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Non-local length estimators and concave functions

, the authors introduced the Non-Local Estimators (NLE), a wide class of polygonal length estimators including the sparse estimators and a part of the DSS ones. NLE are studied here under concavity assumption and it is shown that concavity almost doubles the multigrid converge rate w.r.t. the general case. Moreover, an example is given that proves that the obtained convergence rate is optimal. Besides, the notion of biconcavity relative to a NLE is proposed to describe the case where the digital polygone is also concave. Thanks to a counterexample, it is shown that concavity does not imply biconcavity. Then, an improved error bound is computed under the biconcavity assumption.

Introduction

This article is the second of a pair devoted to the study of the multigrid convergence of length estimators. For short, the considered length estimators are based on a polygonal approximation of the digitized function whose edge discrete sizes tend in mean toward innity, as the grid step tends toward zero. Indeed, it is known that length estimators using xed size edges, even with suitable weights, do not converge in the general case and it is likely that this result could be extend to estimators using edges of bounded sizes, weighted or not.

In the rst article [START_REF] Mazo | Non-local estimators: a new class of multigrid convergent length estimators[END_REF], we introduced the notion of non local estimator (NLE), a polygonal estimator using edges whose mean discrete size tend toward innity and, among the NLE, we considered in particular the M-sparse estimators (MSE) whose true edge lengths (taking into account the grid step) tend toward zero in mean. We proved that a MSE, or a NLE close to a MSE, has the multigrid convergence property. In the present article, we focus on the improvement brought by the concavity assumption on the multigrid convergence speed for the NLE. Indeed, we know from a previous work [START_REF] Mazo | About multigrid convergence of some length estimators[END_REF], that convexity doubles the convergence rate of the sparse estimators the most regular MSE. This is not exactly the case in the more general setting of the NLE but nevertheless we show that the convergence is signicantly sped up by the concavity for a wide class of continuous functions that satisfy a Lipschitz condition on the left and the right derivative. Moreover, we introduce the notion of biconcavity which expresses that both the continuous curve and the polygonal line used for the length estimation are concave. This notion was implicitly used in [3, theorem 13] to prove the multi-grid convergence of the maximal digital straight segment estimator (MDSSE). Under the biconcavity assumption, we establish a result that t our observations on the convergence speed of the MDSSE for the natural logarithm function.

The paper is organized as follows. In Section 2, some necessary notations and conventions are recalled, as are the NLE convergence properties in the general case. Two theorems on the multigrid convergence rate of NLE and MSE for concave continuous functions are given in Section 3. An experiment exemplies the results. Section 4 is devoted to the biconcavity. A sucient condition for this property is presented and we state our third theorem on the convergence rate. Section 5 concludes the article. The reader will also nd in Appendix A an example of a concave function for which our best upper bound for the convergence rate is reached, indicating that this bound cannot be improved in the general case. Moreover an example of a concave function whose digitization family has convex pairs of arbitrary long consecutive chords for an innity of grid steps is exhibited. Eventually, Appendix B gathers the technical lemmas used in Sections 3 and 4.

Background and previous results

In this section, we give our notations and we recall the notion of Non-Local Estimators (NLE) introduced in [START_REF] Mazo | Non-local estimators: a new class of multigrid convergent length estimators[END_REF].

Digitization models

This paper is focused on the digitization of function graphs. So, let us consider a continuous function g :

[a, b] → R (a < b), its graph C(g) = {(x, g(x)) |
x ∈ [a, b]} and a positive real number r, the resolution. We assume to have an orthogonal grid in the Euclidean space R 2 whose set of grid points is hZ 2 where h = 1/r is the grid spacing. We use the following notations: x is the greatest integer less than, or equal to x and x is the smallest integer greater than x. For i ≤ j two integers,

[[i, j]] stands for [i, j] ∩ Z. The h-digitization of the function g is the discrete function D(g, h) : [[ a/h , b/h ]] → Z dened by D(g, h)(k) = g(kh)/h . Provided
the slope of g is limited by 1 in modulus, the graph of D(g, h) is an 8-connected digital curve. Nevertheless, in this article, we make no assumption on the slope of the function g.

Non-local length estimators (NLE)

For any continuous function f : [a, b] → R, L(f ) denotes the length of the graph C(f ) according to Jordan's denition of length:

L(f ) = sup a=x0<x1<•••<xn=b n i=1 (x i -x i-1 ) 2 + (f (x i ) -f (x i-1 )) 2 ,
where the supremum is taken over all the possible partitions of [a, b] and n is unbounded. The reader can nd in [START_REF] Mazo | Non-local estimators: a new class of multigrid convergent length estimators[END_REF] a description of the classical length estimators.

Let us now recall the key notions in the denition of the NLEs.

• A pattern function is a function that maps a discrete curve Γ and a grid spacing h to a partition of the domain of Γ.

Let A and B be two pattern functions. We say that A is ner than B, we write A ≺ B, if for any discrete curve Γ and any grid step h, the partition A(G, h) is ner than the partition B(G, h).

• Let α ∈ R = [-∞, +∞] be any non-zero real number. When σ is a partition of some interval I ⊂ R, the α-th power mean of the σ subinterval length sequence The non-local length estimator associated to an α-pattern function A maps a pair (G, h), consisting of a discrete curve and a grid step, to the length L NL (A, G, h) of an h-homothetic copy of the polyline whose vertices are the points of G with abscissas in A(G, h). Given a rectiable function g, by abuse of notation, we write L NL (A, g, h) instead of L NL (A, D(g, h), h) and also A(g, h)

(x i ) n i=0 is dened for α ∈ R by M α ((x i ) n i=0 ) = 1 n n i=0 x i α 1 α , and M +∞ ((x i ) n i=0 ) = max((x i ) n i=0 ) , M -∞ ((x i ) n i=0 ) = min((x i ) n i=0 )
instead of A(D(g, h), h). Let H : (0, +∞) → N . A sparse estimator with step
H is a non-local length estimator whose pattern function A only depends on the grid step h and such that the partition A(G, h) has a constant step H(h) but its last step which is not greater than H(h).

The main result without concavity hypothesis is that NLE are convergent for Lipschitz functions. We recall below (Theorem 1) a result, proved in [START_REF] Mazo | Non-local estimators: a new class of multigrid convergent length estimators[END_REF], that gives a bound on the error at the grid spacing h for Lipschitz functions whose derivatives are k-Lipschitz on any interval included in their domains (k > 0). Before stating Th. 1, we need rst to complete the introduction to our notations.

Notations. We present some notations used throughout the remainder of the article. The rst ones concern Euclidean objects. Thereby, they do not depend upon the grid spacing. The others are related to the grid spacing h and should be indexed by h. Nevertheless, as we never have to work with two dierent grid spacings, the h index is omitted to lighten the notations.

I = [a, b] is an interval of R with a non-empty interior and g : I → R is a Lipschitz function whose derivative is denoted g (from Rademacher's theorem, g is dierentiable almost everywhere). The function ϕ : R → R is dened by ϕ(x) = √ 1 + x 2 . Thus, one has L(g) = [a,b] ϕ • g . Given some grid spacing h > 0, A, resp. B, is the smallest, resp. largest, integer such that Ah ∈ I, resp. B h ∈ I. The functions g l , g c , g r are resp. the restrictions of the function g to the intervals [a, Ah], [Ah, B h], [B h, b]. For any pattern function A, we write M A α , instead of M α (A(g, h)) when there is no ambiguity. The number of subintervals in the partition A(g, h) is denoted N A , or just N when possible and the integers dening the partition A(g, h)

are A = a 0 < a 1 < • • • < a N = B ( A = b 0 < b 1 < • • • < b N = B for the partition B(g, h)).
In particular, for a sparse estimator with step H and a real α, the mean M α (A(G, h)) lies between H(h) and H(h)(1 -1/N ) 1/α . Finally, two piecewise ane functions, g A c and g A c , are dened. They interpolate the continuous function g c and its digitization (actually, the h-homothetic copy of the digital curve D(g, h)) according to the pattern function A. The graph of g A c , resp g A c , is the polyline linking the points a i h, g(a i h) N i=0 which are in C(g), resp. the grid points a i h, g(aih) h h N i=0 which are in hZ 2 . We are now able to state Th. 1. • if β = +∞, the non-local estimation L NL (g, A, h) converges toward the length of the curve C(g) as h tends to 0;

• if g is k 2 -Lipschitz on each interval included in its domain, we have

L(g) -L NL (A, g, h) ≤ S h + T hM B 1 (1 + (C B ) 2 ) + U H B + V 1 M A 1 + 1 M B 1 , (1) 
where

S = 2ϕ(k 1 ), T = k 2 (b -a)/2, U = ϕ(k 1 ) -1, V = (1 + 2ω)ϕ k 1 + 1/M A -1 (b -a)
and H B is the measure of the union of the B(g, h) subintervals on which g is not dierentiable. Furthermore, if B(g, h) ⊆ A(g, h), the term 1/M A 1 + 1/M 1 B in the right hand side of Equation (1) can be replaced by 1/M B 1 .

Concave functions length estimation

In this section, we assume that the function g is concave on [a, b]. This implies in particular that g admits left and right derivatives, noted d g and d r g, at any point of (a, b) and is Lipschitz continuous on any closed subinterval of (a, b). We assume moreover that the one-sided derivatives of g are dened and Lipschitz1 on [a, b]. In particular, g is Lipschitz on [a, b]. Under this new hypothesis, we can improve the bound on the convergence speed of the estimated length toward the true length of the curve C(g).

General case

Let A be a pattern function. The functions g l , g r , g A c and g A c are those dened in Paragraph Notations of Section 2.2. Firstly, we recall a bound on the errors due to the loss of the true left and right extremities of the curve C(g). Its proof can be found in [START_REF] Mazo | Non-local estimators: a new class of multigrid convergent length estimators[END_REF].

Proposition 2 (Curve extremity error). For any k-Lipschitz function g, we have

L(g l ) + L(g r ) ≤ 2ϕ(k)h.
Propositions 3 and 4 are improvements of Propositions 3 and 4 of [START_REF] Mazo | Non-local estimators: a new class of multigrid convergent length estimators[END_REF] for concave curves. The rst one gives an upper bound on the discretization error.

Proposition 3 (Error between curve and curve chords). Let g be a concave function whose one-sided derivatives are dened and

k-Lipschitz on [a, b] (k > 0). Then L(g c ) -L(g A c ) ≤ N i=1 k 2 4 (a i -a i-1 ) 3 h 3 ≤ k 2 (b -a)M 3 3 4M 1 h 2 . ( 2 
)
Proof. Note that the proof appeals to a technical result, Lemma 12, which is stated, and proved, in Appendix B.

Let us consider the partition σ = h • A(g, h) of the interval [Ah, Bh] and the piecewise ane function g

A+ c : [Ah, Bh] → R dened by g A+ c (x) = min g(x i-1 ) + d r g(x i-1 )(x -x i-1 ), g(x i ) -d g(x i )(x i -x) ,
where

[x i-1 , x i ] is the subinterval of the partition σ that contains x. Note that g A+ c (x i ), 0 ≤ i ≤ N , is uniquely dened and is equal to g(x i ).
Since g is concave, we have on the one hand d r g(

x i-1 ) ≤ g ≤ d g(x i ) on any subinterval [x i-1 , x i ] of σ and, on the other hand, g A c ≤ g c ≤ g A+ c on [Ah, B h].
Therefore, we can apply Lemma 11 and Lemma 12 on each subinterval of the partition σ. Together with the hypothesis on the derivatives of g, this leads to the following inequalities.

L(g c ) -L(g A c ) ≤ L(g A+ c ) -L(g A c ) ≤ N i=1 (x i -x i-1 ) ( d r g(x i-1 ) -d g(x i )) 2 4 ≤ N i=1 k 2 4 (x i -x i-1 ) 3 ≤ k 2 h 3 N 4 M 3 3 ≤ k 2 h 2 (b -a) 4 M 3 3 M 1 .
Hence, the result holds.

Inequality [START_REF] Dorksen-Reiter | Geometric Properties for Incomplete data, chap. Convex and Concave Parts of digital Curves[END_REF] has to be compared to the following one obtained in [5, Proposition 3] for a function g dierentiable with a derivative k Lipschitz continuous:

L(g c ) -L(g A c ) ≤ k(b -a) 2 hM 2 .
When the partition A(g, h) is roughly even,

M 3 3 /M 1 ≈ M 2 2
and the upper bound is squared under the concavity assumption. In the worst case, we also note that

M 3 3 M 1 = (a i+1 -a i ) 3 (a i+1 -a i ) ≤ (a i+1 -a i )M +∞ 2 (a i+1 -a i ) ≤ (M +∞ ) 2 .
(3) Example 1. The result given by Proposition 3 is illustrated on Fig. 1 with the natural logarithm on the interval [START_REF] De Vieilleville | Convex digital polygons, maximal digital straight segments and convergence of discrete geometric estimators[END_REF][START_REF] Dorksen-Reiter | Geometric Properties for Incomplete data, chap. Convex and Concave Parts of digital Curves[END_REF], the sparse estimators with steps

H(h) = h -γ where γ ∈ { 1 4 , 1 3 , 1 2 , 2
3 } and the MDSS estimator. The grid steps used for the plot are

h = (2/3) n , n ∈ [1, 40]. Then, for any γ, M α ≈ h -γ (precisely, h -γ (1 -h) α ≤ M α ≤ h -γ
) and Eq. [START_REF] Dorksen-Reiter | Geometric Properties for Incomplete data, chap. Convex and Concave Parts of digital Curves[END_REF] gives the following expression for the discretization error

L(g c ) -L(g A c ) = 1 4 h 2(1-γ) .
In Figure 1, the continuous lines stand for the error computed from the formula above, where the constant has been estimated from the data. We see that Eq. [START_REF] Dorksen-Reiter | Geometric Properties for Incomplete data, chap. Convex and Concave Parts of digital Curves[END_REF] gives the right convergence rate though the given constant (1/4) is bigger than the empirical ones (between 0.1 and 0.001). This was expected mainly because Eq. ( 2) involves an upper bound for the second derivative while this derivative is not constant. Regarding the MDSS estimator, we just know from [START_REF] De Vieilleville | Convex digital polygons, maximal digital straight segments and convergence of discrete geometric estimators[END_REF] that

Ω(h -1/3 ) ≤ M 1 ≤ O(h -1/3 log(h -1 )) .
So, we plotted two lines ∝ h 4/3 and ∝ h 4/3 log 2 (h -1 ) that t the data well. 

α = 1/2 α = 1/3 α = 1/4 MDSS 0.01h 2(1-2/3) 0.01h 2(1-1/2) 0.01h 2(1-1/3) 0.01h 2(1-1/4) 0.001h 2(1-1/3) log 2 (h -1 ) 0.1h 2(1-1/3) Figure 1: L(g c ) -L(g A c ) (see text).
The following proposition gives an upper bound on the quantization error.

It appeals to two pattern functions. Indeed, the pattern functions have been introduced in [START_REF] Mazo | Non-local estimators: a new class of multigrid convergent length estimators[END_REF] to report on the behavior of two families of length estimators:

• sparse estimators [START_REF] Mazo | About multigrid convergence of some length estimators[END_REF] that use domain partitions A(G, h) that only depends upon the parameter h,

• MDSS (Maximum Digital Straight Segments) that use domain partitions that only depend upon the discrete function G (local estimators domain partitions depend neither upon h nor upon G and fail to converge). Since MDSS domain partitions depend on the function graph, one cannot assert anything about the 'true length' of the subsegments of a MDSS so the underlying pattern function of a MDSS is not in general an (α, β)-pattern function. Nevertheless, since by denition a MDSS is close to the curve, the resulting digital curve segmentation is not far from the segmentation produced by some (α, β)-pattern function. This is the reason why in the next proposition and in the proof of Theorem 6, we appeal to two pattern functions that are close to each other.

Proposition 4 (Error between curve chords and grid chords). Let g be a concave function and A and B be two pattern functions such that B ≺ A and

g B c -g A c ≤ ωh for some ω > 0. Then L(g B c ) -L( g A c ) ≤ U N B i=1 h b i -b i-1 + V h ≤ U b -a M B -1 M B 1 + V h , (4) 
where U = ω 2 and V = max(g (a), g (a) -2g (b)).

Proof. From the hypotheses, we have

g A c ≤ g B c ≤ g A c + ωh .
Let s 1 and s 2 be the slopes of the rst and last segments of For the MDSS estimator, we assume that, for any α, M α is in Θ(h -1/3 ) or in Θ(h -1/3 log(h -1 )). Then, Eq. ( 4) gives the following upper bounds for the error

g B c . Since g is concave, g (a) ≥ s 1 ≥ s 2 ≥ g (b). From Lemma 14, applied with f 1 = g A c , f 2 = g B c , σ = hB(g, h), p = N B and e = ωh, we derive L(g B c ) -L( g A c ) ≤ U N B i=1 h b i -b i-1 + V h for max(s 1 , s 1 -2s 2 ) ≤ V ≤ U N B h M B -1 + V h ≤ U b -a M B -1 M B 1 + V h .
L(g A c ) -L( g A c ):
• O h min (1,2γ) for the sparse estimators;

• O h 2/3 , or O h 2/3 / log 2 (h -1
) , for the MDSS estimator. The continuous lines in Fig. 2 correspond to these upper bounds. Though the behavior of the quantization error is less regular than the behavior of the discretization error, the observed convergence rates for the quantization errors t again our upper bounds. Also, note that the observed constants, hidden in the big O, are smaller than the ones calculated from Eq. ( 4) (from a factor of about 10).

From Propositions 2, 3 and 4, we derive the following theorems on the convergence speed when the function g is concave. Compared to Theorem 1, concavity almost squares the convergence speed. In particular, the optimal step-size for uniform size algorithms remains unchanged (H γ (h) = Θ(h -1 2 )) but the speed is improved up to h. Then L NL (A, g, h) converges toward L(g) as h tends to zero and

L(g) -L NL (A, g, h) = O h 2 M 3 3 M 1 + O 1 M -1 M 1 . (5) 
Proof. The function g satises the hypothesis of Propositions 2, 3 and 4. So we have

|L(g) -L(g c )| = O(h) , L(g c ) -L(g B c ) = O h 2 M 3 3 M 1 , L(g B c ) -L( g A c ) = O 1 M -1 M 1 + O(h) .
Since α → M α is non decreasing, we derive

h 2 M 3 3 M 1 × 1 M -1 M 1 ≥ h 2 ,
Thus, we can see that either

h 2 M 3 3 M 1 ≥ h or 1 M -1 M 1 ≥ h .
Hence, Eq. ( 5) holds.

Since A is an (-1, +∞)-pattern function, on the one hand M -1 and a fortiori M 1 tend toward +∞. On the other hand, from Eq. ( 3),

h 2 M 3 3 M 1 ≤ (hM +∞ ) 2 .
. Then, since lim h→+∞ hM +∞ = 0 by hypothesis, we conclude straightforwardly that L NL (A, g, h) converges toward L(g).

In order to include the MDSS based estimators, the hypothesis on the maximal subsegment length, lim h→0 hM +∞ = 0 , should be relaxed. It is replaced in Theorem 6 by a hypothesis on the pattern function distance to the function graph. 

L(g) -L NL (A, g, h) = O(h) + O 1 M A 1 . (6) 
Proof. Let h > 0 and (a i ) N i=0 = A(g, h). We subdivide each subinterval of the partition A(g, h) in xed size segments whose sizes are and a last segment whose size is not greater than (we do a sparse estimation of each subinterval). Then, the pattern function B is dened by B(g, h) = (b i ) N B i=0 where b 0 = a 0 = A and, for any

i ∈ [[1, N B ]], b i = min b i-1 + , a j with j = min{k | a k > b i-1 }. Let k = max d r g(x) -d g(y) /(y -x) x < y ∈ [a, b] . From Proposi- tion 2, we have |L(g) -L(g c )| = O(h) . (7) 
From Proposition 3, we derive

L(g c ) -L(g B c ) ≤ N B i=1 k 2 4 (b i -b i-1 ) 3 h 3 ≤ k 2 4 N B ( h) 3 ,
2 Actually, instead of g A c , we should use the function x → g A c (hx)/h.
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where

N B = N A i=1 a i -a i-1 ≤ N A i=1 a i -a i-1 + N A ≤ B -A + B -A M A 1 .
Thus,

N B ≤ (b -a) 1 h + 1 hM A 1 . (8) 
Then

L(g c ) -L(g B c ) ≤ k 2 4 (b -a) 2 h 2 + 3 h 2 M A 1 . (9) 
The functions g A c and g B c are piecewise ane. Thus,

g A c -g B c ∞ = max i∈[[0,N B ]] ( g A c (hb i ) -g B c (hb i ) ) ≤ max i∈[[0,N B ]] g A c (hb i ) -hD(g, h)(b i ) + h ≤ O(h) (from the hypotheses) ,
Then, the hypotheses of Proposition 4 are satised. We derive that there exists two constants U and V , depending on g and A such that

L(g B c ) -L( g A c ) ≤ U N B i=1 h (b i -b i-1 ) + V h ≤ U (N B -N A ) × h + N A × h + V h ≤ U h N B + N A + V h .
Hence, Equation (8) implies

L(g B c ) -L( g A c ) ≤ U (b -a) 1 2 + 1 M A 1 + 1 M A 1 + V h . (10) 
Eventually, we obtain the following upper bound:

L(g) -L( g A c ) ≤ O(h)+ k 2 4 (b -a) 2 h 2 + 3 h 2 M A 1 + U (b -a) 1 2 + 1 M A 1 + 1 M A 1 + V h . (11) Taking = h -1/2
, we obtain the result:

L(g) -L( g A c ) = O(h) + O(1/M A 1 ) . (12) 
Note that, if we assume a uniforme distribution of the integers (a ia i-1 ) mod in the interval [[0, -1]], the expected value of

N B i=1 h (bi-bi-1) is in O (b - a) 1 2 + 1 M A 1 + 1 2 M A 1 for large enough N A . Then, together with = h -1/2 , Equation (12) becomes L(g) -L( g A c ) = O(h) + O(h 1/2 /M A 1 ).
On our example with the logarithm, the observed error for the MDSS method (see Figure 3) is in O(h) which is better than the expected convergence rate O(h) + O(h 1/2 /M A 1 ) (and a fortiori better than the worst case convergence rate

O(h) + O(1/M A 1 )
). Indeed, the mean M 1 for the MDSS pattern function lies between O(h -1/3 ) and O(h -1/3 log(h -1 )) [START_REF] De Vieilleville | Convex digital polygons, maximal digital straight segments and convergence of discrete geometric estimators[END_REF], so the bound for the expected convergence rate lies between O(h 5/6 ) and O(h 5/6 log(h -1 )). ) . The continuous lines correspond to the convergence rates derived from Theorem 6 and Theorem 9 (see text).

In the next section, we introduce the notion of biconcavity which corresponds to the actual behavior of MDSS and we show that this property speeds up the convergence rate and explains the observed convergence rate of the MDSSE.

Biconcavity

When the function g is concave, the piecewise ane function g A c is clearly also concave. Nevertheless, the second piecewise function g A c is not necessarily concave. When, below some threshold h 0 , the function g A c is concave for any h > 0, we say that g is biconcave relative to A. In Appendix A.2, we exhibit a concave function that is not biconcave relative to any local estimator. Nevertheless, it follows from the very denition of g A c that its hypograph is digitally convex (the convex hull of the hypograph does not contain more integer points than the hypograph itself) and it was proved in [START_REF] Dorksen-Reiter | Geometric Properties for Incomplete data, chap. Convex and Concave Parts of digital Curves[END_REF] that the MDSS of boundary of digitally convex body of Z 2 are monotonic. Hence, continuous concave functions are biconcave relative to the MDSSE pattern function.

This section gives a sucient condition to get the biconcavity property and studies the consequences on the convergence speed of such a property. Proposition 7. Let A be pattern function and let g : [a, b] → R be a concave function such that, for some constant k > 0, it is true that d r g(x)d g(y) ≥ k(yx) for any x, y ∈ [a, b] such that x < y. If one of the following conditions holds, then the piecewise ane function

g A c is concave. (i) hM -∞ 2 ≥ 2/k, (ii) hM -∞ 2 ≥ 1/k and A(g, h) is a constant sequence. Proof. Let δ i = a i -a i-1 for 1 ≤ i ≤ N . The piecewise ane function g A c is concave i, for any i ∈ [[1, N -1]], g A c (ha i+1 ) -g A c (ha i ) hδ i+1 ≤ g A c (ha i ) -g A c (ha i-1 ) hδ i . (13) 
Since, for any k ∈ [[0, N ]], g A c (ha k ) is a multiple of h, Equation (13) can be rewritten as

δ i g A c (ha i+1 ) -g A c (ha i ) -δ i+1 g A c (ha i ) -g A c (ha i-1 ) < h gcd(δ i , δ i+1 ).
Thus, from the very denition of the function g A c , we derive that Equation (13) is true whenever

δ i g(ha i+1 ) -g(ha i ) + h -δ i+1 g(ha i ) -g(ha i-1 ) -h ≤ h gcd(δ i , δ i+1 ). (14) 
Now, from the hypotheses, we derive that, for any

x, y ∈ [a, b] such that x < y, g(y) -g(x) = y x g (t) dt ≤ y x d r g(x) -k(t -x) dt ≤ d r g(x)(y -x) - 1 2 k(y -x) 2 .
Alike,

d g(y)(y -x) + 1 2 k(y -x) 2 ≤ g(y) -g(x) .
Then

g(ha i+1 ) -g(ha i ) ≤ d r g(ha i )hδ i+1 - 1 2 k(hδ i+1 ) 2 and d g(ha i )hδ i + 1 2 k(hδ i ) 2 ≤ g(ha i ) -g(ha i-1 )
Thus, Equation ( 14) is true whenever

hδ i δ i+1 d r g(ha i )- 1 2 khδ i+1 -d g(ha i )- 1 2 khδ i ≤ h gcd(δ i , δ i+1 )-δ i -δ i+1 .
Noting that d r g(ha i ) ≤ d g(ha i ), we get the following sucient inequality

h(M -∞ ) 2 k(δ i+1 + δ i ) ≥ 2 δ i + δ i+1 -gcd(δ i , δ i+1 ) .
That is

h(M -∞ ) 2 k ≥ 2 1 - gcd(δ i , δ i+1 ) δ i+1 + δ i .
Proposition 7 follows straightforwardly.

The next proposition is an improvement of Proposition 4 in case of biconcavity. It is a consequence of Lemma 15. Proposition 8. Let A and B be two pattern functions such that B ≺ A, g A c is concave and

g A c -g B c ∞ ≤ ωh for some ω > 0. Then L(g B c ) -L( g A c ) ≤ U h , (15) 
where U = max(α, α -2β) with α = ϕ (g (a) + 1) and β = ϕ (g (b) -1).

Proof. From the hypotheses, we have

g A c -ωh ≤ g B c ≤ g A c -ωh + (2ω + 1)h .
Moreover, g B c is concave (for g is concave). Let s A 1 and s A 2 , resp. s B 1 and s B 2 , be the slopes of the rst and last segments of g A c , resp. g B c . From Lemma 15, applied with

f 1 = g A c -ωh, f 2 = g B c and e = (2ω + 1)h, we derive L(g B c ) -L( g A c ) ≤ U 0 h , where U 0 = max(ϕ (s 1 ), ϕ (s 1 ) -2ϕ (s 2 )) with s i , i ∈ {1, 2}, lying between s A i and s B i . Let (a i ) N i=0 = A(g, h), δ 1 = a 1 -a 0 and δ N = a N -a N -1 . It can easily be seen that s A 1 < s B 1 + 1/δ 1 and s A 2 > s B 2 -1/δ N .
Then, since g is concave,

s A 1 < g (a) + 1/δ 1 ≤ g (a) + 1 and s A 2 > g (b) -1/δ N ≥ g (b) -1 . Thus, s 1 ≤ max(s A 1 , s B 1 ) < g (a) + 1 and s 2 ≥ min(s A 2 , s B 2 ) > g (b) -1 .
As the function ϕ is increasing, we get

ϕ (s 1 ) < α and ϕ (s 2 ) > β . then U 0 < U
and the result holds.

The following theorem is the consequence of Proposition 8 on the convergence speed of the non-local estimators. 

g A c is bounded, then L(g) -L NL (g, h) = O(h) + O h 2/3 M A 1 .
Proof. The proof is similar to the proof of Theorem 6 except that we invoke Proposition 8 instead of Proposition 4. Then, in Equation (10), the term (b -

a) 1 2 + 1 M A 1 + 1 M A 1
vanishes and we get

L(g) -L( g A c ) ≤ O(h) + k 2 4 2 h 2 + 3 h 2 M A 1 .
Taking = h -4/9 , we obtain the result:

L(g) -L( g A c ) = O(h) + O h 2/3 M A 1 .
Observe that, for the MDSS pattern function on the set of C 3 functions with positive curvature, we have ( [START_REF] De Vieilleville | Convex digital polygons, maximal digital straight segments and convergence of discrete geometric estimators[END_REF])

Ω(h -1/3 ) ≤ M 1 ≤ O(h -1/3 log(h -1 )). Then O h log(h -1 ) ≤ L(g) -L( g MDSS c ) ≤ O(h) . (16) 
Equation 16 ts the MDSS convergence rates reported in Figure 3.

Conclusion

In this paper, thanks to the concavity assumption, we improve previous results on the multigrid convergence rate of the Non Local Estimators, a class of estimators that relies on a polygonal interpolation of the continuous function digitization. Furthermore, we introduce the notion of biconcavity which is satised by the MDSS estimator and by the sparse estimators with enough large pattern sizes. Biconcavity allows further improvement of the convergence rate, up to O(h) in the worst case, which is optimal with a square grid whose step is h. The proposed tests give convergence rates corresponding to the theoretical ones. e Actually, the NLE framework with its pattern functions appears to be an ecient tool to study the multigrid convergence of the length estimators. Future works will extend to the plane curves the obtained results and prospect the relaxation of the concavity assumption. 

hH = 4(8p + 1) , ∀i ∈ [[0, N ]], ha i = 1 16 + ihH = 1 16 + i √ h .
Furthermore, we have

g(ha i ) = g A c (ha i ) + (i mod 2) × h 2 . (A.1)
We also set

c = h 2 , z i = h (a i + a i+1 ) 2 , y i = g(ha i+1 ) -g(ha i ) = -2 √ h z i .
Then, from (A.1), we derive

L(g A c ) -L( g A c ) = N/2-1 i=0 h + y 2i 2 + h + y 2i+1 2 - h + (y 2i -c) 2 + h + (y 2i+1 + c) 2 .
On the one hand

h + y 2i 2 -h + (y 2i -c) 2 = - h 4 8z 2i + √ h √ 1 + 4z 2i 2 + 1 + 4(z 2i + 1 4 √ h) 2 ≥ - h 8 8z 2i + √ h √ 1 + 4z 2i 2 .
On the other hand

h + y 2i+1 2 -h + (y 2i+1 + c) 2 = h 4 8z 2i+1 - √ h 1 + 4z 2i+1 2 + 1 + 4(z 2i+1 -1 4 √ h) 2 ≥ h 8 8z 2i+1 - √ h 1 + 4z 2i+1 2 .
By summing,

L(g A c ) -L( g A c ) ≥ h 16p+1 i=0 z 2i+1 1 + 4z 2i+1 2 - z 2i √ 1 + 4z 2i 2 - h √ h 8 32p+3 i=0 1 √ 1 + 4z i 2 .
Since the function f 1 (x) =

x √ 1+4x 2 is monotonically increasing and concave, one has

16p+1 i=0 (f 1 (z 2i+1 ) -f 1 (z 2i )) ≥ 1 2 32p+3 i=0 (f 1 (z i+1 ) -f 1 (z i )) ≥ 1 2 (f 1 (z 32p+4 ) -f 1 (z 0 )) .
Moreover, the function f 2 (x) = 

f 2 (x) dx. It follows that L(g A c ) -L( g A c ) ≥ h 2 f 1 19 48 + √ h 2 -f 1 1 16 + √ h 2 
L(g A c ) -L( g A c ) > 0.076h.
Eventually, for any h = 1 (12(8p+1)) 2 , we have shown that

L(g) ≥ L(g A c ) ≥ L( g A c ) + 0.07h.
This example shows that for some non-local estimators, the obtained bounds are tight and therefore cannot be improved in the general case. where µ(I) is the classical length of I.

Let us consider the function g(x) = 2xx 2 , x ∈ [0, 1], which is concave. We denote by g h the function x ∈ [0, 1] → g(x)/h h ∈ hZ. Let H be a positive integer. Thanks to Theorem 10, we prove that, for each grid spacing h below some threshold, we can choose an integer p such that the nite dierence g h ((p + H)h)g h (ph) is less than or equal to the grid spacing h while the nite dierence g h ((p + 2)H h)g h (ph) is greater than twice the grid spacing h. Thus, the graph of g h has a convex pair of consecutive chords. ), it exists a real h 0 > 0 such that, for any h ∈ (0, h 0 ), one has As the left hand side of the above inequalities is a multiple of h, we get

card n ∈ J | g(nh) -g h (nh) ∈ [ 4h 12 , 7h 12 ) ≥ 1 5 card J , where J = [[ a h , b h ]]. Since card J → +∞ as h → 0,
g h ((n 0 + 1)hH) -g h (n 0 hH) ≤ h .
In the same way, we obtain

g h ((n 0 + 2)hH) -g h (n 0 hH) > g((n 0 + 2)hH) -h -(g(n 0 hH) - 4 12 h) > 16 12H × 2hH - 2 3 h > 2h . m λ 1 λ 2 λ 3 M g ψ(m) ψ(λ 1 ) ψ(λ 2 ) ψ(λ 3 ) ψ(M) ψ •g Figure B.
4: An illustration of the rst inequality in (B.1). We assume g = n i=0 λ i 1 Ei where, for any i, m ≤ λ i ≤ M , the measurable sets E i are pairwise disjoint and n i=0 µ(E i ) = 1 (here, µ is the Lebesgue measure on R). Thus, the point with coordinates ( g, ψ • g) is the barycenter of the weighted points (λ i , ψ(λ i )), µ(E i ) while the point with coordinates ( g, (1 Eventually,

-k 1 )ψ(m) + k 1 ψ(M )) is the barycenter of the weighted points (m, ψ(m)), 1 -k 1 , (M, ψ(M )), k 1 .

The rst inequality in Equation

1 0 ψ • f (t) dt = max g 1 0 ψ • g(t) dt ≤ (1 -k)ψ(m) + kψ(M ) .
Lemma 12. Let ABC be a triangle in R 2 (A = C) with edges of slopes -∞ < α < β < γ < +∞. We assume that the edge AC have slope β. Then, where ξ 1 , ξ 2 , ξ lie between α and γ. Hence,

AB + BC -AC AC ≤ (γ -α) 2 4ϕ(β) .
AB + BC -AC = m kϕ(γ) + (1 -k)ϕ(α) -ϕ(β) = m k ϕ(γ) -ϕ(kγ + (1 -k)α) + (1 -k) ϕ(α) -ϕ(kγ + (1 -k)α) = mk(1 -k)(γ -α) ϕ (ξ 1 ) -ϕ (ξ 2 ) = mk(1 -k)(γ -α)(ξ 1 -ξ 2 )ϕ (ξ) ,
AB + BC -AC ≤ m(γ -α) 2 4 , (B.2) 
for ϕ ∞ = 1. As AC = mϕ(β), the result holds.

Lemma 13. Let (u n ) n∈N a monotonically non-increasing sequence of real non negative numbers and (c n ) n∈N a sequence of reals in an interval I such that j i=0 c i ∈ I for any integer j. Then, j i=0 c i u i ∈ u 0 I for any integer j.

Proof. If u 0 = 0, then u n = 0 for any n and the result is obvious. From now, we assume u 0 > 0. Let n ∈ N and S = n i=0 c i u i . We set C j = j i=0 c i for any j ≤ n, p i = ui-ui+1 u0 for any i ≤ n -1 and p n = un u0 . The reals p i are all non-negative and their sum equals 1. We can easily check that

S = n-1 i=0 i j=0 c j (u i -u i+1 ) + n j=0 c j u n = u 0 n i=0 p i C i .
The last equality above shows that the real 1 u0 S is the barycenter with nonnegative weights of numbers in the interval I. Thus, the result holds. Lemma 14. Let f 1 and f 2 be two piecewise ane functions dened on [c, d] ⊂ R, (c < d), with a common partition σ = (x i ) p i=0 having p steps and such that

f 1 ≤ f 2 ≤ f 1 + e for some constant e > 0. If furthermore f 2 is concave, then |L(f 1 ) -L(f 2 )| ≤ p i=1 1 x i -x i-1 e 2 + U e ≤ p M -1 (σ) e 2 + U e .
where U = max(ϕ (s 2,0 ), ϕ (s 2,0 ) -2ϕ (s 2,p-1 ))) is a constant which depends on the slopes s 2,0 and s 2,p-1 of the rst and the last segments of f 2 .

Proof. Let σ = (x i ) p i=0 be the common partition for f 1 and f 2 . We write m i for x i+1x i and s 1,i , resp. s 2,i , for the slope of f 1 , resp. (ϕ (s 0,i )ϕ (s 2,i )) m i (s 1,is 2,i ) .

Let give an upper bound for C=

p-1 i=0 ϕ (s 2,i ) m i (s 1,is 2,i ) . Since the function f 2 is concave, the sequence (s 2,i ) p-1 i=0 is non-increasing as is the sequence (ϕ (s 2,i )) p-1 i=0 (for the function ϕ is increasing). Hence, we can apply Lemma 13 with the settings where U = max(ϕ (s 2,0 ), ϕ (s 2,0 ) -2ϕ (s 2,p-1 )).

c i = m i (s 1,i -s 2,i ) = (f 1 (x i+1 ) -f 2 (x i+1 )) -(f 1 (x i ) -f 2 (x i )) ,
We now look at the sum D= p-1 i=0 (ϕ (s 0,i )ϕ (s 2,i )) m i (s 1,is 2,i ). The function ϕ is 1-Lipschitz (ϕ (x) = (1 + x 2 ) (-3/2) ), so we have where U = max(ϕ (α), ϕ (α) -2ϕ (β)) with α, resp. β, lying between the slopes of the rst, resp. last, segments of C(f 1 ) and C(f 2 ).

Proof. Let σ = (x k ) p k=0 be a common partition for f 1 and f 2 . We write m k for xx k and s 1,k , resp. s 2,k , for the slope of f 1 , resp. f 2 , on the interval [x k , x k+1 ]. Since f 1 and f 2 are concave, the sequences (s 1,k ) and (s 2,k ) are monotonically non-increasing. Then,

L(f 1 ) -L(f 2 ) = p-1 k=0 m k (ϕ(s 1,k ) -ϕ(s 2,k )) = p-1 k=0 ϕ (z k )m k (s 1,k -s 2,k ) ,
where z k ∈ (s 1,k , s 2,k ). Let i < j be two integers in [[0, p -1]]. Since s 1,i > s 1,j , s 2,i > s 2,j and, by denition, ϕ (z i ) and ϕ (z j ) are the slopes of two chords of the convex curve C(ϕ) between the points of abscissas s 1,i , s 2,i for the former and between the points of abscissas s 1,j , s 2,j for the latter, we derive that ϕ (z i ) > ϕ (z j ). Thereby, the sequence ϕ (z k ) is monotonically non-increasing. Now, from Lemma 13, taking 

c k = m k (s 1,k -s 2,k ) = (f 1 (x k+1 ) -f 2 (x k+1 )) -(f 1 (x k ) -f 2 (x k )),

  in the other cases. An α-pattern function A on a set of rectiable functions C is a pattern function such that, for any function g ∈ C, lim h→0 M α (A(D(g, h), h)) = +∞. • An (α, β)-pattern function (β ∈ R) A on C is an α-pattern function such that, for any function g ∈ C, lim h→0 M β (A(D(g, h), h)) × h = 0. • An α-pattern function, resp. (α, β)-pattern function, is an α-pattern function, resp. (α, β)-pattern function, on the set of all rectiable functions.

Theorem 1 (

 1 [START_REF] Mazo | Non-local estimators: a new class of multigrid convergent length estimators[END_REF]). Let g : [a, b] → R be a k 1 -Lipschitz function and A be a 1pattern function. If there exist a (1, β)-pattern function B, β ∈ [1, +∞], and a real ω such that, for any grid spacing h, g A cg B c ∞ ≤ ωh, then

Example 2 .

 2 The result given by Proposition 4 is illustrated on Fig.2with the same function and patterns as in Example 1, taking each time A = B (and ω = 1). With the sparse estimators, we have, for any γ and α, M α = Θ(h -γ ).

Figure 2 :

 2 Figure 2: L(g A c ) -L( g A c ) (see text). Theorem 5. Let A be a (-1, +∞)-pattern function. Let g : [a, b] → R be a concave function whose one-sided derivatives are dened and Lipschitz on [a, b].Then L NL (A, g, h) converges toward L(g) as h tends to zero and

Theorem 6 .

 6 Let A be a 1-pattern function. Let g : [a, b] → R be a concave function whose one-sided derivatives are dened and Lipschitz on [a, b]. If, as h tends toward zero, the Hausdor distance between D(g, h) and g A c is bounded 2 , then L NL (A, g, h) converges toward L(g) and

1 h 1 /Figure 3 :

 113 Figure 3: L(g) -L( g c

Theorem 9 .

 9 Let A be a 1-pattern function. Let g : [a, b] → R be a biconcave function relative to A whose one-sided derivatives are dened and Lipschitz on [a, b]. If, as h tends toward zero, the Hausdor distance between D(g, h) and

  Detailed calculus.The notations are those introduced in Paragraph Notations of Section 2.2.Let h = 1 144(8p+1) 2 (p ∈ N) and H = h -1 2 = 12(8p + 1). Thereby, here we have A = 9(8p + 1) 2 and Ah =

Theorem 10 ([ 6 ,

 6 Lemma 2 and Prop. 3]). Let a, b ∈ R, a < b. Let g : [a, b] → R be a polynomial function of degree 2. Then, for all interval I ⊆ [0, 1], lim h→0 card{x ∈ hZ ∩ [a, b] | g(x) mod h ∈ hI} card(hZ ∩ [a, b]) = µ(I) ,

  Detailed calculus. According to Theorem 10 with [a, b] = [1 -17 24H , 1 -16 24H ] and I = [ 4 12 , 7 12

  B.1 is illustrated, and commented, in Figure B.4.

Fig. B. 5

 5 Fig. B.5 illustrates the conguration studied in Lemma 12. Proof. Let k ∈ (0, 1) such that β = kγ + (1k)α. Let m be the abscissa of AC. It can be seen that the vectors AB, BC and AC have coordinates (km, kmγ), ((1k)m, (1k)mα) and (m, mβ). Thus,

Figure B. 5 :

 5 Figure B.5: α, β, γ are the slopes of the segments BC, CA, AB.

f 2 ,

 2 on the interval[x i , x i+1 ]. Then, L(f 1 ) -L(f 2 ) = p-1 i=0 m i ϕ(s 1,i )ϕ(s 2,i ) = p-1 i=0 ϕ (s 0,i ) m i (s 1,is 2,i ) where s 0,i ∈ [s 1,i , s 2,i ] = p-1 i=0 ϕ (s 2,i ) m i (s 1,is 2,i ) + p-1 i=0

ϕ

  u i = ϕ (s 2,i )ϕ (s 2,p-1 ) , I = [-e, e] .Lemma 13 induces thatp-1 i=0 u i c i ≤ u 0 e. Then, we get C ≤ (s 2,p-1 )c i ≤ u 0 e + |ϕ (s 2,p-1 )| f 1 (d)f 2 (d)f 1 (c)f 2 (c) ≤ u 0 e + |ϕ (s 2,p-1 )| e ≤ U e ,

2 ≤e 2 .

 22 |ϕ (s 0,i )ϕ (s 2,i )| ≤ |s 0,is 2,i | ≤ |s 1,is 2,i | . s 1,is 2,i )Eventually, we get|L(f 1 ) -L(f 2 )| ≤ U e + Let f 1 and f 2 be two concave piecewise ane functions dened on [c, d] ⊂ R such that f 1 ≤ f 2 ≤ f 1 + e for some e > 0. Then |L(f 1 ) -L(f 2 )| ≤ U e .(B.4)

u 1 k=0(- 1 k=0u≤

 11 k = ϕ (z k )ϕ (z p-1 ) andI = [-e, e] ,we derive from (12) that|L(f 1 ) -L(f 2 )| = pu k + ϕ (z p-1 ))c k ≤ pk c k + |ϕ (z p-1 )| u 0 e + |ϕ (z p-1 )| e ≤ U e ,where U = ϕ (z 0 )ϕ (z p-1 ) + |ϕ (z p-1 )| = max(ϕ (z 0 ), ϕ (z 0 ) -2ϕ (z p-1 )).

  there exists h 1 > 0 such that for any h < h 1 , one can nd n 0 ∈ N such that [[n 0 H, (n 0 + 2)H]] ⊂ J and g(n 0 hH) -

	12 , 7h 12 ). g h (n 0 hH) ∈ [ 4h Let h < h 1 . Noting that 16 12H ≤ g (x) ≤ 17 12H on [a, b], we claim that
	g h ((n 0 + 1)hH)-g h (n 0 hH)		
	< g((n 0 + 1)hH) -(g(n 0 hH) -	7 12	h)
	<	17 12H	× hH +	7 12	h
	< 2h .			

Since g is concave on [a, b], it is equivalent to assume that d g or drg is k-Lipschitz for some k > 0, or that drg(x)d g(y) ≤ k(yx) for any x, y such that a ≤ x < y ≤ b.

Appendix A.1. An inferior bound for the convergence speed of a concave function

We present in this section an example of a parabola rectication by a sparse estimator where the bound found in Theorem 5 is reached.

Let H = h -γ with 0 < γ < 1 be the step of the sparse estimator, the pattern function of which is noted A (A is a (α, β)-pattern function for any α, β in R \ {0}). Let g be the function dened on the interval I = [ 

Thereby, the best choice for

be the piecewise ane functions dened in Section 2.2. Then, we shall prove below that the lengths of their curves satisfy L( g A c ) + 0.07h ≤ L(g A c ) ≤ L(g) for any h = (12(8p + 1)) -2 where p ∈ N. Observe that the bounds of the interval I are multiple of h. Hence, there is no error due to the bounds (i.e. g A c = g). Moreover, the function g veries the condition (i) of Prop. 7 and is then biconcave relative to A. Eventually, for any p ∈ N and h = (12(8p + 1)) -2 , we get L(g) -L NL (A, g, h) ≥ 0.07h which proves that the convergence rate in Theorem 5 cannot be improved in the general case.

Appendix A.2. Biconcavity

In this section, we exhibit a concave function whose discretizations contain arbitrary long convex pairs of chords. The counterexample relies on the following theorem proved in [START_REF] Tajine | Patterns for multigrid equidistributed functions: Application to general parabolas and length estimation[END_REF]. This theorem asserts that, given a function x → ax 2 + bx+c, the distribution in [0, h] of the values of the expression a(kh) 2 +b(kh)+c mod h, k ∈ N, which are the errors resulting from the quantization in hZ, tends toward the equidistribution. Thus, g ((n 0 + 2)hH)g (n 0 hH) ≥ 3h .

Finally, we have g ((n 0 + 2)hH)g (n 0 hH) > 2 g ((n 0 + 1)hH)g (n 0 hH) .

That is, the function g is strictly convex on [n 0 hH, (n 0 + 2)hH]. where the derivative of f is dened. Then, the length L(f ) of the graph of f is less than, or equal to, the length of the polylines joining the points A(a, f (a)) and B(b, f (b)) with segments of slopes m or M .

Proof. We assume without loss of generality that [a, b] = [0, 1]. Let s be the slope of the line from A to B. Since f is Lipschitz continuous, it is almost everywhere dierentiable and the slope s is equal to the integral of f on [0, 1]. Thus, m ≤ s ≤ M and there exists k

and it can easily be seen that the length of any polyline joining the points A and B with segments of slopes m or M is L = (1k)ϕ(m) + kϕ(M ).

We shall prove that L(f )s ≤ Ls, that is

where ψ(x) = ϕ(x)x. Observe that the function ψ is positive, decreasing and convex.

Let ψ •g be a simple function such that 0 < ψ •g ≤ ψ •f (since ψ is bijective from R to ]0, +∞[, any positive simple function can be written as ψ • g). From ψ • g ≤ ψ • f , we derive that g ≥ f . Thus, g ≥ m. Furthermore, even if it means replacing g by inf(g, M ), we may assume that g ≤ M . Now, let k 1 be the real in [0, 1] such that