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Abstract

In a previous work [5], the authors introduced the Non-Local Estimators (NLE),
a wide class of polygonal length estimators including the sparse estimators and
a part of the DSS ones. NLE are studied here under concavity assumption and
it is shown that concavity almost doubles the multigrid converge rate w.r.t.
the general case. Moreover, an example is given that proves that the obtained
convergence rate is optimal. Besides, the notion of biconcavity relative to a
NLE is proposed to describe the case where the digital polygone is also con-
cave. Thanks to a counterexample, it is shown that concavity does not imply
biconcavity. Then, an improved error bound is computed under the biconcavity
assumption.

1. Introduction

This article is the second of a pair devoted to the study of the multigrid
convergence of length estimators. For short, the considered length estimators
are based on a polygonal approximation of the digitized function whose edge
discrete sizes tend in mean toward in�nity, as the grid step tends toward zero.
Indeed, it is known that length estimators using �xed size edges, even with suit-
able weights, do not converge in the general case and it is likely that this result
could be extend to estimators using edges of bounded sizes, weighted or not.
In the �rst article [5], we introduced the notion of non local estimator (NLE),
a polygonal estimator using edges whose mean discrete size tend toward in�n-
ity and, among the NLE, we considered in particular the M-sparse estimators
(MSE) whose true edge lengths (taking into account the grid step) tend toward
zero in mean. We proved that a MSE, or a NLE close to a MSE, has the multi-
grid convergence property. In the present article, we focus on the improvement
brought by the concavity assumption on the multigrid convergence speed for
the NLE. Indeed, we know from a previous work [4], that convexity doubles the
convergence rate of the sparse estimators the most regular MSE. This is not
exactly the case in the more general setting of the NLE but nevertheless we
show that the convergence is signi�cantly sped up by the concavity for a wide
class of continuous functions that satisfy a Lipschitz condition on the left and
the right derivative. Moreover, we introduce the notion of biconcavity which
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expresses that both the continuous curve and the polygonal line used for the
length estimation are concave. This notion was implicitly used in [3, theorem
13] to prove the multi-grid convergence of the maximal digital straight segment
estimator (MDSSE). Under the biconcavity assumption, we establish a result
that �t our observations on the convergence speed of the MDSSE for the natural
logarithm function.

The paper is organized as follows. In Section 2, some necessary notations
and conventions are recalled, as are the NLE convergence properties in the
general case. Two theorems on the multigrid convergence rate of NLE and
MSE for concave continuous functions are given in Section 3. An experiment
exempli�es the results. Section 4 is devoted to the biconcavity. A su�cient
condition for this property is presented and we state our third theorem on the
convergence rate. Section 5 concludes the article. The reader will also �nd
in Appendix A an example of a concave function for which our best upper
bound for the convergence rate is reached, indicating that this bound cannot
be improved in the general case. Moreover an example of a concave function
whose digitization family has convex pairs of arbitrary long consecutive chords
for an in�nity of grid steps is exhibited. Eventually, Appendix B gathers the
technical lemmas used in Sections 3 and 4.

2. Background and previous results

In this section, we give our notations and we recall the notion of Non-Local
Estimators (NLE) introduced in [5].

2.1. Digitization models

This paper is focused on the digitization of function graphs. So, let us con-
sider a continuous function g : [a, b] → R (a < b), its graph C(g) = {(x, g(x)) |
x ∈ [a, b]} and a positive real number r, the resolution. We assume to have
an orthogonal grid in the Euclidean space R2 whose set of grid points is hZ2

where h = 1/r is the grid spacing. We use the following notations: bxc is the
greatest integer less than, or equal to x and dxe is the smallest integer greater
than x. For i ≤ j two integers, [[i, j]] stands for [i, j] ∩ Z. The h-digitization of
the function g is the discrete function D(g, h) : [[da/he , bb/hc]] → Z de�ned by
D(g, h)(k) = bg(kh)/hc. Provided the slope of g is limited by 1 in modulus, the
graph of D(g, h) is an 8-connected digital curve. Nevertheless, in this article,
we make no assumption on the slope of the function g.

2.2. Non-local length estimators (NLE)

For any continuous function f : [a, b] → R, L(f) denotes the length of the
graph C(f) according to Jordan's de�nition of length:

L(f) = sup
a=x0<x1<···<xn=b

n∑
i=1

√
(xi − xi−1)2 + (f(xi)− f(xi−1))2,
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where the supremum is taken over all the possible partitions of [a, b] and n
is unbounded. The reader can �nd in [5] a description of the classical length
estimators.

Let us now recall the key notions in the de�nition of the NLEs.

• A pattern function is a function that maps a discrete curve Γ and a grid
spacing h to a partition of the domain of Γ.

Let A and B be two pattern functions. We say that A is �ner than B, we
write A ≺ B, if for any discrete curve Γ and any grid step h, the partition
A(G, h) is �ner than the partition B(G, h).

• Let α ∈ R = [−∞,+∞] be any non-zero real number. When σ is a
partition of some interval I ⊂ R, the α-th power mean of the σ subinterval
length sequence (xi)

n
i=0 is de�ned for α ∈ R by

Mα((xi)
n
i=0) =

(
1

n

n∑
i=0

xi
α

) 1
α

,

and M+∞((xi)
n
i=0) = max((xi)

n
i=0) , M−∞((xi)

n
i=0) = min((xi)

n
i=0) in the

other cases.

An α-pattern function A on a set of recti�able functions C is a pattern
function such that, for any function g ∈ C, lim

h→0
Mα(A(D(g, h), h)) = +∞.

• An (α, β)-pattern function (β ∈ R) A on C is an α-pattern function such
that, for any function g ∈ C, lim

h→0
Mβ(A(D(g, h), h))× h = 0.

• An α-pattern function, resp. (α, β)-pattern function, is an α-pattern func-
tion, resp. (α, β)-pattern function, on the set of all recti�able functions.

The non-local length estimator associated to an α-pattern function A maps
a pair (G, h), consisting of a discrete curve and a grid step, to the length
LNL(A, G, h) of an h-homothetic copy of the polyline whose vertices are the
points of G with abscissas in A(G, h). Given a recti�able function g, by abuse
of notation, we write LNL(A, g, h) instead of LNL(A,D(g, h), h) and also A(g, h)
instead of A(D(g, h), h). Let H : (0,+∞) → N?. A sparse estimator with step
H is a non-local length estimator whose pattern function A only depends on
the grid step h and such that the partition A(G, h) has a constant step H(h)
but its last step which is not greater than H(h).

The main result without concavity hypothesis is that NLE are convergent
for Lipschitz functions. We recall below (Theorem 1) a result, proved in [5], that
gives a bound on the error at the grid spacing h for Lipschitz functions whose
derivatives are k-Lipschitz on any interval included in their domains (k > 0).
Before stating Th. 1, we need �rst to complete the introduction to our notations.
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Notations. We present some notations used throughout the remainder of the
article. The �rst ones concern Euclidean objects. Thereby, they do not depend
upon the grid spacing. The others are related to the grid spacing h and should
be indexed by h. Nevertheless, as we never have to work with two di�erent grid
spacings, the h index is omitted to lighten the notations.

I = [a, b] is an interval of R with a non-empty interior and g : I → R is a
Lipschitz function whose derivative is denoted g′ (from Rademacher's theorem,
g is di�erentiable almost everywhere). The function ϕ : R → R is de�ned by
ϕ(x) =

√
1 + x2. Thus, one has L(g) =

∫
[a,b]

ϕ ◦ g′.
Given some grid spacing h > 0, A, resp. B, is the smallest, resp. largest,

integer such that Ah ∈ I, resp. Bh ∈ I. The functions gl, gc, gr are resp.
the restrictions of the function g to the intervals [a,Ah], [Ah,Bh], [Bh, b]. For
any pattern function A, we write MAα , instead of Mα(A(g, h)) when there is
no ambiguity. The number of subintervals in the partition A(g, h) is denoted
NA, or just N when possible and the integers de�ning the partition A(g, h)
are A = a0 < a1 < · · · < aN = B ( A = b0 < b1 < · · · < bN = B for the
partition B(g, h)). In particular, for a sparse estimator with step H and a real
α, the mean Mα(A(G, h)) lies between H(h) and H(h)(1 − 1/N)1/α. Finally,
two piecewise a�ne functions, gAc and

⌊
gAc
⌋
, are de�ned. They interpolate the

continuous function gc and its digitization (actually, the h-homothetic copy of
the digital curve D(g, h)) according to the pattern function A. The graph of
gAc , resp

⌊
gAc
⌋
, is the polyline linking the points

(
aih, g(aih)

)N
i=0

which are in

C(g), resp. the grid points
(
aih, b g(aih)h ch

)N
i=0

which are in hZ2.
We are now able to state Th. 1.

Theorem 1 ([5]). Let g : [a, b] → R be a k1-Lipschitz function and A be a 1-
pattern function. If there exist a (1, β)-pattern function B, β ∈ [1,+∞], and a
real ω such that, for any grid spacing h, ‖

⌊
gAc
⌋
−
⌊
gBc
⌋
‖∞ ≤ ωh, then

• if β = +∞, the non-local estimation LNL(g,A, h) converges toward the
length of the curve C(g) as h tends to 0;

• if g′ is k2-Lipschitz on each interval included in its domain, we have

L(g)− LNL(A, g, h) ≤
Sh+ T hMB1 (1 + (CB)2) + UHB + V

(
1
MA1

+ 1
MB1

)
, (1)

where S = 2ϕ(k1), T = k2(b− a)/2, U = ϕ(k1)− 1, V = (1 + 2ω)ϕ′
(
k1 +

1/MA−1

)
(b− a) and HB is the measure of the union of the B(g, h) subin-

tervals on which g is not di�erentiable.

Furthermore, if B(g, h) ⊆ A(g, h), the term 1/MA1 + 1/M1
B in the right hand

side of Equation (1) can be replaced by 1/MB1 .

Apart from the �rst one, the upper bounds that appear in the right hand side
of Equation (1) can be improved in the case of concave functions.
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3. Concave functions length estimation

In this section, we assume that the function g is concave on [a, b]. This
implies in particular that g admits left and right derivatives, noted d`g and
drg, at any point of (a, b) and is Lipschitz continuous on any closed subinterval
of (a, b). We assume moreover that the one-sided derivatives of g are de�ned
and Lipschitz1 on [a, b]. In particular, g is Lipschitz on [a, b]. Under this new
hypothesis, we can improve the bound on the convergence speed of the estimated
length toward the true length of the curve C(g).

3.1. General case

Let A be a pattern function. The functions gl, gr, gAc and
⌊
gAc
⌋
are those

de�ned in Paragraph Notations of Section 2.2. Firstly, we recall a bound on the
errors due to the loss of the true left and right extremities of the curve C(g). Its
proof can be found in [5].

Proposition 2 (Curve extremity error). For any k-Lipschitz function g,
we have

L(gl) + L(gr) ≤ 2ϕ(k)h.

Propositions 3 and 4 are improvements of Propositions 3 and 4 of [5] for
concave curves. The �rst one gives an upper bound on the discretization error.

Proposition 3 (Error between curve and curve chords). Let g be a con-
cave function whose one-sided derivatives are de�ned and k-Lipschitz on [a, b]
(k > 0). Then

L(gc)− L(gAc ) ≤
N∑
i=1

k2

4
(ai − ai−1)3h3 ≤ k2(b− a)M3

3

4M1
h2. (2)

Proof. Note that the proof appeals to a technical result, Lemma 12, which is
stated, and proved, in Appendix B.
Let us consider the partition σ = h · A(g, h) of the interval [Ah,Bh] and the
piecewise a�ne function gA+

c : [Ah,Bh]→ R de�ned by

gA+
c (x) = min

(
g(xi−1) + drg(xi−1)(x− xi−1), g(xi)− d`g(xi)(xi − x)

)
,

where [xi−1, xi] is the subinterval of the partition σ that contains x. Note that
gA+
c (xi), 0 ≤ i ≤ N , is uniquely de�ned and is equal to g(xi).
Since g is concave, we have on the one hand drg(xi−1) ≤ g′ ≤ d`g(xi) on any

subinterval [xi−1, xi] of σ and, on the other hand, gAc ≤ gc ≤ gA+
c on [Ah,Bh].

Therefore, we can apply Lemma 11 and Lemma 12 on each subinterval of the
partition σ. Together with the hypothesis on the derivatives of g, this leads to
the following inequalities.

1Since g is concave on [a, b], it is equivalent to assume that d`g � or drg � is k-Lipschitz
for some k > 0, or that drg(x)− d`g(y) ≤ k(y − x) for any x, y such that a ≤ x < y ≤ b.
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L(gc)− L(gAc ) ≤ L(gA+
c )− L(gAc )

≤
N∑
i=1

(xi − xi−1)
( drg(xi−1)− d`g(xi))

2

4

≤
N∑
i=1

k2

4
(xi − xi−1)3

≤ k2h3N

4
M3

3

≤ k2h2(b− a)

4

M3
3

M1
.

Hence, the result holds. �

Inequality (2) has to be compared to the following one obtained in [5, Propo-
sition 3] for a function g di�erentiable with a derivative k Lipschitz continuous:

L(gc)− L(gAc ) ≤ k(b− a)

2
hM2 .

When the partition A(g, h) is roughly even, M3
3/M1 ≈ M2

2 and the upper
bound is squared under the concavity assumption. In the worst case, we also
note that

M3
3

M1
=

∑
(ai+1 − ai)3∑
(ai+1 − ai)

≤
∑

(ai+1 − ai)M+∞
2∑

(ai+1 − ai)
≤ (M+∞)2 .

(3)

Example 1. The result given by Proposition 3 is illustrated on Fig. 1 with
the natural logarithm on the interval [1, 2], the sparse estimators with steps
H(h) = h−γ where γ ∈ { 14 , 13 , 12 , 23} and the MDSS estimator. The grid steps
used for the plot are h = (2/3)n, n ∈ [1, 40]. Then, for any γ, Mα ≈ h−γ

(precisely, h−γ(1−h)α ≤Mα ≤ h−γ) and Eq. (2) gives the following expression
for the discretization error

L(gc)− L(gAc ) = 1
4h

2(1−γ) .

In Figure 1, the continuous lines stand for the error computed from the formula
above, where the constant has been estimated from the data. We see that Eq. (2)
gives the right convergence rate though the given constant (1/4) is bigger than
the empirical ones (between 0.1 and 0.001). This was expected mainly because
Eq. (2) involves an upper bound for the second derivative while this derivative
is not constant. Regarding the MDSS estimator, we just know from [1] that

Ω(h−1/3) ≤M1 ≤ O(h−1/3 log(h−1)) .

So, we plotted two lines ∝ h4/3 and ∝ h4/3 log2(h−1) that �t the data well.
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0.01h2(1−2/3)
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0.01h2(1−1/3)

0.01h2(1−1/4)

0.001h2(1−1/3) log2(h−1)

0.1h2(1−1/3)

Figure 1:
∣∣L(gc)− L(gAc )

∣∣ (see text).
The following proposition gives an upper bound on the quantization error.

It appeals to two pattern functions. Indeed, the pattern functions have been
introduced in [5] to report on the behavior of two families of length estimators:

• sparse estimators [4] that use domain partitions A(G, h) that only depends
upon the parameter h,

• MDSS (Maximum Digital Straight Segments) that use domain partitions
that only depend upon the discrete function G

(local estimators domain partitions depend neither upon h nor upon G and fail
to converge). Since MDSS domain partitions depend on the function graph, one
cannot assert anything about the 'true length' of the subsegments of a MDSS so
the underlying pattern function of a MDSS is not in general an (α, β)-pattern
function. Nevertheless, since by de�nition a MDSS is close to the curve, the
resulting digital curve segmentation is not far from the segmentation produced
by some (α, β)-pattern function. This is the reason why in the next proposition
and in the proof of Theorem 6, we appeal to two pattern functions that are close
to each other.

Proposition 4 (Error between curve chords and grid chords). Let g be
a concave function and A and B be two pattern functions such that B ≺ A and
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gBc −
⌊
gAc
⌋
≤ ωh for some ω > 0. Then

∣∣L(gBc )− L(
⌊
gAc
⌋
)
∣∣ ≤ U NB∑

i=1

h

bi − bi−1
+ V h

≤ U b− a
MB
−1M

B
1

+ V h ,

(4)

where U = ω2 and V = max(g′(a), g′(a)− 2g′(b)).

Proof. From the hypotheses, we have⌊
gAc
⌋
≤ gBc ≤

⌊
gAc
⌋

+ ωh .

Let s1 and s2 be the slopes of the �rst and last segments of gBc . Since g is
concave, g′(a) ≥ s1 ≥ s2 ≥ g′(b). From Lemma 14, applied with f1 =

⌊
gAc
⌋
,

f2 = gBc , σ = hB(g, h), p = NB and e = ωh, we derive

∣∣L(gBc )− L(
⌊
gAc
⌋
)
∣∣ ≤ U NB∑

i=1

h

bi − bi−1
+ V h for max(s1, s1 − 2s2) ≤ V

≤ U N
Bh

MB−1
+ V h

≤ U b− a
MB−1M

B
1

+ V h .

�

Example 2. The result given by Proposition 4 is illustrated on Fig. 2 with the
same function and patterns as in Example 1, taking each time A = B (and
ω = 1). With the sparse estimators, we have, for any γ and α, Mα = Θ(h−γ).
For the MDSS estimator, we assume that, for any α, Mα is in Θ(h−1/3) or in
Θ(h−1/3 log(h−1)). Then, Eq. (4) gives the following upper bounds for the error
L(gAc )− L(

⌊
gAc
⌋
):

• O
(
hmin(1,2γ)

)
for the sparse estimators;

• O
(
h2/3

)
, or O

(
h2/3/ log2(h−1)

)
, for the MDSS estimator.

The continuous lines in Fig. 2 correspond to these upper bounds. Though the
behavior of the quantization error is less regular than the behavior of the dis-
cretization error, the observed convergence rates for the quantization errors �t
again our upper bounds. Also, note that the observed constants, hidden in the
big O, are smaller than the ones calculated from Eq. (4) (from a factor of about
10).

From Propositions 2, 3 and 4, we derive the following theorems on the conver-
gence speed when the function g is concave. Compared to Theorem 1, concavity
almost squares the convergence speed. In particular, the optimal step-size for
uniform size algorithms remains unchanged (Hγ(h) = Θ(h−

1
2 )) but the speed is

improved up to h.
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Figure 2:
∣∣L(gAc )− L(

⌊
gAc
⌋
)
∣∣ (see text).

Theorem 5. Let A be a (−1,+∞)-pattern function. Let g : [a, b] → R be a
concave function whose one-sided derivatives are de�ned and Lipschitz on [a, b].
Then LNL(A, g, h) converges toward L(g) as h tends to zero and

L(g)− LNL(A, g, h) = O
(
h2
(
M3

)3
M1

)
+O

(
1

M−1M1

)
. (5)

Proof. The function g satis�es the hypothesis of Propositions 2, 3 and 4. So
we have

|L(g)− L(gc)| = O(h) ,∣∣L(gc)− L(gBc )
∣∣ = O

(
h2
(
M3

)3
M1

)
,

∣∣L(gBc )− L(
⌊
gAc
⌋
)
∣∣ = O

(
1

M−1M1

)
+O(h) .

Since α 7→Mα is non decreasing, we derive

h2
(
M3

)3
M1

× 1

M−1M1
≥ h2 ,
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Thus, we can see that either

h2
(
M3

)3
M1

≥ h or
1

M−1M1
≥ h .

Hence, Eq. (5) holds.
SinceA is an (−1,+∞)-pattern function, on the one handM−1 and a fortiori

M1 tend toward +∞. On the other hand, from Eq. (3),

h2
(
M3

)3
M1

≤ (hM+∞)2 .

.

Then, since lim
h→+∞

hM+∞ = 0 by hypothesis, we conclude straightforwardly

that LNL(A, g, h) converges toward L(g). �

In order to include the MDSS based estimators, the hypothesis on the max-
imal subsegment length, limh→0 hM+∞ = 0 , should be relaxed. It is replaced
in Theorem 6 by a hypothesis on the pattern function distance to the function
graph.

Theorem 6. Let A be a 1-pattern function. Let g : [a, b] → R be a concave
function whose one-sided derivatives are de�ned and Lipschitz on [a, b]. If, as h
tends toward zero, the Hausdor� distance between D(g, h) and

⌊
gAc
⌋
is bounded2,

then LNL(A, g, h) converges toward L(g) and

L(g)− LNL(A, g, h) = O(h) +O
(

1

MA1

)
. (6)

Proof. Let h > 0 and (ai)
N
i=0 = A(g, h). We subdivide each subinterval of

the partition A(g, h) in �xed size segments whose sizes are ` and a last segment
whose size is not greater than ` (we do a sparse estimation of each subinterval).
Then, the pattern function B is de�ned by B(g, h) = (bi)

NB

i=0 where b0 = a0 = A
and, for any i ∈ [[1, NB]], bi = min

(
bi−1 + `, aj

)
with j = min{k | ak > bi−1}.

Let k = max
{(

drg(x) − d`g(y)
)
/(y − x)

∣∣ x < y ∈ [a, b]
}
. From Proposi-

tion 2, we have
|L(g)− L(gc)| = O(h) . (7)

From Proposition 3, we derive

∣∣L(gc)− L(gBc )
∣∣ ≤ NB∑

i=1

k2

4
(bi − bi−1)3h3

≤ k2

4
NB (`h)3 ,

2Actually, instead of
⌊
gAc

⌋
, we should use the function x 7→

⌊
gAc

⌋
(hx)/h.
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where

NB =

NA∑
i=1

⌈
ai − ai−1

`

⌉

≤
NA∑
i=1

ai − ai−1
`

+NA

≤ B −A
`

+
B −A
MA1

.

Thus,

NB ≤ (b− a)

(
1

`h
+

1

hMA1

)
. (8)

Then ∣∣L(gc)− L(gBc )
∣∣ ≤ k2

4
(b− a)

(
`2h2 +

`3h2

MA1

)
. (9)

The functions
⌊
gAc
⌋
and gBc are piecewise a�ne. Thus,

‖
⌊
gAc
⌋
− gBc ‖∞ = max

i∈[[0,NB]]
(
∣∣⌊gAc ⌋ (hbi)− gBc (hbi)

∣∣)
≤ max
i∈[[0,NB]]

( ∣∣⌊gAc ⌋ (hbi)− hD(g, h)(bi)
∣∣ )+ h

≤ O(h) (from the hypotheses) ,

Then, the hypotheses of Proposition 4 are satis�ed. We derive that there exists
two constants U and V , depending on g and A such that

∣∣L(gBc )− L(
⌊
gAc
⌋
)
∣∣ ≤ U NB∑

i=1

h

(bi − bi−1)
+ V h

≤ U
(

(NB −NA)× h

`
+NA × h

)
+ V h

≤ Uh
(
NB

`
+NA

)
+ V h .

Hence, Equation (8) implies

∣∣L(gBc )− L(
⌊
gAc
⌋
)
∣∣ ≤ U (b− a)

(
1

`2
+

1

`MA1
+

1

MA1

)
+ V h . (10)

Eventually, we obtain the following upper bound:∣∣L(g)− L(
⌊
gAc
⌋
)
∣∣ ≤ O(h)+

k2

4
(b− a)

(
`2h2 +

`3h2

MA1

)
+ U (b− a)

(
1

`2
+

1

`MA1
+

1

MA1

)
+ V h . (11)

11



Taking ` = h−1/2, we obtain the result:∣∣L(g)− L(
⌊
gAc
⌋
)
∣∣ = O(h) +O(1/MA1 ) . (12)

Note that, if we assume a uniforme distribution of the integers (ai − ai−1)

mod ` in the interval [[0, `−1]], the expected value of
∑NB

i=1
h

(bi−bi−1)
is in O

(
(b−

a)
(

1
`2 + 1

`MA1
+ 1

`2MA1

))
for large enough NA. Then, together with ` = h−1/2,

Equation (12) becomes
∣∣L(g)− L(

⌊
gAc
⌋
)
∣∣ = O(h) +O(h1/2/MA1 ). �

On our example with the logarithm, the observed error for the MDSS method
(see Figure 3) is in O(h) which is better than the expected convergence rate
O(h)+O(h1/2/MA1 ) (and a fortiori better than the worst case convergence rate
O(h) + O(1/MA1 )). Indeed, the mean M1 for the MDSS pattern function lies
between O(h−1/3) and O(h−1/3 log(h−1)) [1], so the bound for the expected
convergence rate lies between O(h5/6) and O(h5/6 log(h−1)).

1e-81e-61e-41e-21e+0
1e-10

1e-8

1e-6

1e-4

1e-2

1e+0

Grid step

E
rr
or

MDSS

h1

h1/ log(h−1)

0.1h5/6

0.1h5/6/ log(h−1)

Figure 3:
∣∣L(g)− L(

⌊
gMDSSc

⌋
)
∣∣. The continuous lines correspond to the con-

vergence rates derived from Theorem 6 and Theorem 9 (see text).

In the next section, we introduce the notion of biconcavity which corresponds
to the actual behavior of MDSS and we show that this property speeds up the
convergence rate and explains the observed convergence rate of the MDSSE.

4. Biconcavity

When the function g is concave, the piecewise a�ne function gAc is clearly
also concave. Nevertheless, the second piecewise function

⌊
gAc
⌋
is not necessarily

12



concave. When, below some threshold h0, the function
⌊
gAc
⌋
is concave for

any h > 0, we say that g is biconcave relative to A. In Appendix A.2, we
exhibit a concave function that is not biconcave relative to any local estimator.
Nevertheless, it follows from the very de�nition of

⌊
gAc
⌋
that its hypograph is

digitally convex (the convex hull of the hypograph does not contain more integer
points than the hypograph itself) and it was proved in [2] that the MDSS of
the boundary of digitally convex body of Z2 are monotonic. Hence, continuous
concave functions are biconcave relative to the MDSSE pattern function.

This section gives a su�cient condition to get the biconcavity property and
studies the consequences on the convergence speed of such a property.

Proposition 7. Let A be pattern function and let g : [a, b] → R be a concave
function such that, for some constant k > 0, it is true that drg(x) − d`g(y) ≥
k(y − x) for any x, y ∈ [a, b] such that x < y. If one of the following conditions
holds, then the piecewise a�ne function

⌊
gAc
⌋
is concave.

(i) hM−∞
2 ≥ 2/k,

(ii) hM−∞
2 ≥ 1/k and A(g, h) is a constant sequence.

Proof. Let δi = ai − ai−1 for 1 ≤ i ≤ N . The piecewise a�ne function
⌊
gAc
⌋

is concave i�, for any i ∈ [[1, N − 1]],⌊
gAc
⌋

(hai+1)−
⌊
gAc
⌋

(hai)

hδi+1
≤
⌊
gAc
⌋

(hai)−
⌊
gAc
⌋

(hai−1)

hδi
. (13)

Since, for any k ∈ [[0, N ]],
⌊
gAc
⌋

(hak) is a multiple of h, Equation (13) can be
rewritten as

δi
( ⌊
gAc
⌋

(hai+1)−
⌊
gAc
⌋

(hai)
)
− δi+1

( ⌊
gAc
⌋

(hai)−
⌊
gAc
⌋

(hai−1)
)

< h gcd(δi, δi+1).

Thus, from the very de�nition of the function
⌊
gAc
⌋
, we derive that Equation

(13) is true whenever

δi
(
g(hai+1)− g(hai) + h

)
− δi+1

(
g(hai)− g(hai−1)− h

)
≤ h gcd(δi, δi+1).

(14)

Now, from the hypotheses, we derive that, for any x, y ∈ [a, b] such that x < y,

g(y)− g(x) =

∫ y

x

g′(t) dt

≤
∫ y

x

drg(x)− k(t− x) dt

≤ drg(x)(y − x)− 1

2
k(y − x)2 .

Alike,

d`g(y)(y − x) +
1

2
k(y − x)2 ≤ g(y)− g(x) .

13



Then
g(hai+1)− g(hai) ≤ drg(hai)hδi+1 −

1

2
k(hδi+1)2

and
d`g(hai)hδi +

1

2
k(hδi)

2 ≤ g(hai)− g(hai−1)

Thus, Equation (14) is true whenever

hδiδi+1

(
drg(hai)−

1

2
khδi+1−d`g(hai)−

1

2
khδi

)
≤ h

(
gcd(δi, δi+1)−δi−δi+1

)
.

Noting that drg(hai) ≤ d`g(hai), we get the following su�cient inequality

h(M−∞)2k(δi+1 + δi) ≥ 2
(
δi + δi+1 − gcd(δi, δi+1)

)
.

That is

h(M−∞)2k ≥ 2
(
1− gcd(δi, δi+1)

δi+1 + δi

)
.

Proposition 7 follows straightforwardly. �

The next proposition is an improvement of Proposition 4 in case of bicon-
cavity. It is a consequence of Lemma 15.

Proposition 8. Let A and B be two pattern functions such that B ≺ A,
⌊
gAc
⌋

is concave and ‖
⌊
gAc
⌋
−
⌊
gBc
⌋
‖∞ ≤ ωh for some ω > 0. Then∣∣L(gBc )− L(

⌊
gAc
⌋
)
∣∣ ≤ Uh , (15)

where U = max(α, α− 2β) with α = ϕ′(g′(a) + 1) and β = ϕ′(g′(b)− 1).

Proof. From the hypotheses, we have( ⌊
gAc
⌋
− ωh

)
≤ gBc ≤

( ⌊
gAc
⌋
− ωh

)
+ (2ω + 1)h .

Moreover, gBc is concave (for g is concave).
Let sA1 and sA2 , resp. s

B
1 and sB2 , be the slopes of the �rst and last segments of⌊

gAc
⌋
, resp. gBc . From Lemma 15, applied with f1 =

⌊
gAc
⌋
− ωh, f2 = gBc and

e = (2ω + 1)h, we derive ∣∣L(gBc )− L(
⌊
gAc
⌋
)
∣∣ ≤ U0h ,

where U0 = max(ϕ′(s1), ϕ′(s1)− 2ϕ′(s2)) with si, i ∈ {1, 2}, lying between sAi
and sBi .
Let (ai)

N
i=0 = A(g, h), δ1 = a1 − a0 and δN = aN − aN−1. It can easily be seen

that
sA1 < sB1 + 1/δ1

and
sA2 > sB2 − 1/δN .

14



Then, since g is concave,

sA1 < g′(a) + 1/δ1 ≤ g′(a) + 1

and
sA2 > g′(b)− 1/δN ≥ g′(b)− 1 .

Thus,
s1 ≤ max(sA1 , s

B
1 ) < g′(a) + 1

and
s2 ≥ min(sA2 , s

B
2 ) > g′(b)− 1 .

As the function ϕ′ is increasing, we get

ϕ′(s1) < α

and
ϕ′(s2) > β .

then
U0 < U

and the result holds.
�

The following theorem is the consequence of Proposition 8 on the convergence
speed of the non-local estimators.

Theorem 9. Let A be a 1-pattern function. Let g : [a, b] → R be a biconcave
function relative to A whose one-sided derivatives are de�ned and Lipschitz on
[a, b]. If, as h tends toward zero, the Hausdor� distance between D(g, h) and⌊
gAc
⌋
is bounded, then

L(g)− LNL(g, h) = O(h) +O
(
h2/3

MA1

)
.

Proof. The proof is similar to the proof of Theorem 6 except that we invoke
Proposition 8 instead of Proposition 4. Then, in Equation (10), the term (b −
a)
(

1
`2 + 1

`MA1
+ 1

MA1

)
vanishes and we get

∣∣L(g)− L(
⌊
gAc
⌋
)
∣∣ ≤ O(h) +

k2

4

(
`2h2 +

`3h2

MA1

)
.

Taking ` = h−4/9, we obtain the result:

∣∣L(g)− L(
⌊
gAc
⌋
)
∣∣ = O(h) +O

(
h2/3

MA1

)
.

�
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Observe that, for the MDSS pattern function on the set of C3 functions with
positive curvature, we have ([1]) Ω(h−1/3) ≤M1 ≤ O(h−1/3 log(h−1)). Then

O
(

h

log(h−1)

)
≤
∣∣L(g)− L(

⌊
gMDSSc

⌋
)
∣∣ ≤ O(h) . (16)

Equation 16 �ts the MDSS convergence rates reported in Figure 3.

5. Conclusion

In this paper, thanks to the concavity assumption, we improve previous re-
sults on the multigrid convergence rate of the Non Local Estimators, a class of
estimators that relies on a polygonal interpolation of the continuous function
digitization. Furthermore, we introduce the notion of biconcavity which is sat-
is�ed by the MDSS estimator and by the sparse estimators with enough large
pattern sizes. Biconcavity allows further improvement of the convergence rate,
up to O(h) in the worst case, which is optimal with a square grid whose step is
h. The proposed tests give convergence rates corresponding to the theoretical
ones. e Actually, the NLE framework with its pattern functions appears to be
an e�cient tool to study the multigrid convergence of the length estimators.
Future works will extend to the plane curves the obtained results and prospect
the relaxation of the concavity assumption.

Appendix A. Counterexamples

Appendix A.1. An inferior bound for the convergence speed of a concave func-
tion

We present in this section an example of a parabola recti�cation by a sparse
estimator where the bound found in Theorem 5 is reached.

Let H = h−γ with 0 < γ < 1 be the step of the sparse estimator, the
pattern function of which is noted A (A is a (α, β)-pattern function for any α,
β in R \ {0}). Let g be the function de�ned on the interval I = [ 1

16 ,
19
48 ] by

g(x) = (19
48 )2− x2. The function g clearly satis�es the hypotheses of Theorem 5

and the k-th power mean MAk is in O(h−γ) for any non-zero real number k.
Then, from Theorem 5 we get

L(g)− LNL(A, g, h) = O(h2(1−γ)) +O(h2γ) .

Thereby, the best choice for H is h−1/2 which gives L(g)−LNL(A, g, h) = O(h).
Let gAc and

⌊
gAc
⌋
be the piecewise a�ne functions de�ned in Section 2.2. Then,

we shall prove below that the lengths of their curves satisfy L(
⌊
gAc
⌋
) + 0.07h ≤

L(gAc ) ≤ L(g) for any h = (12(8p+ 1))−2 where p ∈ N. Observe that the
bounds of the interval I are multiple of h. Hence, there is no error due to the
bounds (i.e. gAc = g). Moreover, the function g veri�es the condition (i) of
Prop. 7 and is then biconcave relative to A. Eventually, for any p ∈ N and
h = (12(8p+ 1))−2, we get L(g) − LNL(A, g, h) ≥ 0.07h which proves that the
convergence rate in Theorem 5 cannot be improved in the general case.
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Detailed calculus.
The notations are those introduced in Paragraph Notations of Section 2.2.
Let h = 1

144(8p+1)2 (p ∈ N) and H = h−
1
2 = 12(8p+ 1).

Thereby, here we have

A = 9(8p+ 1)2 and Ah =
1

16
,

B = 57(8p+ 1)2 and Bh =
19

48
,

N =

⌈ 19
48 − 1

16

hH

⌉
= 4(8p+ 1) ,

∀i ∈ [[0, N ]], hai =
1

16
+ ihH =

1

16
+ i
√
h .

Furthermore, we have

g(hai) =
⌊
gAc
⌋

(hai) + (i mod 2)× h

2
. (A.1)

We also set

c =
h

2
,

zi = h
(ai + ai+1)

2
,

yi = g(hai+1)− g(hai)

= −2
√
h zi .

Then, from (A.1), we derive

L(gAc )− L(
⌊
gAc
⌋
) =

N/2−1∑
i=0

(√
h+ y2i2 +

√
h+ y2i+1

2
)

−
(√

h+ (y2i − c)2 +
√
h+ (y2i+1 + c)2

)
.

On the one hand√
h+ y2i2 −

√
h+ (y2i − c)2 = −h

4

8z2i +
√
h

√
1 + 4z2i2 +

√
1 + 4(z2i + 1

4

√
h)2

≥ −h
8

8z2i +
√
h√

1 + 4z2i2
.

On the other hand√
h+ y2i+1

2 −
√
h+ (y2i+1 + c)2 =

h

4

8z2i+1 −
√
h√

1 + 4z2i+1
2 +

√
1 + 4(z2i+1 − 1

4

√
h)2

≥ h

8

8z2i+1 −
√
h√

1 + 4z2i+1
2
.
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By summing,

L(gAc )− L(
⌊
gAc
⌋
) ≥

h

16p+1∑
i=0

(
z2i+1√

1 + 4z2i+1
2
− z2i√

1 + 4z2i2

)
− h
√
h

8

32p+3∑
i=0

1√
1 + 4zi2

.

Since the function f1(x) = x√
1+4x2

is monotonically increasing and concave, one
has

16p+1∑
i=0

(f1(z2i+1)− f1(z2i)) ≥
1

2

32p+3∑
i=0

(f1(zi+1)− f1(zi))

≥ 1

2
(f1(z32p+4)− f1(z0)) .

Moreover, the function f2(x) = 1√
1+4x2

is monotonically decreasing and con-

vex. Thus the Riemann sum
∑32p+3
i=0

1√
1+4zi2

×
√
h is bounded by the integral∫ 19

48
1
16

f2(x) dx. It follows that

L(gAc )− L(
⌊
gAc
⌋
) ≥ h

2

(
f1
(19

48
+

√
h

2

)
− f1

( 1

16
+

√
h

2

)
−1

8
arg sinh

(19

24

)
+

1

8
arg sinh

(1

8

))
.

Since
√
h ≤ 1

12 for any p ∈ N, we obtain

L(gAc )− L(
⌊
gAc
⌋
) > 0.076h.

Eventually, for any h = 1
(12(8p+1))2 , we have shown that

L(g) ≥ L(gAc ) ≥ L(
⌊
gAc
⌋
) + 0.07h.

This example shows that for some non-local estimators, the obtained bounds
are tight and therefore cannot be improved in the general case.

Appendix A.2. Biconcavity

In this section, we exhibit a concave function whose discretizations contain
arbitrary long convex pairs of chords. The counterexample relies on the following
theorem proved in [6]. This theorem asserts that, given a function x 7→ ax2 +
bx+c, the distribution in [0, h] of the values of the expression

(
a(kh)2+b(kh)+c

)
mod h, k ∈ N, which are the errors resulting from the quantization in hZ, tends
toward the equidistribution.
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Theorem 10 ([6, Lemma 2 and Prop. 3]). Let a, b ∈ R, a < b. Let g :
[a, b]→ R be a polynomial function of degree 2. Then, for all interval I ⊆ [0, 1],

lim
h→0

card{x ∈ hZ ∩ [a, b] | g(x) mod h ∈ hI}
card(hZ ∩ [a, b])

= µ(I) ,

where µ(I) is the classical length of I.

Let us consider the function g(x) = 2x−x2, x ∈ [0, 1], which is concave. We
denote by bgch the function x ∈ [0, 1] 7→ bg(x)/hch ∈ hZ. Let H be a positive
integer. Thanks to Theorem 10, we prove that, for each grid spacing h below
some threshold, we can choose an integer p such that the �nite di�erence
bgch((p + H)h) − bgch(ph) is less than or equal to the grid spacing h while
the �nite di�erence bgch((p + 2)Hh) − bgch(ph) is greater than twice the grid
spacing h. Thus, the graph of bgch has a convex pair of consecutive chords.

Detailed calculus.
According to Theorem 10 with [a, b] = [1 − 17

24H , 1 − 16
24H ] and I = [ 4

12 ,
7
12 ), it

exists a real h0 > 0 such that, for any h ∈ (0, h0), one has

card
{
n ∈ J | g(nh)− bgch(nh) ∈ [ 4h12 ,

7h
12 )
}
≥ 1

5
card J ,

where J = [[ ah ,
b
h ]].

Since card J → +∞ as h → 0, there exists h1 > 0 such that for any h <
h1, one can �nd n0 ∈ N such that [[n0H, (n0 + 2)H]] ⊂ J and g(n0hH) −
bgch(n0hH) ∈ [ 4h12 ,

7h
12 ).

Let h < h1. Noting that 16
12H ≤ g′(x) ≤ 17

12H on [a, b], we claim that

bgch((n0 + 1)hH)−bgch(n0hH)

< g((n0 + 1)hH)− (g(n0hH)− 7

12
h)

<
17

12H
× hH +

7

12
h

< 2h .

As the left hand side of the above inequalities is a multiple of h, we get

bgch((n0 + 1)hH)− bgch(n0hH) ≤ h .

In the same way, we obtain

bgch((n0 + 2)hH)− bgch(n0hH)

> g((n0 + 2)hH)− h− (g(n0hH)− 4

12
h)

>
16

12H
× 2hH − 2

3
h

> 2h .
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Thus,
bgc((n0 + 2)hH)− bgc(n0hH) ≥ 3h .

Finally, we have

bgc((n0 + 2)hH)− bgc(n0hH) > 2
(
bgc((n0 + 1)hH)− bgc(n0hH)

)
.

That is, the function bgc is strictly convex on [n0hH, (n0 + 2)hH].

Appendix B. Technical lemmas

Lemma 11. Let f be a Lipschitz continuous function de�ned on an interval
[a, b]. Let m, M be two real numbers such that m ≤ f ′(t) ≤M for any t ∈ [a, b]
where the derivative of f is de�ned. Then, the length L(f) of the graph of f is
less than, or equal to, the length of the polylines joining the points A(a, f(a))
and B(b, f(b)) with segments of slopes m or M .

Proof. We assume without loss of generality that [a, b] = [0, 1]. Let s be the
slope of the line from A to B. Since f is Lipschitz continuous, it is almost
everywhere di�erentiable and the slope s is equal to the integral of f ′ on [0, 1].
Thus, m ≤ s ≤ M and there exists k ∈ [0, 1] such that s = (1 − k)m + kM .
Moreover,

L(f) =

∫ 1

0

ϕ ◦ f ′(t) dt.

and it can easily be seen that the length of any polyline joining the points A
and B with segments of slopes m or M is L = (1− k)ϕ(m) + kϕ(M).

We shall prove that L(f)− s ≤ L− s, that is
1∫

0

ψ ◦ f ′(t) dt ≤ (1− k)ψ(m) + kψ(M) ,

where ψ(x) = ϕ(x)−x. Observe that the function ψ is positive, decreasing and
convex.

Let ψ◦g be a simple function such that 0 < ψ◦g ≤ ψ◦f ′ (since ψ is bijective
from R to ]0,+∞[, any positive simple function can be written as ψ ◦ g). From
ψ ◦ g ≤ ψ ◦ f ′, we derive that g ≥ f ′. Thus, g ≥ m. Furthermore, even if it
means replacing g by inf(g,M), we may assume that g ≤ M . Now, let k1 be
the real in [0, 1] such that∫ 1

0

g(t) dt = (1− k1)m+ k1M .

As g ≥ f ′, we have k1 ≥ k and, since ψ is convex and decreasing,∫ 1

0

ψ ◦ g(t) dt ≤ (1− k1)ψ(m) + k1ψ(M) ≤ (1− k)ψ(m) + kψ(M) . (B.1)
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m λ1 λ2 λ3 M
∫
g

ψ(m)

ψ(λ1 )

ψ(λ2 )

ψ(λ3 )
ψ(M)

∫
ψ ◦g

Figure B.4: An illustration of the �rst inequality in (B.1). We assume
g =

∑n
i=0 λi1Ei where, for any i, m ≤ λi ≤ M , the measurable sets Ei

are pairwise disjoint and
∑n
i=0 µ(Ei) = 1 (here, µ is the Lebesgue mea-

sure on R). Thus, the point with coordinates (
∫
g,
∫
ψ ◦ g) is the barycen-

ter of the weighted points
(
(λi, ψ(λi)), µ(Ei)

)
while the point with coordi-

nates (
∫
g, (1 − k1)ψ(m) + k1ψ(M)) is the barycenter of the weighted points(

(m,ψ(m)), 1− k1
)
,
(
(M,ψ(M)), k1

)
.

The �rst inequality in Equation B.1 is illustrated, and commented, in Figure B.4.

Eventually,∫ 1

0

ψ ◦ f ′(t) dt = max
g

∫ 1

0

ψ ◦ g(t) dt ≤ (1− k)ψ(m) + kψ(M) .

�

Lemma 12. Let ABC be a triangle in R2 (A 6= C) with edges of slopes −∞ <
α < β < γ < +∞. We assume that the edge AC have slope β. Then,

AB +BC −AC
AC

≤ (γ − α)2

4ϕ(β)
.

Fig. B.5 illustrates the con�guration studied in Lemma 12.

Proof. Let k ∈ (0, 1) such that β = kγ + (1 − k)α. Let m be the abscissa
of AC. It can be seen that the vectors AB, BC and AC have coordinates
(km, kmγ), ((1− k)m, (1− k)mα) and (m,mβ). Thus,

AB +BC −AC = m
(
kϕ(γ) + (1− k)ϕ(α)− ϕ(β)

)
= m

(
k
(
ϕ(γ)− ϕ(kγ + (1− k)α)

)
+

(1− k)
(
ϕ(α)− ϕ(kγ + (1− k)α)

))
= mk(1− k)(γ − α)

(
ϕ′(ξ1)− ϕ′(ξ2)

)
= mk(1− k)(γ − α)(ξ1 − ξ2)ϕ′′(ξ) ,
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m

β

γ

α

A

B

C

Figure B.5: α, β, γ are the slopes of the segments BC, CA, AB.

where ξ1, ξ2, ξ lie between α and γ.
Hence,

AB +BC −AC ≤ m(γ − α)2

4
, (B.2)

for ‖ϕ′′‖∞ = 1. As AC = mϕ(β), the result holds. �

Lemma 13. Let (un)n∈N a monotonically non-increasing sequence of real non
negative numbers and (cn)n∈N a sequence of reals in an interval I such that∑j
i=0 ci ∈ I for any integer j. Then,

∑j
i=0 ci ui ∈ u0 I for any integer j.

Proof. If u0 = 0, then un = 0 for any n and the result is obvious. From now,
we assume u0 > 0. Let n ∈ N and S =

∑n
i=0 ci ui. We set Cj =

∑j
i=0 ci for

any j ≤ n, pi = ui−ui+1

u0
for any i ≤ n − 1 and pn = un

u0
. The reals pi are all

non-negative and their sum equals 1. We can easily check that

S =

n−1∑
i=0

( i∑
j=0

cj

)
(ui − ui+1) +

( n∑
j=0

cj

)
un

= u0

( n∑
i=0

pi Ci

)
.

The last equality above shows that the real 1
u0
S is the barycenter �with non-

negative weights� of numbers in the interval I. Thus, the result holds. �

Lemma 14. Let f1 and f2 be two piecewise a�ne functions de�ned on [c, d] ⊂
R, (c < d), with a common partition σ = (xi)

p
i=0 having p steps and such that

f1 ≤ f2 ≤ f1 + e for some constant e > 0. If furthermore f2 is concave, then

|L(f1)− L(f2)| ≤
p∑
i=1

1

xi − xi−1
e2 + Ue

≤ p

M−1(σ)
e2 + Ue .
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where U = max(ϕ′(s2,0), ϕ′(s2,0)− 2ϕ′(s2,p−1))) is a constant which depends on
the slopes s2,0 and s2,p−1 of the �rst and the last segments of f2.

Proof. Let σ = (xi)
p
i=0 be the common partition for f1 and f2. We write mi

for xi+1 − xi and s1,i, resp. s2,i, for the slope of f1, resp. f2, on the interval
[xi, xi+1]. Then,

L(f1)− L(f2) =

p−1∑
i=0

mi

(
ϕ(s1,i)− ϕ(s2,i)

)
=

p−1∑
i=0

ϕ′(s0,i)mi(s1,i − s2,i) where s0,i ∈ [s1,i, s2,i]

=

p−1∑
i=0

ϕ′(s2,i)mi(s1,i − s2,i) +

p−1∑
i=0

(ϕ′(s0,i)− ϕ′(s2,i))mi(s1,i − s2,i) .

Let give an upper bound for C=
∣∣∣∑p−1

i=0 ϕ
′(s2,i)mi(s1,i − s2,i)

∣∣∣. Since the func-
tion f2 is concave, the sequence (s2,i)

p−1
i=0 is non-increasing as is the sequence

(ϕ′(s2,i))
p−1
i=0 (for the function ϕ′ is increasing). Hence, we can apply Lemma 13

with the settings

ci = mi(s1,i − s2,i)
= (f1(xi+1)− f2(xi+1))− (f1(xi)− f2(xi)) ,

ui = ϕ′(s2,i)− ϕ′(s2,p−1) ,

I = [−e, e] .

Lemma 13 induces that
∣∣∣∑p−1

i=0 uici

∣∣∣ ≤ u0e. Then, we get
C ≤

∣∣∣∣∣
p−1∑
i=0

uici

∣∣∣∣∣ +

∣∣∣∣∣
p−1∑
i=0

ϕ′(s2,p−1)ci

∣∣∣∣∣
≤ u0e+ |ϕ′(s2,p−1)|

∣∣(f1(d)− f2(d)
)
−
(
f1(c)− f2(c)

)∣∣
≤ u0e+ |ϕ′(s2,p−1)| e
≤ Ue ,

where U = max(ϕ′(s2,0), ϕ′(s2,0)− 2ϕ′(s2,p−1)).
We now look at the sum D=

∑p−1
i=0 (ϕ′(s0,i) − ϕ′(s2,i))mi(s1,i − s2,i). The

function ϕ′ is 1-Lipschitz (ϕ′′(x) = (1 + x2)(−3/2)), so we have

|ϕ′(s0,i)− ϕ′(s2,i)| ≤ |s0,i − s2,i| ≤ |s1,i − s2,i| .
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Then,

D ≤
p−1∑
i=0

mi(s1,i − s2,i)2

≤
p−1∑
i=0

c2i
mi

≤
p−1∑
i=0

1

mi
e2 .

Eventually, we get

|L(f1)− L(f2)| ≤ Ue+

p−1∑
i=0

1

mi
e2 . (B.3)

�

Lemma 15. Let f1 and f2 be two concave piecewise a�ne functions de�ned on
[c, d] ⊂ R such that f1 ≤ f2 ≤ f1 + e for some e > 0. Then

|L(f1)− L(f2)| ≤ Ue . (B.4)

where U = max(ϕ′(α), ϕ′(α)− 2ϕ′(β)) with α, resp. β, lying between the slopes
of the �rst, resp. last, segments of C(f1) and C(f2).

Proof. Let σ = (xk)pk=0 be a common partition for f1 and f2. We write mk

for xk+1 − xk and s1,k, resp. s2,k, for the slope of f1, resp. f2, on the interval
[xk, xk+1]. Since f1 and f2 are concave, the sequences (s1,k) and (s2,k) are
monotonically non-increasing. Then,

L(f1)− L(f2) =

p−1∑
k=0

mk(ϕ(s1,k)− ϕ(s2,k)) =

p−1∑
k=0

ϕ′(zk)mk (s1,k − s2,k) ,

where zk ∈ (s1,k, s2,k).
Let i < j be two integers in [[0, p − 1]]. Since s1,i > s1,j , s2,i > s2,j and, by
de�nition, ϕ′(zi) and ϕ′(zj) are the slopes of two chords of the convex curve C(ϕ)
between the points of abscissas s1,i, s2,i for the former and between the points
of abscissas s1,j , s2,j for the latter, we derive that ϕ′(zi) > ϕ′(zj). Thereby, the
sequence

(
ϕ′(zk)

)
is monotonically non-increasing.

Now, from Lemma 13, taking

ck = mk(s1,k − s2,k)

= (f1(xk+1)− f2(xk+1))− (f1(xk)− f2(xk)),

uk = ϕ′(zk)− ϕ′(zp−1) and

I = [−e, e] ,
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we derive from (12) that

|L(f1)− L(f2)| =
∣∣∣∣∣
p−1∑
k=0

(uk + ϕ′(zp−1))ck

∣∣∣∣∣
≤
∣∣∣∣∣
p−1∑
k=0

ukck

∣∣∣∣∣+ |ϕ′(zp−1)|
p−1∑
k=0

ck

≤ u0e+ |ϕ′(zp−1)| e
≤ Ue ,

where U = ϕ′(z0)− ϕ′(zp−1) + |ϕ′(zp−1)| = max(ϕ′(z0), ϕ′(z0)− 2ϕ′(zp−1)). �
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