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Abstract

Many dating techniques include significant error terms which are not independent between
samples to date. This is typically the case in Optically Stimulated Luminescence (OSL)
dating where the conversion from characteristic equivalent doses to the corresponding ages
using the annual dosimetry data includes error terms that are common to all produced
datings. Dealing with these errors is essential to estimate ages from a set of datings whose
chronological ordering is known. In this work, we propose and we study a Bayesian model
to address this problem. For this purpose, we first consider a multivariate model with
multiplicative Gaussian errors in a Bayesian framework. This model relates the set of
characteristic equivalent doses and the set of corresponding ages while taking into account
for the systematic and non-systematic errors due to the dosimetry. This model offers the
opportunity to deal properly with stratigraphic constraints within OSL datings and with
unrelated, systematic-error free, dating (e.g. radiocarbon). Then, we use this model to
extend an existing Bayesian model for the assessment of characteristic equivalent doses from
Single Aliquot and Regenerative (SAR) dose measurements. The resulting overall Bayesian
model leads to a joint estimation of all the variables (which include all the dose-response
functions and characteristic equivalent doses) of a sequence of, possibly heterogeneous,
datings. We also consider a more generic solution consisting in directly using the age model
from a set of characteristic equivalent doses estimations with their associated standard
errors. We finally give an example of application on a set of 5 OSL datings stratigraphically
constrained and observe a good adequacy between the two approaches.

Keywords: optically stimulated luminescence, chronometric dating, Bayesian analysis

1. Introduction

Ordering (or stratigraphic) constraints between samples to date constitute an essential
element to build accurate and coherent chronologies. Such a prior information is typically
modeled in a Bayesian setting [5] and consists of a basic element of several dedicated
softwares e.g. OxCal [4], BCal [6] or Chronomodel [11, 19]. These models are designed
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to deal with datings associated to additive and independent errors as it is the case for
e.g. radiocarbon or archaeomagnetic datings. However, paleodosimetric datings do not fit
such a frame and to the best of your knowledge, there is still a lack of generic methods
to incorporate them in the analyses. Paleodosimetric dating methods [17] rely on the
assessment of a characteristic equivalent dose D expressing the total absorbed radiation
dose since last resetting event (e.g. last exposure to sunlight or heat) of the studied
samples. Then, this characteristic equivalent dose can be converted into an age A using
the annual dose-rate ḋ associated to the environment surrounding the studied sample. Once
the characteristic equivalent dose D̂ and its standard error σD evaluated, the commonly
used procedure to perform this conversion consists in [16]:

1. summarizing the distribution of the annual dose-rate ḋ with a mean µḋ and standard
error σḋ using combination rules,

2. approximating the point estimate and the standard error for the associated age de-
fined by the ratio A = D

ḋ
using the following quadrature formula:

Â =
D̂

µḋ
and σA = Â

√(
σD

D̂

)2

+

(
σḋ
µḋ

)2

. (1)

This solution has two main limitations:

A. it provides only a coarse characterization of the statistics of A,

B. it does not permit to include additional information as ordering constraints between
ages of a given stratigraphic sequence to improve the estimations. Moreover in prac-
tice, the dose-rate error σḋi for each dating i includes errors that are common to all
the datings making existing models to deal with stratigraphic constraints inadequate.

To overcome these two limitations several solutions have been investigated. Rhodes et
al. [14] proposed to tackle limitation B by inferring the age according to Eq. 1 and then
by simply ignoring the systematic part of the error in the analysis of the stratigraphic con-
straints (using the software Oxcal) [3]. Finally, they used an external criterion to check the
coherency of the inference. While pragmatic, this solution does not provide a proper model
to provide consistent dating uncertainties. Huntriss [10] proposed to tackle limitation A by
simulating a sample from the distribution associated to the age A = D

ḋ
from two samples

simulated according to the distributions associated to D and to the dose-rate ḋ. As we
will see it, when the distribution for the annual dosimetry is Gaussian (which is nearly the
case), our approach extends this one while dealing also with limitation B. Finally, Millard
[12] designed a solution to tackle the two limitations. For that purpose, he proposed to
model the dosimetry data through a likelihood structure: one latent variable is assigned
to each quantity needed for the computation of the dose-rate ḋi, these latents (that are
typically numerous) are related to observations using Gaussian distributions and all are
related to the ages to form the model. Priors are set for each latent and the posterior ages
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are estimated using Markov Chain Monte Carlo methods. A practical drawback of this
approach is that each dating laboratory may have its own complex protocol to estimate
the dose-rate ḋi and for each of these protocols one needs to build a dedicated model that
must be implemented, validated (particularly with respect to the choice of the associated
priors) and made available to the community. In practice, this limits the practical im-
pact of such an approach. Moreover, modeling the dosimetry data using observations can
be problematic as some parts of the observations and their associated uncertainties are
not strictly speaking associated to an observation but rather on expert information (e.g.
uncertainty on the water content). Similarly, the systematic component included in the
error terms makes that the observations are not independent and the associated Bayesian
model is, in most cases, not identifiable. Thus the dosimetry data could be considered as
a component of the prior structure of the dating model and not as observations. Notice
however that for implementation facilities, Millard proposed then to recast the likelihood
structures into priors (and similarly in a companion article [13]).

In this work, we propose a new solution tackling limitations A and B and consisting in a
Bayesian model for multiplicative multivariate Gaussian errors. Interestingly, this solution
is generic with respect to the laboratory protocol as it only relies on the specification of
a few variance and covariance values that can be derived for many dose-rate assessment
protocols.

The paper is organized as follows. In Section 2.1, we present the age model to estimate
an age from an equivalent dose, a mean dose-rate and its associated standard error. This
simple model will be then considered in a multidimensional setting where a part of the
dosimetry error is possibly common to several datings (Section 2.2) and where some datings
can be constrained to be in a given order (Section 2.3). From that basis, we then consider
two situations with optically stimulated luminescence (OSL) datings [1, 20]. In the first
situation, we consider that we have the raw OSL measurements at our disposal. We thus
propose a model consisting of the addition of a supplemental layer to a Bayesian model
to infer a characteristic equivalent dose D from Single Aliquot and Regenerative (SAR)
dose measurements we developed in another paper [2] to the age model derived before
(Section 3.1). In the second one, we consider that we only have the output characteristic
equivalent doses and their standard errors at our disposal. We thus directly consider their
conversions to ages (Section 3.2). Then, we give an application of these two models to infer
a chronology from a set of luminescence measurements of 5 OSL samples stratigraphically
constrained (Section 4). Finally, we summarize our contributions and recommendations in
Section 5.

2. Age to equivalent dose relationship: multiplicative Gaussian error

2.1. Individual age model

Once the characteristic equivalent dose D assessed, the age of the studied sediment since
last resetting (corresponding to exposure to light) can be obtained by dividing D by the
mean annual dose-rate ḋ. However in practice, ḋ is only known with an error aggregating
many sources of errors due to measurement errors, calibration errors and a low level of
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awareness of some characteristics of the deposit environment. As a result, even given an
accurate assessment of the characteristic equivalent dose D, a significant uncertainty may
be associated to the resulting age. Formally, the relationship between the characteristic
equivalent dose and the corresponding characteristic age A is handled by the following
multiplicative gaussian error model:

D = A(ḋ+ ε), (2)

with ε ∼ N(0, σ2
ḋ
), which results in the following conditional distribution of D given A:

D ∼ N(A · ḋ, A2 · σ2
ḋ
), conditionally to A. (3)

We are interested in estimating the age A from the observed characteristic equivalent dose,
and the dose-rate data σḋ and ḋ with A > 0. One can show that the Jeffreys prior for A is

PA(a) ∝ 1

a
IIR+(a). (4)

This is a particular case of the prior obtained in Appendix A.1. The prior is improper but
the resulting posterior is proper for d 6= 0:

PA|D(a|d) ∝ 1√
2πa2σḋ

exp(−(a.ḋ− d)2

2a2σ2
ḋ

)IIR+(a), (5)

Interestingly, let Y = d/X (d 6= 0) with X ∼ N(ḋ, σ2
ḋ
) · I]0;∞[ (where I]0;∞[ indicates

that the density is truncated on ]0;∞[), then for y ∈]0;∞[:

fY (y) = | d
dy

(d/y)| · fX(d/y) = d/y2 · fX(1/y)

∝ d/(
√

2π.σḋ · y
2) exp(−(ḋ− d/y)2

2σ2
ḋ

) = d/(
√

2π · σḋ.y
2) exp(−(yḋ− d)2

2y2 · σ2
ḋ

),

which coincides with the posterior distribution given by Eq 5. So in this specific case,
characterizing A consists in simulating the distribution of d/X. As mentioned in the
introduction, this simulation based solution has been investigated in a previous work on
OSL datings [10].

Note that in practice, the domain of validity for A is limited to a particular period
of the history (often called the study period) [amin, amax] with 0 < amin < amax. This
information can modeled by modifying the prior as follows:

PA(a) ∝ 1

a
I[amin,amax](a). (6)

Notice that bounding the support of the prior is motivated by the application, but is
also needed to ensure the existence of the posterior moments. In the following synthetic
experiments, we fix values for amin and amax such that they largely contain the ages of
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interest: the true ages are chosen in the interval [100; 200] while [amin; amax] is set to
[1; 400].

Figure 1 shows how the posterior behaves as a function of σḋ. Particularly, when σḋ
increases the distribution becomes more asymmetric so that its mode is shifted toward
the left while its mean is shifted toward the right. This emphasizes the potential error
committed using Eq. 1.
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Figure 1: Posterior distribution of A for σḋ = 0.05, 0.1, 0.15, 0.2 with ḋ = 1. The vertical line represents

the true value of D/ḋ.

2.2. Multivariate model : sequence of ages

Let then consider the model for Ns ages indexed as Ai, i ∈ [|1, N |]. For this purpose, we
need to explicit the content of σḋ. In practice, the dose-rate is estimated as combinations of
physical quantities that are known with a given uncertainty. A part of this uncertainty is
specific to the measured sample (e.g. counting errors due to the spectrometer) and another
-the systematic error- is related to the measurement device and is common to all the datings
of the studied sequence (e.g. error on the calibration of the measurements device). Without
loss of generality, we will consider in the following, a simple case composed of these two
sources of error (a more sophisticated instantiation leading to structurally the same model
will be considered in Section 4):

Di = Ai · ḋi + Ai · εḋ,i + Ai · αi · εḋ,c (7)

where εḋ,i ∼ N(0, σ2
ḋ,i

) and εḋ,c ∼ N(0, σ2
ḋ,c

) and αi > 0 is known and gives, for each

dating i, the degree of contamination to the term of systematic error. Assuming that the
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noise terms εḋ,c and εḋ,i (for all i) are independent, the joint conditional distribution of the
(Di)i can be written as:

(Di)i|(Ai)i ∼ N ((Ai · ḋi)i,Σ), (8)

where the covariance matrix Σ depends from (Ai)i and writes:

Σi,i = A2
i (σ

2
ḋ,i

+ α2
iσ

2
ḋ,c

), (9)

and for i 6= j,
Σi,j = AiAjαiαjσ

2
ḋ,c
. (10)

This covariance matrix is positive definite as long as at least N of the variances
(σ2

d,i)i=1,N and σ2
d,c are not null (assuming that the αi are strictly positive). An example of

design for matrix Σ from a practical situation is discussed in Section 4.1 and described in
Appendix B.

Again, the Jeffreys prior for (Ai) writes:

P(Ai)i((ai)i) ∝
N∏
i=1

1/ai for 0 < amin < ai < amax and 0 else. (11)

The proof is relegated in Appendix A.1. This choice of prior leads to the following posterior
distribution:

P(Ai)i|(Di)i((ai)i|(di)i) ∝ P(Di)i|(Ai)i((di)i|(ai)i)P(Ai)i((ai)i), (12)

that will be characterized using a Metropolis-within-Gibbs sampler [15].
Figure 2 shows how the inference on the same age A1 is modified when the number N

of studied ages increases. Obviously, the studied model is different from the one in which
the inferences on the ages are independent from each others, however, observing that the
marginal posteriors are stable when N increases is satisfactory.

2.3. Sequence of ages with ordering constraints

In practice, the previously developed model is of few interest as none of the datings Ai
interacts directly with the others and consequently the resulting inference is not so different
from what we obtain from a set independent inferences. In this section, we consider the
informative case where one knows that the ages are stratigraphically constrained i.e. they
(or some of them) are in a known chronological order. This case can be implemented by
adding a support constraint for the vector (Ai)i into its prior [7]. For that purpose, we con-
sider B, the set of N -uplets satisfying the imposed stratigraphy (that can be incompletely
stated i.e. some of the ages can be not fully ordered) and state:

p(Ai)i((ai)i) ∝
N∏
i=1

(
1

ai

)
IB((ai)i), (13)

where IB((ai)i) = 1 if (ai)i ∈ B and 0 else.
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Figure 2: Posterior distribution for the age A1 when the number of ages in the sequence
increases (N = 1, 5, 10, 20). We fix for all i σḋ,i = αiσḋ,c = 0.1 and the ḋi are randomly draw from a
U(0.5, 1.5).

Moreover, it is possible to allow some of the datings of the sequence not to be affected by
the systematic errors (or by different systematic terms). In practice, this situation typically
happens when some of the datings are performed by different laboratories making the errors
on the assessment of the dose-rates ḋi independent from each others or when some other
unrelated dating methods (e.g. radiocarbon dating) are used. Here for a sake of simplicity,
we will consider the first case. In practice, it implies to set to zero the covariance terms of
Σ relating two ages/dosimetries being estimated by two different laboratories.

Let first consider the case where there is no systematic-error free dating. In the exper-
iments displayed in Figures 3 and 4, we used σd,i = 0.1, αiσd,c = 0.1 and (di)i randomly
draw from a U(0.5, 1.5). Figure 3 shows how the error of estimation for a given age is
modified when increasing the number of stratigraphically constrained ages. Particularly,
one observes that the mean and the variance error decrease slowly with the number of
observations. This is related to the systematic error term that cannot be inferred without
additional information. Figure 4 shows typical posteriors on a given age with an increasing
number of stratigraphically constrained ages.

Let then consider the effect of adding some systematic-error free datings. In the ex-
periments displayed in Figures 5 and 6, we consider three settings: in the first one, we
consider 5 datings without any stratigraphic constraints, all affected by the systematic
error term. In the second one, we consider the same 5 datings in stratigraphic constraint
(again, all affected by the systematic error term). In the third one, that two of them are
not affected by the systematic-error term (while keeping the same overall variance level).
Figure 5 shows how the error of estimation for a given age is modified when considering
these different settings. Particularly, one observes that whereas the number of datings is
the same in all cases and whereas the overall error level is similar, the estimation error is,
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Figure 3: Box plot of the estimation error for a given age when the number of ages in the
sequence increases (N = 1, 5, 10, 20) over a set of 100 realizations. From left to right, statistics on
the 100 experiments for 1, 5, 10 and 20 stratigraphically constrained ages.
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Figure 4: Violin plot of the posterior samples for a given age when the number of ages in the
sequence increases (N = 1, 5, 10, 20). The horizontal line is the true value for the age.

as expected, highly reduced when considering independent datings. Figure 6 shows typical
posteriors from this set of experiments. It illustrates how the posterior variance diminishes
when introducing systematic-error free datings.
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Figure 5: Box plot of the estimation error on the same age A3 from a set of 100 realizations.
From left to right, statistics on the 100 experiments for 5 ages no stratigraphically constrained, 5 strati-
graphically constrained ages and 5 stratigraphically constrained ages whose two are free of systematic
error.
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Figure 6: Violin plots of the posterior samples for A3 for N = 5 ages for two typical cases: one
where the systematic component of the error is low (left plot) and one where the error is high
(right plot). The left density is the posterior when no setting stratigraphic constraint, the middle density
is the posterior when setting stratigraphic constraints and only correlated ages and the right density, the
posterior when setting stratigraphic constraints but with two systematic-error free datings among the five.
The horizontal line is the true value for A3.
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3. Two models for OSL dating

In this section, we consider the prior we developed in the previous section as a compo-
nent of a full optically stimulated luminescence (OSL) dating model (Section 3.1). Then,
we consider a two-steps approach consisting in assessing the posterior ages (Ai)i from mea-
sured characteristic equivalent doses and their standard errors (D̂i, σD,i) that are computed
separately using another model (Section 3.2).

3.1. Full model

The model presented in this section is a combination of the previously developed age
model with a model for the estimation of characteristic equivalent doses (Di)i from nor-
malised luminescence observations (denoted as (nk,ji )i,j,k, (σnk,j

i
)i,j,k) presented elsewhere

[2]. In practice, it simply consists in adding the prior structure P ((di)i|(ai)i)P ((ai)i) as
defined in Eq. 8 and 13 to the marginal model P ((di)i|(nk,ji )i,j,k, (σnk,j

i
)i,j,k). The directed

acyclic graph representing the overall 4-stages hierarchical model is given in Figure 7. No-
tations are introduced in the caption (see the corresponding paper [2] for more details,
the notations have been a bit recasted for simplicity). For a sake of completeness, we
also recall here the corresponding posterior distribution (removing the exogenous parame-
ters ḋlab, t

k,j
i , ḋi, σḋ,i, σḋ,c, αi from the notations and the random variables indices from the

density function for a sake of simplicity):

P ((ai)i, (di)i, (σdi)i, (d
1,j
i )i,j, (σ

j
f,i)i,j, (θ

j
i )i,j, (q

k,j
i )i,j,k|(nk,ji )i,j,k, (σnk,j

i
)i,j,k)

∝
∏
i,k,j

(
P (nk,ji |q

k,j
i , σnk,j

i
)
)

∏
i,k,j

(
P (qk,ji |σ

j
f,i, θ

j
i , d

1,j
i )
)∏

i,j

(
P (d1,j

i |di, σd,i)P (σd,i|di)P (σjf,i)P (θji )
)

P ((di)i|(ai)i)P ((ai)i),

with the age model P ((di)i|(ai)i)P ((ai)i) as defined in Eq. 8 and 13. The other densities
(discussed in our previous paper) write:

P (nk,ji |q
k,j
i , σnk,j

i
) ∝ exp−(nk,ji − q

k,j
i )2

2σ2

nk,j
i

P (qk,ji |σ
j
f,i, θ

j
i , d

1,j
i ) ∝ 1√

2πσjf,i
exp−

(fθji
(dk,ji )− qk,ji )2

2σjf,i
2 ,with dk,ji = tk,ji · ḋlab for k ≥ 2

P (σjf,i) ∝ e−20σj
f,iIIR+(σf,i), P (θji = [uji , v

j
i , w

j
i , x

j
i ]) ∝ exp(

(uji − 6.5)2

170
)IIR+(uj)
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exp(
(vji − 50)2

106
)IIR+(vj) exp(

(wji − 0.002)2

0.0002
)IIR+(wj) exp(

(zji − 0.5)2

12.5
)I[−uj ,∞[(z

j),

P (d1,j
i |di, σd,i) ∝

[
σdi

(d1,j
i − di)2 + σ2

di

]
, P (σd,i|di) =

0.16di
σ2
di

+ (0.16di)2
IIR+(σd,i).

The inference is then performed using a Metropolis-within-Gibbs sampler. Some results
will be discussed in Section 4.

age model

equivalent dose model

dose/luminescence

relationship

measured/true

luminescence

relationship

(Ai)i

i = 1 to N

ḋlab

k = 2 to K

j = 1 to J

ḋi
σḋ,i, αi, σḋ,cDi

σD,i

D1,j
i

Q1,j
i

N1,j
i

σN1,j
i

natural signal

θji σjf,i

Dk,j
i tk,ji

k 6= 1

Qk,j
i

Nk,j
i

σNk,j
i

Figure 7: DAG representation of the inference model. Sequence level: The vector of ages (Ai)i is
related to the vector of characteristic equivalent doses (Di)i by the age model taking into account for the
different kinds of errors on the dosimetry. Sample i level: For each sample i, the characteristic equivalent
dose Di and dispersion σD,i are common to all aliquots of the sample. Aliquot j level: Each aliquot j is

associated with a natural dose D1,j
i , a set of regenerative dose Dk,j

i (k ≥ 2) and a dose response function

fθji
with its error term σjf,i. Dose k level: This function links the natural and regenerative doses Dk,j

i

and the true normalized signal Qk,ji while each of this signal is related the corresponding observation Nk,j
i .

Plain arrows represent stochastic relationships, dashed arrows represent deterministic relationships, blue
circles represent model parameters and red boxes represent observations and exogenous parameters. In
this DAG, we represented a single aliquot j and a single sample i level but there are many of them.

3.2. Two-steps model

In this section, we consider that we want to infer a set of ages from a set of inferred
characteristic equivalent doses with their associated standard errors D̂i, σD,i, the dose-rate
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values and standard errors and a set of stratigraphic constraints. This situation typically
arises when the chronological scenario is built using several pool of datings published
by other research groups. In such a case, the high-level results (such as the D̂i, σD,i)
are commonly given in the corresponding publications but most of the times the raw
luminescence data are not available. Moreover, such an approach allows users of other
non-Bayesian approaches to estimate the D̂i, σD,i (such as Galbraith’s approaches [9, 8])
to account properly for ordering constraints on their data.

3.2.1. Individual age model

As for the previous model, the ages are related to the true characteristic equivalent
dose through:

Di = Aiḋi + Aiεḋ,i, (14)

which are themselves related to the inferred characteristic equivalent dose D̂i by:

D̂i = Di + εD,i, (15)

where εḋ,i ∼ N(0, σ2
ḋ,i

) and εD,i ∼ N(0, σ2
D,i) are independent which results in:

D̂i|Ai ∼ N (Ai · ḋi, A2
i · σ2

ḋ,i
+ σ2

D,i). (16)

For this specific model, we obtain the Jeffreys prior (proof in Appendix A.2):

pAi
(ai) ∝

√√√√a2
i (2σ

4
ḋ,i

+ ḋ2
iσ

2
ḋ,i

) + σ2
D,iḋ

2
i

(a2
iσ

2
ḋ,i

+ σ2
D,i)

2
for 0 < amin < ai < amax and 0 else. (17)

When σD,i = 0, the graph of this function (up to a multiplicative constant) is equivalent
to the one of ai 7→ 1/ai. When σ2

D,i > 2σ2
d,i (which will be the case for our application),

the graph is strictly decreasing and decreases less sharply when σD,i increases.

3.2.2. Multidimensional model : sequence of ages

In this section, we consider a multidimensional extension of the model presented below
analogously to what we performed in Section 2. For that, we modified Eq. 14 as

Di = Aiḋi + Aiεḋ,i + Aiαiεḋ,c, (18)

where εḋ,i ∼ N(0, σ2
ḋ,i

), εD,i ∼ N(0, σ2
D,i) and εḋ,c ∼ N(0, σ2

ḋ,c
) are independent which results

in:
(D̃i)i|(Ai)i ∼ N ((Ai · ḋi)i,Σ + Iσ2

D,i
), (19)

where Iσ2
D,i

is the diagonal matrix such that Ii,i = σ2
D,i. Then to be consistent with Eq. 17,

we set the prior:

P(Ai)((ai)) ∝
∏√√√√a2

i (2(σ2
ḋ,i

+ α2
iσ

2
ḋ,c

)2 + ḋ2
i (σ

2
ḋ,i

+ α2
iσ

2
ḋ,c

)) + σ2
D,iḋ

2
i

(a2
i (σ

2
ḋ,i

+ α2
iσ

2
ḋ,c

) + σ2
D,i)

2
IB(a1, . . . , aN), (20)
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we can then write the posterior:

P(Ai)i|(D̃i)i
((ai)i|(d̃i)i) ∝ P(D̃i)i|(Ai)i

((d̃i)i|(ai)i)P(Ai)i((ai)i), (21)

that can be characterized using a Metropolis-within-Gibbs sampler. Some results will be
discussed in Section 4.
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OSL8 OSL7 OSL6 OSL4 OSL1

ḋi (Gy) 1.40 1.30 1.25 1.33 1.13
σḋ,i (Gy) 0.03 0.03 0.03 0.03 0.03

αḋ,iσḋ,c (Gy) 0.08 0.09 0.09 0.09 0.10

Table 1: Summary of the quantities defining Σ for the five studied samples.

4. Application

In this section, we use the two methods presented in Section 3.1 and 3.2 to process
a set of real measurements consisting of 5 OSL datings stratigraphically constrained [18].
Before starting, below is an overview of the data.

4.1. Data and parameters

The five studied sediments respectively called OSL1, OSL4, OSL6, OSL7 and OSL8 (we
kept the names given in the original publication) have been sampled from a sedimentary
pile corresponding to the Middle Stone Age. This leads to the following upper and lower
bound for the ages: amin = 25ka and amax = 280ka. The stratigraphy imposes the ages to
be ordered such that A1 ≥ A4 ≥ A6 ≥ A7 ≥ A8. Details on the measurements protocol can
be found in the original paper [18]. In the following, we focus our interest on how the dose-
rate is typically characterized for this specific example. The dose-rate ḋi is considered as
the sum of its β, γ and cosmic components (the α component is supposed to be negligible):

ḋi = ḋβ,i + ḋγ,i + ḋcos,i (22)

In practice, these three quantities are estimated through the combination of several
physical quantities that are themselves not completely known. More specifically, for each
sample i, one assesses values for the uranium, thorium and potassium contents Ui, Thi
and Ki, the gamma radiation component γi, the cosmic radiation component cosi, the
saturation uptake content Wi and the fraction of average water content Fi. These six
quantities are subject to systematic and independent errors. The corresponding error
model relating these quantities to the total dose-rate ḋi is then linearized to get a sum of
zero-mean gaussian error terms that fully define the covariance matrix Σ involved in our
multivariate equivalent dose to age model (Eq 8, 9 and 10). The resulting values for the
studied sediments are given in Table 1. The derivation needed to get them are close to the
ones used in practice to get µḋ and σḋ in the standard approach (Eq. 1) and are detailed
in Appendix B.

We also take into account for the error related to the laboratory dose source calibration
(with a percent error of 5%). How to modify the covariance matrix to account for this
supplemental source of error is detailed in Appendix C.

4.2. Results

4.2.1. Preliminary

As a first step, we study the full model of Section 3.1 when removing the stratigraphic
constraints between the five samples. As for the simple model of Section 2.2, without

14



constraint, we expect the age model not to affect the rest of the inference and particularly
the posteriors on the characteristic equivalent doses Di. Figure 8 displays the posterior
distribution for a given age when using 1 and 5 ages (left side) and for a given characteristic
dose when using no age model, the age model with 1 age and the age model with the 5
ages (right side). One can observe that as for the non-hierarchical model, the posterior
distributions display a coherent behavior: the estimations of the age and equivalent dose
remain sensibly unchanged.
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Figure 8: Marginalized posterior densities for the age A1 (left) and for the characteristic
equivalent dose D1 (right) when not considering stratigraphic constraints The black curves
consists of the posterior estimated using a single age and the red one of the posterior estimated using 5
ages. The characteristic equivalent dose obtained when considering only the characteristic equivalent dose
model is given in blue.

4.2.2. Comparison of the approaches

Table 2 gives a summary of the obtained inferences using the full-model and the two-
steps model (using the characteristic equivalent dose posteriors as inputs) when considering
the 5 data-sets together or when studying them one by one (so without the stratigraphic
constraints). Figure 9 displays the posterior for each age of the sequence with and without
using the stratigraphic constraints. These results can be summarized as:

• the stratigraphic constraints correct significantly the datings,

• the posterior standard deviation is slightly reduced when using the stratigraphic
constraints,

• the full and the two-steps models give similar inferences for the ages.

This last point is an interesting result suggesting that the two-steps method can be used
with confidence when the OSL measurement data are not available. However, the dataset
we used here is not so ambiguous and the use of the full-model should be preferred when
possible.
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Figure 9: Violin plot from the marginalized posterior densities for the ages with stratigraphic
constraints (blue) and without (red).

. A8 A7 A6 A4 A1

no strati
full 88.03 ± 7.78 102.79 ± 8.32 117.38 ± 10.14 110.68 ± 9.09 118.86 ± 11.01

two-steps 88.19 ± 7.82 102.03 ± 8.22 117.92 ± 10.07 110.86 ± 9.24 119.67 ± 11.05

strati
full 88.05 ± 7.62 102.43 ± 8.03 111.12 ± 8.65 114.31 ± 8.87 122.10 ± 10.46

two-steps 88.45 ± 7.78 102.30 ± 8.17 111.99 ± 8.95 115.39 ± 9.25 123.01 ± 10.65

Table 2: Posterior mean and standard deviation for the 5 ages for the full and the two-steps
model by setting or not the stratigraphic constraints.
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5. Conclusion

In this work, we considered a multivariate model with multiplicative Gaussian error
under a Bayesian framework. This model was then used as a component of an OSL dating
model but also to convert directly a set of equivalent doses to the resulting ages. As
mentioned in introduction, such a multiplicative model is not specific to OSL but related
to any paleo-dosimetric dating method (e.g. Thermo-luminescence (TL), Electron Spin
Resonance (ESR), Infrared stimulated luminescence (IRSL) datings) and we hope this
work to be useful to these other techniques. Notice that interestingly, based on a more
intuitive reasoning than the derivation we provide here, the use of the 1/A prior has already
been evoked by Millard [13] in a general discussion about prior distributions for ages and
dates in chronometric modeling. It should be mentioned here that using an uniform prior
for A in this setting can provide counter-intuitive results.

The two proposed dating models were then applied to a simple real dataset to illustrate
the interest of using the stratigraphic constraints when available. The inferences given by
the full and the two-steps approaches are similar on this example. This is a positive result
suggesting that the two-steps method can be used when the measurement data are not
available. Notice that the dataset we used is unfortunately free of external dating allowing
to correct the systematic components of the error. However, some data-sets would greatly
benefit from this possibility (e.g. [14]). The two-steps model will be made available in a
dedicated software to allow users to incorporate OSL datings in addition to other datings
to build chronologies. The full model will also be made available to explore deeply its
added-value.

To our opinion, the main limitation of our approach consists on the assumption of
gaussianity of the distributions associated to the dosimetry errors. While, there is strictly
speaking no reason to assume a gaussian shape for the dosimetry error, we think that
this limitation is in practice a minor point. First, one can visualize the true error model
on the dosimetry errors by simulation and then check that a gaussian shape is a good
approximation (which has been observed to be the case [10, 21] and which is, in most
cases, performed in the standard approach). Second, one must remind here that some
error terms involved in the dose rate estimation are not well characterized and that in
practice, only coarse (and generally highly conservative [14]) estimations are available.
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Appendix A. Construction of non-informative priors

Appendix A.1. Jeffreys prior for (θ) with Y ∼ N(d(θ)·α, d(θ)·Σ·d(θ)) with α = [α1, . . . , αN ]T

and Σ positive definite known

We denote d(v) as the diagonal matrix whose diagonal entries are v1, . . . , vN .
Using the fact that d(θ) is diagonal, a few algebra leads to rewrite the conditional

density as:

fY (y|θ) ∝ 1∏
i θi

exp
(
[d(θ)−1Σ−1α, vθ]

T [y, vy]
)
,

where

vθ = −0.5[Σ−1
1,11/θ2

1, 2Σ−1
1,21/θ11/θ2, . . . , 2Σ−1

1,N1/θ11/θN ,Σ
−1
2,21/θ2

2, . . . , 2Σ−1
2,N1/θ21/θN ,

. . . ,Σ−1
N−1,N−11/θ2

N−1,Σ
−1
N−1,N1/θN−11/θN ,Σ

−1
N,N1/θ2

N ],

and
vy = [y2

1, y1y2, . . . , y1yN , y
2
2, y2y3, . . . , y2yN , . . . y

2
N−1, yN−1yN , y

2
N ].

It thus constitutes an exponential family of dimension N(N+3)
2

.
By denoting w the vector composed of [1/θ1, . . . , 1/θN ], one can write the log-density

as:

lf(y) ∝
N∑
i=1

log(wi)−
1

2
(wTd(y)Σ−1d(y)w) + αTΣ−1d(y)w,

The Hessian matrix of the log-density lf equals:

∂2lf(y)

∂2w
= −d(y)Σ−1d(y)− d([

1

w2
1

, . . . ,
1

w2
N

]).
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After integration, we obtain

E[
∂2lf

∂2w
|w]i,j =

{
− 1
wiwj

[Σ−1
i,j (Σi,j + αiαj)], if i 6= j

− 1
w2

i
[Σ−1

i,i (Σi,i + α2
i ) + 1], if i = j.

(A.1)

Then,

I(w) = −det(E[
∂2lf

∂w2
|w]) = det(d(

1

wi
) · C · d(

1

wi
)) ∝

N∏
i=1

1

w2
i

, (A.2)

where C is a N ×N matrix with only positive entries and that does not depend from w.
Finally, one gets the density in θ by :

pΘ(θ) ∝ pW ([1/θ1, . . . , 1/θN ])
N∏
i=1

1

θ2
i

∝
N∏
i=1

|θi|
N∏
i=1

1

θ2
i

=
N∏
i=1

1

|θi|
. (A.3)

Appendix A.2. Jeffreys prior for θ with Y ∼ N(αθ, β2θ2 + σ2) with α, β and σ known

The likelihood function can be write of the form

fY (y|θ) ∝ e−(α2θ2)/(2(β2θ2+σ2))√
β2θ2 + σ2

e(y,−y2)T ((αθ)/(β2θ2+σ2),1/(2(β2θ2+σ2)),

so this model constitutes an exponential family of dimension 2. The log density is:

lf(y) = −1

2
log(β2θ2 + σ2)− 1

2
log(2π)− 1

2

(y − αθ)2

β2θ2 + σ2
, (A.4)

and

∂2lf

∂θ2
=

−β2 − α2

(σ2 + θ2β2)
+

2θ2β4

(σ2 + θ2β2)2
+ (θα− y)

4θαβ2

(σ2 + θ2β2)2
(A.5)

+ (θα− y)2(
β2

(σ2 + θ2β2)2
− 4θ2β4

(σ2 + θ2β2)3
). (A.6)

Finally,

I(θ) = −E[
∂2lf

∂θ2
|θ] =

2β4θ2

(β2θ2 + σ2)2
+

α2

(β2θ2 + σ2)
, (A.7)

and we obtain:

p(θ) ∝

√
θ2(2β4 + α2β2) + σ2α2

(θ2β2 + σ2)2
.

When setting σ = 0, one recovers p(θ) ∝ 1
|θ| .
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Appendix B. Building the covariances

In this section, we show how to build the covariance matrix for a specific real example.
As performed in the original publication of the studied data-set [18], we consider the dose-
rate ḋi as the sum of its β, γ and cosmic components (the α component is supposed to be
negligible):

ḋi = ḋβ,i + ḋγ,i + ḋcos,i (B.1)

In practice, these three quantities are estimated through the combination of several
physical quantities that are themselves not completely known. More specifically, for each
sample i, one assesses values for the uranium, thorium and potassium contents Ui, Thi and
Ki, the gamma radiation component γi, the cosmic radiation component cosi, the satura-
tion uptake content Wi and the fraction of average water content Fi. These 6 quantities
are subject to the following errors:

• Measuring each of the Ui, Thi, Ki, γ and cosmic components of the dosimetry is sub-
ject to a zero-mean gaussian noise. Noises are independent between measurements.
The corresponding standard deviations are known and called respectively, for each
sample i, σU,i, σTh,i, σK,i and σcos,i.

• Measuring the U, Th, K and γ components of the dosimetry is subject to system-
atic percentage errors εU,c, εTh,c, εK,c and εγ,c of same variance σ2

d,c related to the
calibration of the measurement device (typically σd,c = 0.1) .

• The assessment of the product WiFi is subject to an uncertainty modeled by a zero-
mean gaussian noise εWF,i of given standard deviation σWF,i which is independent
across samples.

Other sources of errors are considered as negligible.
The equations relating all these quantities to the β, γ and cosmic dosimetries are the

following [1]:

∀i ∈ [|1, N |], ḋβ,i =
1

1 + ψβ(WiFi + εWF,i)

(
Fβ,USβ,U(Ui + εU,i)(1 + εU,c) + (B.2)

Fβ,ThSβ,Th(Thi + εTh,i)(1 + εTh,c) + Fβ,KSβ,K(Ki + εK,i)(1 + εK,c)
)

where ψβ is the absorption of the β radiation by water, Fβ,U , Fβ,Th and Fβ,K are the β
attenuation coefficients, Sβ,U , Sβ,Th and Sβ,K are the specific beta dose rates,

ḋγ,i = (γi + εγ,i)(1 + εγ,c)
1 + ψγW

c
i F

c
i

1 + ψγ(WiFi + εWF,i)
(B.3)

where ψγ is the absorption of the γ radiation by water and W c
i and F c

i are respectively the
saturation water uptake and the fractional average water at time of sampling,

ḋcos,i = cosi + εcos,i. (B.4)
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The noise terms εU,c, εTh,c, εK,c and εγ,c are common to the N equations. Similarly to
the common practice to compute ḋ and its associated standard error, one then considers
all error terms as independent and linearizes the previous error models to get the following
age to characteristic equivalent-dose model:

∀i ∈ [1, N ], Di = Ai(ḋi + εḋ,i + αiεḋ,c)

with

ḋi =
1

1 + ψβWiFi
(rUUi + rThThi + rKKi)

1 + ψγW
c
i F

c
i

1 + ψγWiFi
γi + cosi (B.5)

calling rU = Fβ,USβ,U , rTh = Fβ,ThSβ,Th and rK = Fβ,KSβ,K and εḋ,i ∼ N(0, σ2
ḋ,i

) with:

σ2
ḋ,i

=
r2
Uσ

2
i,U + r2

Thσ
2
i,Th + r2

Kσ
2
i,K

(1 + ψβWiF )2
+

(1 + ψγW
c
i F

c
i )2σ2

i,γ

(1 + ψγWiFi)2
+ (B.6)

σ2
WiFi

( ψβ
(1 + ψβWiFi)2

(Fβ,USβ,UUi + Fβ,ThSβ,ThThi + Fβ,KSβ,KKi) + (B.7)

γiψγ
(1 + ψγWiFi)2

(1 +W c
i F

c
i )
)2

+σ2
cos,i (B.8)

and

α2
ḋ,i

=
F 2
β,US

2
β,UU

2
i + F 2

β,ThS
2
β,ThTh

2
i + F 2

β,KS
2
β,KK

2
i

(1 + ψβWiFi)2
+

((1 + ψγW
c
i F

c
i )γi)

2

(1 + ψγWiFi)2
, (B.9)

which completely defines the covariance matrix Σ.

Appendix C. Accounting for uncertainties due to the laboratory dose source

As for now, we focused on accounting for uncertainties on the natural annual dose-
rate ḋ. Another source of uncertainty that is commonly considered to achieve an age
estimation from an equivalent dose consists of the uncertainty over the laboratory source
used for administering regenerative and test doses needed to assess each characteristic
equivalent dose Di. This source is only known with a given calibration error of known
standard error σlab (which considering that all the samples have been processed using the
same experimental device, is a systematic error). The associated error is often called a
percent error and impacts Di as a percentage of itself [1]. A convenient way to take into
account for this supplemental source of error consists in simply modifying the covariance
matrix as:

Σi,i = A2
i (σ

2
ḋ,i

+ α2
iσ

2
ḋ,c

+ ḋ2
iσ

2
lab),

for i 6= j, Σi,j = AiAj(αiαjσ
2
ḋ,c

+ ḋiḋjσ
2
lab).
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