̃DjX. (3)

The representation of S̃X used at test time is therefore
a scattering transform.

Let PUc S̃X denotes the orthogonal projection of S̃X
in the scattering space Uc of a given class c. The principal
components space Uc is approximately computed from the
singular value decomposition (SVD) of the matrix of cen-
tered training sample S̃DjXc,i−µc with all possible samples
i dilated by 2j for a given class c. The PCA classification
computes the class ĉ(X) base on the minimum distance∥∥∥(Id− PVc)(S̃X − µc)

∥∥∥ from S̃X to the space µc + Uc,
(Figure 2)

ĉ(X) = argmin
c

∥∥∥(Id− PUc)(S̃X − µc)
∥∥∥2 (4)

where µc is the average of scattering transform S̃Xc,i

for all training samples Xc,i of class c.

µc =

 ∑
0≤j<H

1

−1 ∑
0≤j<H

S̃DjXc,i (5)

Figure 2. PCA-classifier classifies a test image X based on the minimum
distance from scattering transform S̃X to subspace µc + Uc.

The value H quantifies the ranges of scale invariance,
e.g for a training set with dilated versions of each Xc,i by
different scaling factors 2j for 0 ≤ j < H . H is the range



of scale invariance, limited by the size images. Typically,
H = 2 and sample j at half integer which leads to 4 scaling
factors {1,

√
2, 2, 2

√
2}, and the dilated samples Dc,i(u) =

Xc,i(2
ju).

3. Proposed Method

LBP proposed by Ojala et al. [1] and its variants such
as CLBP [3], scLBP [7], BF+CLBP [8], and MRELBP [9]
have the high performance on datasets such as OUTEX
[10] because they capture well the small local structure
information of the image data. On the other hand, scattering
transform method [4], [5], [6] extracts a wider range of
signals for its features. According to the observation of
those, we intuitively think that if there is a descriptor which
employs both small local and global structure information
it would make texture classification have promising results.

It can be vividly seen that LBP family are vulnerable
to image scale because of the fixed radius from which the
neighborhood chosen for thresholding. A measure to this
is that we make use of a multi-scale LBP to extract local
structure cues from texture images, and the wide range
complementary signals from Scatnet. Regarding to the weak
point of scattering transform, a lack of small local structure
information is compensated by LBP features, so we keep it
intact. Overall idea is broadly illustrated in Figure 3.

Given an input image x, then y1 = CLBP S(x), y2 =
CLBP M(x), y3 = CLBP C(x) are sequentially various
types of CLBP features extracted from the image.

Let f1 = h(y1, y2, y3) denotes the 3D joint histogram
(CLBPS/M/C) as proposed in [3], and f2 = g(Sx) is a
concatenation of scattering coefficients then f = c(f1, f2)
is the concatenating operator which forms the descriptor
of our proposal. This will be not only tolerant to scaling
but also preserve enough small local structure signals for
discrimination. It should be noticed that we focus mainly
upon building a descriptor based on scattering transform
rather than techniques of Scatnet [4] such as multi-scale
average, and multi-scale training to augment classification
results.

input
x →

{
SCatNet
CLBP

}
→ PCA Classifier

Figure 3. ScatNet, CLBP Combination

4. Experimental Validation

4.1. Experimental Settings

We test the effectiveness of our method by doing experi-
ments on eight texture databases: ALOT [11], CUReT [12],
KTHTIPS2-a&b [13], and Outex [10].

ALOT dataset consists of 250 classes with variety of
viewing angles, illumination, and color. Each material has
100 samples. There are different versions of ALOT, they
are full/half resolution, color, etc. We choose the Grey

value version with the resolution of 384 by 256 to test our
descriptor.

While CUReT database contains 61 texture classes, 205
images per class, acquired at different viewpoints, illumi-
nation, and orientations. There are 118 images shot from a
viewing angle of less than 60 degrees. We choose a subset 92
images from 118 for each class with totally 61×92 = 5612
images are selected. According to this approach a suffi-
ciently large region could be cropped (200×200) across all
texture classes. All cropped regions are converted to grey
scale.

The material databases KTHTIPS2a,KTHTIPS2b [13],
with 3 viewing angles, 4 illuminants, and 9 different scales,
producing 432 images per class with totally 11 classes.

Outex database contains textural images which are cap-
tured from a wide variety of real material surfaces. We con-
sider the two commonly used test suites, Outex TC 00010
(TC10) and Outex TC 00012 (TC12), containing 24 classes
with up to 200 texture images per class. This database is
built by taking images under three different illuminations
(”horizon”, ”inca”, and ”t184”).

The last database we use for testing our proposal is
UIUC [14] which contains 25 classes with 40 samples
per class. We follow the standard classification protocol
of UIUC. The mean classification accuracy and standard
deviation over 10 random splits between training and testing
with 20 samples per class chosen for training.

PCA classifier [6] is used in our experimentation. For
CLBP, parameters chosen as following, the number of neigh-
bors (P=8), and Radius (r=1,2,3) for three different scales.
Whereas, arguments of ScatNet for scattering transform are
selected such that number of scales in filter banks (J=4 or 5
depend on the resolution of images in datasets), Orientations
of filter bank (L=8), number of ScatNet Layers (M=3).

4.2. Classification Results

Intensive experiments were conducted on eight texture
datasets, the results are compared with state-of-the-art of
those, we chose the highest results reported by CLBP [3],BF
+ CLBP [8],scLBP [7], and MRELBP [9] for the com-
parison. Table 1 shows that our proposal has the accuracy
which is comparable to some, while the novel descriptor
is consistently better than the ones it inherits from, CLBP
and Scattering transform coefficient, on the experimented
data sets. It should be noticed that we do not use multi-
scale ScatNet because our focus in this paper is the com-
plementation of CLBP and ScatNet. So it is not surprising
when multi-scale CLBP has a better classification rate than
ScatNet in some cases even in a multi-scale dataset such as
UIUC.

For the experiments on ALOT and CUReT database, we
follow the training and testing scheme used in [8], [9], a half
of class samples chosen for training while the remaining for
testing. Splits are implemented 10 times independently, the
average accuracy over 10 randomly partitions are selected.
The correct classified rate of our method reaches State-of-
the-art on these two data sets, the proportion are above



TABLE 1. CLASSIFICATION ACCURACY(%) ON CURET, OUTEX, KTH-TIPS2A,KTH-TIPS2B,ALOT, AND COMPARING WITH STATE OF THE ART
RESULTS

CLBP ScatNet C-ScatNet(ours) scLBP [7] BF+CLBP/CLBC [8] MRELBP [9]
ALOT 97.13 ± 0.18 98.11 ± 0.32 99.57 ± 0.17 - - 99.08
CUReT 99.51 ± 0.18 97.76 ± 0.57 99.74 ± 0.17 99.33 97.65 99.02
OUTEX TC10 99.32 98.39 99.51 - 99.40 99.87
OUTEX TC12 ”t” 96.04 96.44 98.66 97.73 95.37 99.49
OUTEX TC12 ”h” 97.25 97.45 98.94 98.56 94.72 99.75
KTH-TIPS2a 89.39±1.74 89.52±1.74 92.33±1.28 78.53 - -
KTH-TIPS2b 63.3±1.3 65.08±1.20 69.03±1.41 - - 77.91
UIUC 96.02 ± 1.25 93.84 ± 1.48 97.50 ± 0.73 98.45 - -

99% which gains a competitive advantage over the results
reported in [7], [8], [9].

Regarding to KTHTIPS2a and KTHTIPS2b databases,
standard classification protocols [13] is applied, only unseen
data is used for test. With KTHTIPS2a, three out of four
samples are used for training, the remaining is used for test-
ing. The results are reported as the mean over four test runs.
Our method has an improvement up to 9% comparing to the
original descriptors, see Table 1. Whereas, on KTHTIPS2b
data set, one sample per class is used for training and
the remaining three unseen samples are used for testing.
As can be seen from Table 1, our method outperforms
CLBP, scattering transform descriptor up to 8%. Our testing
protocol on this dataset is different from the one in [9],
which three samples per class are used for training, and one
for testing. This can lead to a different result.

In case of Outex database, experiment conducted on 2
test suites, Outex TC10 and Outex TC12. In more detail,
for Outex TC10 training is data with illuminants (inca) and
rotation (0◦) while testing is on the same illuminants and
rotation at { 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦ }. Similar
protocol is applied for Outex TC12 but with different rota-
tion angles. We first show how far our method can improve
comparing with CLBP and ScatNet standing alone. For
TC10 (Table 1), there is a slight improvement in comparison
with the original versions at 99.51% (recent state-of-the-art
reported in [9] is 99.87%). Higher improvement gained in
Outex TC12 at 98.94% accuracy.

Finally, we get around 4% classification enhance on
UIUC (from 93.84% to 97.50% when using LBP-Scatering
Transform combined descriptor).

5. Conclusion

In this paper, we have proposed a method to compen-
sate the local structure information for ScatNet, namely
Complementary Scattering Network (C-ScatNet). This novel
descriptor exploits the integration of local structure infor-
mation of LBP features and the global ones extracted by
ScatNet in order to enhance distinctiveness of texture while
preserving the robustness to variations in illumination, ro-
tation, and noise. Our experiments show that the C-ScatNet
achieves high competitive results on eight different available
datasets. Overall, Scatnet and LBP are not concurrent, but
complementary. Future study can be drawn on the same

domain with scale variation tolerance by using multi-scale
average and training technique.
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