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Dynamical spectral unmixing of multitemporal
hyperspectral images

Simon Henrot, Jocelyn Chanussot, Fellow, IEEE, and Christian Jutten, Fellow, IEEE

Abstract—In this paper, we consider the problem of unmixing
a time series of hyperspectral images. We propose a dynamical
model based on linear mixing processes at each time instant.
The spectral signatures and fractional abundances of the pure
materials in the scene are seen as latent variables, and assumed
to follow a general dynamical structure. Based on a simplified
version of this model, we derive an efficient spectral unmixing
algorithm to estimate the latent variables by performing alternat-
ing minimizations. The performance of the proposed approach is
demonstrated on synthetic and real multitemporal hyperspectral
images.

Index Terms—Hyperspectral imaging, Remote sensing, Source
separation, Tensor decomposition

I. INTRODUCTION

Hyperspectral imaging consists in acquiring a set of images
capturing a spatial scene at a few hundreds of wavelengths
across the visible and near-infrared regions of the electromag-
netic spectrum. The resulting data cube may equivalently be
viewed as a set of two-dimensional (2D) gray-scale images,
each corresponding to a particular spectral band, or as a
collection of spectra, one per pixel of the image. In most
cases, the image comprises a small number of pure materials,
termed endmembers or sources, whose spectral signatures are
mixed in each pixel. Spectral unmixing (SU) refers to the
process of extracting the endmembers and estimating their
corresponding mixing coefficients, or abundances, for each
pixel in the image [1], [2].

In the linear mixing model (LMM), a given pixel spectrum
xn in the image x can be expressed as a linear combination
of the pure spectra {s1, . . . , sP }, weighted by abundance
coefficients an representing the contribution of each source
to xn:

xn = San

where each column of matrix S is a source spectrum, and n
denotes the pixel index. In some cases, the mixing process
is instead known to be nonlinear [3]. When incident light
interacts with several endmembers before reaching the sensor
(e.g. in multilayered configurations), the mixing process can
be approximated as bilinear. When the mixing process occurs
at a microscopic scale, the model exhibits a different type
of nonlinearity [4]. In recent years, a number of papers have
turned to a ’data-driven’ approach to represent hyperspectral
images in a high-dimensional manifold [5], [6], which has
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the advantage of being robust over a wide range of mixing
scenarios. The extent of nonlinear effects varies from a hy-
perspectral image to another, ranging from only a few pixels
to the whole spatial scene. However, nonlinear SU methods
typically exhibit a much higher computational complexity than
their linear counterparts. Given the high dimensionality of
hyperspectral data, the LMM remains widely used as the basis
of many SU algorithms.

In many applications, sensors acquire the data at multiple
time frames, yielding so-called multitemporal hyperspectral
images. Multitemporal imaging allows to capture the dynamics
of the underlying processes in the scene. The price to pay
for this additional diversity is an even greater computational
load, which gives an additional incentive to model the mixing
process as linear for each time frame of the data. However,
independently performing linear SU on each time frame is
not sufficient. A first problem of this approach is the standard
permutation problem which arises in blind source separation:
the index of each extracted endmember changes from a time
frame to another. More importantly, unmixing each time frame
in a separate manner fails to exploit the temporal information
in the data, and thus does not reach the true potential of
multitemporal image processing.

Multitemporal hyperspectral imaging has garnered increas-
ing interest in recent years, mainly focused on classification
problems [7], [8]. For instance, working in a manifold-learning
based framework allows to jointly process two time frames
of the data by aligning the manifolds obtained at each time
frame [9], [10], enabling the use of labels from a time frame
to be transferred to another [11], [12]. Unfortunately, the
resulting computational complexity can be a significant hurdle
when processing many time frames.

Dedicated methods in the field of multitemporal spectral
unmixing have only begun to emerge [13]. In this paper,
we aim at providing a framework for modeling and effi-
cient unmixing of a time series of hyperspectral images.
Specifically, the main contribution of this paper is a model
for multitemporal hyperspectral images, based on the LMM
to retain the low complexity of linear SU methods. The
temporal information in the data is accounted for by making
assumptions on the dynamics of the underlying source spectra
and abundance maps, seen as latent variables. Based on this
model, we also propose an efficient SU algorithm which jointly
processes all time frames in the image, and recovers source
spectra and abundance maps fitting the proposed model. We
demonstrate the performance of the proposed approach on real
multitemporal hyperspectral images.

The remainder of the paper is organized as follows. In sec-
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tion II, we introduce and discuss our model for mutlitemporal
hyperspectral images. We derive a joint spectral unmixing
algorithm in section III. The performances of the proposed
approach are evaluated on synthetic and real multitemporal
hyperspectral images in section IV. Finally, we conclude in
section V.

II. PROPOSED MODEL FOR MULTITEMPORAL

HYPERSPECTRAL IMAGES

Let X = {Xk, k ∈ [[1,K]]} denote a time sequence of
K hyperspectral images, where k is the discrete time index.
Each image Xk is encoded in a L×N matrix where L and N
respectively (resp.) denote the number of wavelengths (chan-
nels) and the number of pixels in the image. In the following,
xn
k denotes the n-th column of Xk, i.e. the observed spectrum

of the n-th pixel of image k, and similar notations are used
for other matrices. Equations involving indices k, n, l, p will
resp. hold for k ∈ [[1,K]], n ∈ [[1, N ]], l ∈ [[1, L]], p ∈ [[1, P ]]
unless stated otherwise.

At each time k, we suppose that the standard linear mixing
model holds, i.e. each pixel spectrum is obtained as a linear
combination of P pure spectra or sources [2]:

Xk = SkAk +Ek (1)

where L× P matrix Sk gathers the spectral signatures of the
P sources, and P × N abundance matrix Ak contains the
mixing coefficients. Matrix Ek is an additive noise term which
accounts for both measurements and model errors. The entries
in S = {Sk} and A = {Ak} are known to be positive. The
number of sources P is assumed to be known, e.g. using one
of the methods presented in [14]–[16]. Since these methods are
designed to be applied imagewise, their application will result
in a vector of K values of P . The number of sources will be
fixed as the maximum value of this vector. We will see later
that the proposed model contains a parameter which allows
to deal with the appearance or disappearance of a particular
endmember.

The set of sources S and their corresponding abundance
coefficients A may readily be obtained in a separate manner,
that is, by running standard spectral unmixing algorithms at
each time k. However, this approach may be viewed as flawed
because it does not account for the dynamics of sources and
abundance coefficients. Indeed, while the spectral signatures
of sources extracted from the same spatial scenes at different
times may not be strictly identical, we can expect them to
bear some resemblance to each other. This similarity can be
captured by modeling the dynamic spectral variability of the
sources. Likewise, the abundance maps of sources extracted
at neighboring time frames should be highly similar in most
cases. In mathematical terms, we propose the following dy-
namic system: 


Xk = SkAk +Ek

Sk = fS(Sk−1) +Vk

Ak = fA(Ak−1) +Dk

(2)

where functions fS and fA and noise terms E, V and D
must be tailored to the problem at hand. Since assumptions

are only made on the dynamics of the sources and abundance
maps, rather than on the data themselves, our approach may
be thought of as ’data-driven’.

We now propose a simplified version of (2) that is both
general enough to encompass a wide range of situations
and imaging scenarios, and tractable to accommodate the
very large number of variables involved in multitemporal
hyperspectral imaging.

The spectral shape of various instances of a source spectral
signature is known to be mainly invariant [17]. Based on this
rationale, [18] models the spectral variability of sources in
the spatial dimension (from one pixel to another) by a scale
change and an additive noise term. We propose here to use a
similar model to characterize the spectral variability of sources
in the temporal dimension:

spk = ψp
ks

p
0 + vp

k (3)

where ψp
k is a (scalar) nonnegative scale factor, sp0 is the

reference spectral signature for the p-th source and vp
k is

a zero-mean additive noise term accounting for a nonlinear
distortion. For each source, any of the following methods can
be employed to obtain sp0:

• selection in a dictionary when ground truth is available,
or when the pure components in the image are known
beforehand. Pruning methods may be applied to select
the atoms of the dictionary [13];

• polynomial regression from a bundle of extracted spectra,
if one wishes to compute average reference spectra;

• or simply setting the reference spectrum to the one
extracted independently from the first image, i.e. sp

0 = sp1.
We make the important assumption that all images in the

temporal sequence have been either acquired with a fixed
sensor or coregistered beforehand, e.g. using methods based
on cross-correlation [19]. Since each image is acquired over
the same spatial scene, we assume that the abundance maps
are given by

ank = ank−1 + dn
k (4)

where the noise term dn
k models a potential change in the

spatial distribution (e.g. the replacement of a crop by another in
agricultural remote sensing, or the displacement of a molecule
within the medium in biological spectroscopy). Each entry
dn
k is non-zero only if the abundance on the corresponding

endmember changes in the pixel; hence, we assume that Dk

is sparse, and consequently D too (see [20] for a similar
assumption in the spatial dimension of the image).

Here, we choose not to enforce the common sum-to-one
constraint on the abundances in order to preserve the flexibility
of the algorithm, and expand the space to find an optimal
solution. This is especially important when the endmembers
can be impacted by a strong spectral variability. This gives
also more flexibility regarding the estimation of the number
of endmembers, if this number happens to be underestimated.
Eventually, this has also an algorithmic positive side-effect,
as simultaneously managing both the sum-to-one constraint
on the columns of matrices Ak and the sparse structure of
the differences matrices Dk is a challenging issue. Indeed,
consider the case where the abundance of an endmember
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changes in a pixel: an
k−1 �= ank . Applying the sum-to-one

constraint on the n-th column of Ak forces the entire n-th
column of Dk to be non-zero. Considering the more general
model without the sum-to-one constraint thus allows to bypass
that issue.

Gathering (1), (3) and (4) in matrix from, we obtain the
simplified dynamic system


Xk = SkAk +Ek

Sk = S0ψk +Vk

Ak = Ak−1 +Dk

(5)

where ψk is a diagonal matrix with the main diagonal
gathering the values (ψ1

k, . . . , ψ
P
k ).

In the next three subsections, we briefly consider the pro-
posed model from different perspectives, in terms of potential
links with the tensor decompositions and the standard state-
space models. We then discuss the applicability of the approx-
imation (5) to various real life datasets, in terms of acceptable
limits on spectral invariability.

A. Similarity to tensor decompositions

Since X is a tensor, model (5) can be viewed as a tensor
decomposition. Specifically, if one cancels the additive noise
term in (3), equations (5) and (3) combine to write

Xk = S0ψkAk +Ek (6)

which is known as the nonnegative tensor factorization 1
(NTF1) under nonnegativity constraints on S0 and A [21].
Here, spectral variability is only accounted for by a varying
scale factor at each time frame. Model (5) thus corresponds to
a modified version of NTF1, which relaxes the factorization
structure and imposes additional constraints on the dynamics
on the abundance maps given by (4).

B. Similarity to state-space models

Another interpretation of model (5) lies in the framework of
state-space representations. Here, observations X are viewed
as the output of a discrete time system with unknown internal
states {S,A,ψ}. In control theory terms, the first equation of
(5) would be referred to as the measurement model, and the
second and third equations rewrite as process models:{

Sk = Sk−1ψ̂k + V̂k

Ak = Ak−1 +Dk

using straightforward recursive computations. Because the
measurements X and the update of S are both bilinear
functions of the state variables, standard Kalman filtering
does not apply to the model. However, we will similarly aim
at recovering the unknown variables {S,A,ψ} based on the
whole time series of images, rather than by considering single
images [22].

C. Validity of the simplified dynamic system

A key assumption of the simplified model (5) is that
endmembers have mainly invariant spectral shape. This is

a strong assumption, which works well e.g. when the data
sequence is acquired with a high temporal resolution, as
demonstrated in Section IV-B on images capturing the release
of a gas plume. Other typical applications with high temporal
resolution include sequences of multispectral images acquired
in fluorescence microscopy / spectroscopy. In other practical
applications such as seasonally varying vegetation over the
course of weeks or months, the proposed model may not
be valid and adjustments must be made to fit the underlying
physical models. When crops are replaced with bare soil, for
instance, one simple adjustment may consist in introducing
an additional endmember in the model. If information on
the seasonal Sk’s is available via physical priors, the second
equation of the model can be modified in a straightforward
manner to allow variations around the nominal values instead
of using a fixed matrix S0. Additionally, other priors may be
assumed on the difference matrices D depending on the spatial
layout of the crops.

As for spectral variations due to variable illumination and
environmental, atmospheric and temporal conditions, more
complex changes may be needed. In [23], the authors char-
acterize methods accounting for spectral variability by either
treating endmembers as sets or bundles of spectra, or as sta-
tistical distributions. If spectral variations of the endmembers
belong to a known spectral library encoded in matrix S 0,
one could extract the relevant spectral signatures at different
time frames using a variation of the MESMA algorithm [24].
Another approach, belonging to the second class of methods,
would consist in modeling each pixel as a linear combination
of random endmembers following a Gaussian distribution as
in [25]. Since deriving closed-from minimizers is difficult in
this context, the optimization procedure would then require
using a Markov Chain Monte Carlo approach which generates
samples asymptotically distributed according to the joint pos-
terior distribution of the unknown parameters. In both cases,
one of the biggest challenges would consist in implementing
efficient algorithms to deal with the high dimensionality of
multitemporal hyperspectral images. We will see in the follow-
ing section how it can be done in the context of the simplified
model (5).

III. JOINT SPECTRAL UNMIXING

We propose to estimate the unknown variables as a mini-
mizer of the following objective function:

J (S,A,ψ|X) =
1

2

K∑
k=1

‖Xk − SkAk‖2F

+
λS
2

K∑
k=1

‖Sk − S0ψk‖2F + λA

K∑
k=2

‖Ak −Ak−1‖�1 (7)

where ‖.‖F and ‖.‖�1 resp. denote the Frobenius and �1
norm, and the notation J (S,A,ψ|X) states that the objective
function is minimized w.r.t. the unknown variables {S,A,ψ}
given the observations X. λS and λA are scalar regularization
hyperparameters which control the weight of the different
terms in (7). The first term in (7) measures the fitness of the
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data to the model, and the second and third term allow to
enforce the prior information of (5).

Before detailing our optimization strategy, we propose a
way to set hyperparameters λS and λA in criterion (7) from
a probabilistic standpoint.

A. Hyperparameter tuning

In a Bayesian framework, criterion (7) may be viewed as
the maximum a posteriori (MAP) estimator of the unknown
variables {S,A,ψ} given the observations X. Hence, by
making the following assumptions

1) all entries of tensor E are i.i.d. centered Gaussian
random variables of variance σ2

e ;
2) all entries of tensor V are i.i.d. centered Gaussian

random variables of variance σ2
v;

3) all entries of tensor W are i.i.d. centered Laplacian
random variables of scale b,

standard computations yield the following values:{
λS = σ2

e/σ
2
v

λA = σ2
e/b.

(8)

Equation (8) allows to set parameters λS and λA providing
σe, σv and b are known or can be estimated from the data
set at hand. When this is not the case, λS and λA can be
estimated using the approach recently proposed in [26], or by
a sub-optimal strategy of trial and error.

In the next section, we detail an optimization procedure to
minimize this criterion.

B. Optimization

Since the number of variables involved is very large, we
propose to minimize (7) using an projected alternated least
squares strategy or alternating nonnegative least squares
(ANLS) [27] similarly to the approach of [28]. The method
consists in alternatively solving the following problems


minS J (S,A,ψ;λA, λS) s.t. S � 0
minA J (S,A,ψ;λA, λS) s.t. A � 0
minψ J (S,A,ψ;λA, λS)

(9)

until some stopping criterion is satisfied. We now detail the
resolution of each subproblem.

1) Minimization w.r.t. S: We use the Alternated Direction
Method of Multipliers (ADMM) [29] to tackle the nonneg-
ativity constraints, in which the minimization of (7) w.r.t.
{Sk, k = 1, . . . ,K} is rewritten using a set M of auxiliary
matrices {Mk, k = 1, . . . ,K} of size L× P :

min
S,M

K∑
k=1

1

2

(
‖Xk − SkAk‖2F +

λS
2

K∑
k=1

‖Sk − S0ψk‖2F

+ I(R+)L×P (Mk)

)

s.t. Sk −Mk = 0, k ∈ {1, . . . ,K} (10)

where I(R+)L×P denotes the indicator function of the positive
orthant of RL×P . The augmented Lagrangian of the problem

is given by

Lρ =

K∑
k=1

1

2

(
‖Xk − SkAk‖2F +

λS
2

K∑
k=1

‖Sk − S0ψk‖2F

+ I(R+)L×P (Mk) +
ρ

2
‖Sk −Mk +Uk‖22 −

ρ

2
‖Uk‖2F

)

(11)

where ρ is called the barrier parameter and U = {Uk, k =
1 . . .K} are the so-called normalized Lagrange multipliers,
which are scaled by a factor of ρ so that the augmented
Lagrangian only incorporates quadratic terms. The procedure
then consists in alternatively minimizing Lρ w.r.t. S and M
and updating the normalized Lagrange multipliers U (dual
update), until the stopping criteria based on the primal and
dual residuals are satisfied [29]. The minimization w.r.t. S is
performed by canceling the gradients of Lρ, while the mini-
mization w.r.t. M uses the frameworks of proximal operators 1

and the dual update consists in maximizing the dual problem
w.r.t. U:



Sk ← (XkA
T
k + λSS0ψk + ρ(Mk −Uk))

(AkA
T
k + (λS + ρ)IP )

−1

Mk ← Π(R+)L×P (Sk +Uk)
UK ← Uk + Sk −Mk

(12)

where IP is the P ×P identity matrix and the projector onto
(R+)L×P , denoted by Π(R+)L×P , is the proximal operator of
I(R+)L×P . Note that all updates have a closed-form expression
and the computational complexity is dominated by cheap
inversions of P × P matrices.

2) Minimization w.r.t. A: Likewise, the �1 penalty term
suggests the use of the ADMM. We introduce two sets of
auxiliary matrices: {Qk, k = 1, . . . ,K} of size P × N and
{Dk, k = 2, . . . ,K} of size P × N and rewrite the problem
as

min
A,D,Q

K∑
k=1

1

2

(
‖Xk − SkAk‖2F + I(R+)P×N (Qk)

)

+ λA

K∑
k=2

‖Dk‖�1

s.t. Ak −Ak−1 −Dk = 0, k ∈ {2, . . . ,K}
s.t. Ak −Qk = 0, k ∈ {1, . . . ,K}. (13)

The augmented Lagrangian of the problem is

Lρ =

K∑
k=1

1

2

(
‖Xk − SkAk‖2F + I(R+)P×N (Qk)

+
ρ

2
‖Ak −Qk +Wk‖22 −

ρ

2
‖Wk‖2F

)

+

K∑
k=2

(
λA‖Dk‖�1 +

ρ

2
‖Ak −Ak−1 −Dk + Zk‖22 −

ρ

2
‖Zk‖2F

)

(14)

1The proximal operator of a function h with penalty ρ is defined as

proxh,ρ(t)
∆
= arg min

z
{h(z) + (ρ/2)(z − t)2}.



IEEE TRANSACTIONS ON IMAGE PROCESSING 5

where W and Z are the normalized Lagrange multipliers
associated to both sets of constraints. The procedure is similar
to the one exposed in the previous section and yields the
following updates w.r.t. A:


A1 ← (St
1S1 + 2ρIP )

−1

(St
1X1 + ρ(A2 −D2 + Z2 +Q1 −W1))

Ak ← (St
kSk + 3ρIP )

−1

(St
kXk + ρ(Ak+1 +Ak−1 −Dk+1 +Dk

+Zk+1 − Zk +Qk −Wk), k ∈ {2 . . .K − 1}
AK ← (St

KSK + 2ρIP )
−1

(St
KXK + ρ(AK−1 +DK − ZK +QK −WK).

(15)

Recalling that the proximal operator of the absolute value is
the soft-thresholding operator, the updates w.r.t. D and Q are:


Qk ← Π(R+)P×N (Ak +Wk), k ∈ {1, . . . ,K}
Dk ← max(Ak −Ak−1 +Uk − λA/ρ, 0)

−max(−Ak +Ak−1 −Uk − λA/ρ, 0), k ∈ {2, . . . ,K}.
(16)

Finally, the dual updates are given by{
Wk ←Wk +Ak −Qk, k ∈ {1, . . . ,K}
Zk ← Zk +Ak −Ak−1 −Dk, k ∈ {2, . . . ,K}.

(17)

Again, the computational complexity of all involved operations
is very low.

3) Minimization w.r.t. ψ: Since ψk is a diagonal matrix, we
only need to update the diagonal coefficients. The gradient of
criterion (7) w.r.t. coefficient ψp

k is given by

∂J
∂ψp

k

= (sp0)
′sp0ψ

p
k − (sp0)

′spk (18)

hence, the update rule is

ψp
k ←

(sp0)
′spk

(sp0)
′sp0

. (19)

Note that this update guarantees the nonnegativity of coeffi-
cients {ψk, k = 1, . . . ,K}. It is worth noting at this point
that the algorithm only iterates closed-form updates for all
variables of interest. The method is summarized in the next
section.

C. Algorithm outline

Initialization of the unknown matrices {Sk,Ak, k =
1, . . . ,K} can easily be carried out in a separate fashion, e.g.
using Vertex Component Analysis (VCA) [30] or Minimum
Volume Simplex Analysis (MVSA) [31], and Fully Constrained
Least Squares (FCLS) [32]. The algorithm structure is dis-
played in table I.

Data: {Xk, k = 1, . . . ,K}
Result: {Sk,Ak,ψk, k = 1, . . . ,K}
Set λA, λS , εS , εA, Sinit, Ainit, ψinit;

repeat
repeat

Compute Snew, Mnew and Unew using
(12);

until ADMM stopping criterion is
satisfied;
repeat

Compute Anew using (15);
Compute Dnew and Qnew using (16);
Compute Wnew and Znewusing (17);

until ADMM stopping criterion is
satisfied;
Compute ψnew using (19);

until ALS stopping criterion is satisfied;
Algorithm 1: Joint spectral unmixing of multi-
temporal images

TABLE I
PROPOSED METHOD FOR JOINTLY UNMIXING HYPERSPECTRAL

MULTITEMPORAL IMAGES.

D. Remarks on the convergence of the method

We propose the following stopping criteria:∑K
k=1 ‖Anew

k −Ak‖2F∑K
k=1 ‖Ak‖2F

< εA (20)

∑K
k=1 ‖Snew

k − Sk‖2F∑K
k=1 ‖Sk‖2F

< εS , (21)

i.e. the optimization stops when the residuals on S and A are
sufficiently small.

The optimization problem falls in the general class of Non-
negative Matrix Factorization (NMF) problems, which are non
convex and typically have local minima and non-uniqueness
issues. Indeed, the objective function is convex w.r.t. each set
of unknown variables {S,A,ψ} but it is not jointly convex.
However, it is well known that the incorporation of additional
constraints into the NMF model is a way to obtain a more well-
posed NMF problem [33]. For instance, it has been shown that
the non-negative problem admits a unique solution under well
formulated conditions [34]. While theoretical guarantees are
out of the scope of this paper, the two regularization terms in
(7) also help constraining the range of admissible solutions.
This is confirmed by our experimental results, presented in the
following section.

The sub-problems are tackled using the ADMM algorithm
to deal with the nonnegativity constraints. We use the standard
stopping criteria proposed in [29] for each ADMM step. Since
the ADMM steps only provide approximated minimizers of
the sub-problems, only convergence to stationary points can
be ’approximately’ guaranteed.
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IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
method, thereafter called ’joint unmixing’. We compare it
to a ’separate unmixing’ approach where each time frame
is processed separately by first extracting endmembers using
VCA [18] or MVSA [31], then estimating abundances using
SUNSAL [35]. The comparison metric is the scaled mean
square error (MSE), defined by

eA =

∑K
k=1 ‖Aest

k −Atrue
k ‖2F∑K

k=1 ‖Atrue
k ‖2F

eS =

∑K
k=1 ‖Sest

k − Strue
k ‖2F∑K

k=1 ‖Strue
k ‖2F

. (22)

A. Experiments on synthetic data

We consider a synthetic time series of ten hyperspectral
images, composed of three endmembers. First, we design
an abundance map for the first frame composed of three
overlapping circular regions. Three real spectra corresponding
to various gases are randomly picked from a dictionary (see
next section), sampled on 129 wavelengths. We set spectral
scale factors as one period of a sinusoid over the ten time
frames. Model (5) is then applied based on the first image to
create a time series of hyperspectral images, using sparse per-
turbation matrices D generated using Laplacian distributions
with σe = σv = 5e−2 and b = 1e−2 (these parameters are
assumed to be known in these experiments).

In the case of separate unmixing, we compare the results
yielded by VCA and MVSA, by testing values of the tuning
parameters (spherization parameter and maximum eigenvalue
of the quadratic approximation term) discretized on 15 points
on a logarithmic scale from 10−10 to 104 and selecting the best
score in each case. Since the true abundance maps contain pure
pixels, VCA produced the best estimates of the endmembers
in the mean square error (MSE) sense. Likewise, the impact of
several values of the regularization parameter of SUNSAL was
tested with a similar scheme. The resulting sources are sorted
out by minimizing the spectral angle distance between the
estimated matrix and matrix S0 over all possible permutations.
In the case of joint unmixing, the algorithm is initialized by
unity scale factors and constant abundance maps and S 0 is
fixed to the true endmember matrix. Note that here, contrarily
to the separate unmixing approach, the proposed algorithm
does not suffer from the permutation ambiguity: that is, the
structure of the problem forces the index for each physical
source to be the same at each time frame. Hyperparameters
λS and λA are set using the probabilistic interpretation of
section III-A.

We then compare the separate and joint unmixing approach
on this data set; results are displayed for the tenth time
frame in figure 2. Visually, both methods seem to give similar
performances; thus, we turn to a quantitative measure to
compare the two algorithms. We run the comparison for ten
different noise trials and two different scenarios, S1 and S2,
related to two different endmember matrices S0:

• (S1): the true endmember matrix S0 is assumed to be
known beforehand ;

• (S2): S0 is assumed to be unknown and is set to the
endmembers extracted by the separate unmixing approach
applied to the first image.

The mean scaled MSEs of the estimated spectra and abun-
dance maps reveal that joint unmixing outperforms separate
unmixing, as shown in table II.

Figure 1 displays the estimated scale factors (represented
as crosses; true values are indicated as straight lines). The
scaled MSE value of the scale factors estimate is very low,
at 0.02 and the good estimation performance is confirmed by
the visual plots. The simulation thus shows that the proposed
method can produce good estimates of the scale factors, even
with no prior knowledge on their values. The next step then
consists in applying the algorithm to a real data set.

B. Experiments on real data

In this section, we evaluate the performance of the proposed
approach on longwave infrared (LWIR) spectroscopy data.
LWIR imaging allows to capture a scene based on thermal
emissions only, requiring no illumination. The scene of interest
was acquired in a desert in 2006 [36], and captures a chemical
gas plume emitted from a specific location. Specifically, we
focus on a time series of hyperspectral images observed
by a Fourier-Transform (FTIR) sensor located 2.82km from
the release ground. We consider twelve time frames, which
account for the dynamics of the release of the gas plume.
The first time instant is taken just before the release, and the
subsequent eleven frames cover the early gas emission. Each
hyperspectral data cube comprises 128×320 spatial pixels and
129 wavelengths taken with a 4 cm−1 frequency spacing. The
first principal component of each time frame is displayed in
figure 4.

In this scene, we expect multiple scattering effects to take
place in the spatial support of the gas plume. To verify this,
we perform nonlinear detection on the pixels of the third
time frame, using the method presented in [37]. The first step
consists in carrying out nonlinear unmixing on the image.
In this approach, each pixel in the image is given by the
polynomial post-nonlinear mixing model (PPNMM) [37]:

xn
k = Ska

n
k + bnk (Ska

n
k )� (Ska

n
k ) + enk (23)

where � stands for the Hadamard (entry-wise) product, and
the nonlinear term is scaled by the scalar parameter bnk . In other
words, bnk quantifies the nonlinearity of the mixing process for
each pixel in the image, and the PPNMM reduces to the LMM
for B = 0. The nonlinearity parameter is estimated for each
pixel in the image and a general likelihood ratio test is then
used on B to decide whether each pixel results from the LMM
or the PPNMM. Figure 3 displays the decision for each pixel
of the third time frame, with the false alarm probability set
as 0.05. As expected, the mixing process is mostly nonlinear
within the spatial support of the gas plume only (isolated
pixels appearing on the map correspond to remaining outliers).
Hence, we expect traditional unmixing methods to fail in this
specific area.

We preprocess the data to filter out outliers caused by
defaults in the sensor. First, their location is determined by
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Running time mean(eS) std(eS) mean(eA) std(eA)
Separate unmixing 15 sec 0.95 0.03 1.11 0.03

Joint unmixing (S1) 18 min 0.63 0.02 0.66 0.01
Joint unmixing (S2) 16 min 0.79 0.08 0.87 0.08

TABLE II
MEAN AND STANDARD DEVIATIONS (DENOTED BY ’STD’) OF THE SCALED MEAN SQUARE ERRORS OF THE ESTIMATED SPECTRA AND ABUNDANCE

MAPS, RESPECTIVELY DENOTED BY eS AND eA , DEFINED BY EQUATION (22). IN THE JOINT UNMIXING APPROACH, THE ENDMEMBER MATRIX S0 IS
EITHER ASSUMED TO BE KNOWN BEFOREHAND (S1) OR SET TO THE ENDMEMBERS EXTRACTED BY THE SEPARATE UNMIXING APPROACH APPLIED TO

THE FIRST IMAGE (S2).
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Fig. 1. Evolution of scale factors over time. Straight lines correspond to the true scale factors; estimates are displayed using crosses. The joint method
provides a good estimate of the true scale factors without prior knowledge on their values.

detecting pixels whose value differ from the mean of the data
by more than 5 times the standard deviation. These pixels are
then replaced by a surrogate pixel whose value is computed
using a median filter.

We proceed to run the separate and joint unmixing strategies
on the data set. Separate unmixing is again carried out using
the default parameters. The parameters of the proposed joint
unmixing algorithm are initialized in the following way:

• the initial abundance maps for the background endmem-
bers, resp. denoted by ’mountain’, ’sand’ and ’sky’, are
set to the three maps extracted separately from the first
image (prior to the appearance of the gas plume) using
MVSA and SUNSAL. The initial abundance maps for
the gas plume are matched to a segmentation of the
plume (i.e. a series of binary images where each pixel is
either classified as belonging to the plume or not), known
beforehand [38];

• we obtain the reference spectra matrix S0 by performing
nonnegative least squares inversion on matrix A init

5 (the
time index being selected arbitrarily among all frames
containing all four endmembers);

• higher regularization parameters are set for the first three
sources to enforce slower dynamics.

The running times of both separate and joint unmixing meth-
ods are resp. 7 min and 44 min for the whole data set.
Comparatively, nonlinear unmixing using the PPNMM takes
approximately ten hours. The results are displayed in Figures
6, 7, 8 and 9.

The SU results on the first time frame show a discrepancy
between the ’separate’ and ’joint’ method. The ’sand’ end-
member seems correctly extracted in both cases, but the abun-
dance maps of the ’moutain’ and ’sky’ endmembers indicate
that the ’joint’ method unmixes them better than the ’separate’
method. Conversely, a ’ghost’ of the spatial support of the gas

50 100 150 200 250 300
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120

Fig. 3. Spatial display of the binary detection test result for each pixel of the
third time frame, using a general likelihood ratio on the value of the estimated
nonlinearity parameter. A value of one (white) indicates a nonlinear mixing
process, a value of 0 (black) corresponds to the LMM. As can be seen, the
LMM mainly fails to hold within the spatial support of the gas plume, isolated
pixels corresponding to remaining outliers in the scene. Anywhere else, the
LMM can be assumed to be a good approximation of the actual physical
mixing process.

plume within all time frames can be observed on the three
abundance maps produced by the ’joint’ unmixing method on
the current time frame. Removing this artefact caused by the
proposed ALS implementation is one of the perspective of
this work. The next time frames display a common extraction
pattern: as expected, standard linear unmixing fails within
the spatial support of the plume. Spectrally, it does seem
that the gas is correctly attributed to a single endmember
whose index varies along the time frames because of the
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Fig. 2. Unmixing of the tenth time frame. Each column corresponds to a particular endmember. The first and second row resp. display the spectra and
abundance maps estimated by the separate approach, while the third and fourth row present the results of the joint approach. Both methods yield visually
similar performances.

permutation problem. However, the bad fit of the LMM in
this spatial region causes the gas plume to appear on all four
estimated abundance maps. Conversely, accounting for the
temporal information in the joint unmixing approach allows
to assign the gas plume to a single endmember (the fourth
one).

Spectral scale factors estimated by the joint unmixing
method are displayed as a function of time in figure 5. The
first three plots correspond to the natural endmembers in
the scene - ’sky’, ’mountain’, ’sand’ - and show very small
perturbations around the unity value. Hence, the dynamics of
these three endmembers can almost be considered as constant.
The scale factor plot for the gas plume endmember displays a
different pattern: the curve peaks at the third time frame, then
slowly decays with time. Since the scale factor in endmember
variability is linked to illumination properties of the material,
the plot may be interpreted as the density of the plume,
peaking just after the release then decreasing when the gas
expands.

As a final note, we point out that the unmixing results
are not obtained by relying solely on the proposed model.

Indeed, we exploit a segmentation of this data set to perform
the initialization step, which allows to avoid ’bad’ local
minima of the objective function [38]. When less information
about the data is available beforehand, a possible approach
is to resort to multiple initializations in order to tackle the
non convex nature of the problem, at the cost of a greater
computational complexity. In the following experiment, the
proposed algorithm is run with all abundance maps initialized
as constant images. Figure 10 displays the results obtained
by the algorithm on the fourth time frame. As shown in the
fourth panel of the figure, the gas plume is correctly extracted
without using any segmentation technique. Other time frames
are less physically interpretable, perhaps indicating that the
method is stuck in a local minimum of the objective function.
In the proposed strategy, the fourth time frame can then be
used as a better initialization. We conclude from figure 10
that the dynamical monitoring of the sources and abundances
lead to promising results in multitemporal spectral unmixing.
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Time 1 Time 2 Time 3 Time 4

Time 5 Time 6 Time 7 Time 8

Time 9 Time 10 Time 11 Time 12

Fig. 4. First principal component of each time frame: the sequence depicts the evolution of the gas plume in the scene over time.
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Fig. 5. Evolution of scale factors over time : each plot corresponds to a particular endmember. Notice how the first three plots - ’sky’, ’mountain’, ’sand’ -
display tiny variations around unity, of the order of 10−3, whereas the fourth plot - gas plume- can be explained by the dynamical variation of the density
of the plume.

V. CONCLUSION

In this paper, we have proposed a general dynamical frame-
work for spectral unmixing:


Xk = SkAk +Ek

Sk = fS(Sk−1) +Vk

Ak = fA(Ak−1) +Dk.

The linear mixing model is assumed to hold at each time
frame to benefit from the low computational complexity of
linear unmixing methods. We make assumptions on the dy-
namics of the spectral signatures and abundance coefficients
of sources, rather than on the data themselves, and hence
fall within a data-driven framework. We propose a simplified
version of this model tailored to the case of multitemporal hy-
perspectral images. We derive an efficient unmixing algorithm
based on this model, which jointly processes all time frames
in the image. The proposed method relies on an efficient non-
negative alternating least squares scheme. The performance of
our approach is demonstrated on synthetic and real time series
of hyperspectral images. We are currently investigating the

extension of the method to account for more complex spectral
variability schemes, in the temporal dimension as well as the
spatial dimension of the image. Perspectives also include the
extension of the model to nonlinear mixing processes. Finally,
it is worth noting that the general dynamical framework is
not restricted to the case of hyperspectral imaging. Because
of its flexibility, it allows to analyze the dynamics of many
types of multidimensional signals, e.g. biomedical signals such
as electroencephalography (EEG) or magnetoencephalography
(MEG).
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Fig. 6. Abundance maps obtained by the separate unmixing method : estimated abundance maps of the first, third, seventh and tenth time frame. Each row
corresponds to a time frame and each column to a particular source. After occurrence of the gas plume, ’ghosts’ corrupt all extracted abundance maps: the
gas plume cannot be uniquely attributed to any endmember, preventing a clear physical interpretation of the maps.
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Fig. 7. Abundance maps obtained by the joint unmixing method : estimated abundance maps of the first, third, seventh and tenth time frame. Each row
corresponds to a time frame and each column to a particular source. Notice how ’ghosts’ are significantly attenuated by accounting for the dynamical model
of the data: abundances of sources 1 to 3 are barely corrupted by gas-plume related information (source 4).
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Fig. 8. Endmembers obtained by the separate unmixing method : estimated spectra from the first, third, seventh and tenth time frame. Each row corresponds
to a time frame and each column to a particular source. The larger the contribution of the ’ghost’ to a specific abundance map, the larger the distortion of the
corresponding extracted endmember: see e.g. the seventh and tenth time frames of source 2 and 3.
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Fig. 9. Endmembers obtained by the joint unmixing method : estimated spectra from the first, third, seventh and tenth time frame. Each row corresponds
to a time frame and each column to a particular source. Notice how all spectra fit the proposed model of the data.
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Fig. 10. Unmixing of the fourth time frame with abundance maps initialized as constant images, using the ’joint unmixing’ approach. Each column corresponds
to a source, the first row displays the extracted spectra and the second row the estimated abundance maps. The joint method correctly attributes the gas plume
to a unique endmember (the fourth one) even in the absence of any spatial prior knowledge of the scene.
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